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Centralizer
Nilpotent orbit

1. Introduction and background

Let F be an arbitrary field and N a positive integer. By MN (F ) we denote the set 
of all N ×N matrices over F , and by NN we denote the set of all nilpotent elements in 
MN (F ). Note that the group GLN(F ) acts on NN by conjugation, i.e., g ·X = gXg−1

for g ∈ GLN (F ) and X ∈ NN . Recall that each nilpotent N×N matrix over F is similar 
to a nilpotent matrix J in the Jordan canonical form. If we assume that Jordan blocks 
of J are ordered by non-increasing size, then such J is uniquely defined. Hence the set 
of all the partitions λ = (λ1, . . . , λt), λ1 ≥ . . . ≥ λt, 

∑t
i=1 λi = N , of the integer N is 

in a bijective correspondence with the set of all orbits of NN under the action of the 
group GLN (F ). The orbit corresponding to the partition λ is denoted by Oλ. It was 
first proved by Gerstenhaber [13] that the dominance ordering on the set of partitions 
of number N coincides with the inclusion ordering of orbits of NN . The algebraic and 
combinatorial properties of nilpotent orbits over various fields and in other reductive Lie 
algebras have been exhaustively studied, see e.g., [9,12,27].

In the last decade, there has been an extensive investigation of Jordan structures of 
multiplication maps on finite-dimensional commutative algebras. If either the algebra is 
local and x is an element of the maximal ideal or the algebra is graded and x has a 
positive degree (for example, x is a linear form), then the multiplication map by x is a 
nilpotent linear map on the algebra, whose Jordan structure is called the Jordan type 
of the element x. The “generic” Jordan type is an important invariant of the algebra, 
which is tightly connected to the Lefschetz properties, see e.g., [1,10,16,20].

Recently, the pairs of commuting nilpotent operators have been extensively explored, 
see e.g., [2–4,15,22]. Let B ∈ NN be an arbitrary nilpotent matrix. Let C(B) denote the 
centralizer of B, i.e., C(B) = {A ∈ MN (F ); AB = BA}, and let

N (B) = C(B) ∩NN

denote the nilpotent centralizer of B, i.e., the set of all nilpotent elements of C(B). It is 
known that N (B) is an irreducible variety, [4].

One of the classical questions in the matrix theory is to determine the intersection of 
the nilpotent centralizer with the nilpotent orbits.

Question 1. For a nilpotent matrix B ∈ MN (F ), determine which of the GLN (F )-orbits 
of NN intersect the nilpotent centralizer of B or, equivalently, determine all possible 
partitions λ corresponding to Jordan canonical forms of the nilpotent matrices that 
commute with B.
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In general, this seems to be a difficult question, which has been answered so far only 
for some specific cases of matrices B.

For example, the nilpotent centralizer of a single Jordan block J(N) ∈ O(N) intersects 
only N nilpotent orbits. This is the consequence of the fact that the only matrices 
commuting with J(N) are polynomials in J(N), see e.g., [17, Theorem 3.2.4.2]. Thus the 
partitions λ that correspond to the matrices commuting with J(N) are precisely the ones 
whose parts differ by at most 1, i.e., λ1 − λt ≤ 1. Such partitions are called almost 
rectangular, [21]. Following [19], we denote the unique almost rectangular partition of N
into k parts by

[N ]k =
(
(q + 1)r, qk−r

)
,

where q =
⌊
N
k

⌋
, r = N mod k, and mt abbreviates t copies of m in the partition. 

On the other hand, the matrices over a finite field or over an algebraically closed field 
of characteristic 0 with largest intersections with nilpotent orbits were characterized 
in [8,26]; if N ≥ 4, then B2 = 0 if and only if N (B) ∩ Oλ �= ∅ for all partitions λ of N .

For a general matrix B, only partial answers to Question 1 were given. The lower 
bound for the number of parts of λ was determined in [4] and the upper bound for λ1
was given in [25]. Moreover, it was proved in [2] that if μ′ is the conjugate partition of 
the Jordan canonical form of B, then N (B) ∩Oμ′ �= ∅.

Since N (B) is an irreducible variety, there exists a partition λ of N such that Oλ ∩
N (B) is a dense open subset of N (B). If μ is the partition of N that corresponds to 
the Jordan canonical form of B, then Q(μ) is defined to be the unique partition λ
such that Oλ ∩ N (B) is a dense open subset of N (B), which is the maximal partition 
in the dominance ordering, for which its nilpotent orbit intersects N (B). Recently, the 
conjectured recursive algorithm to compute Q(μ) (see results and discussions in [6,7,18,
21]) has been proved to work for general μ, [5]. Furthermore, the preimage Q−1(λ) was 
completely determined for partitions λ with two parts which differ by at least 2 [19]. For 
generalization of Q(μ) to other simple Lie algebras, see [29].

Motivated by these partial results and open problems, this paper considers and com-
pletely resolves the following special case of Question 1.

Question 2. Let B ∈ N2n be a nilpotent matrix with the Jordan canonical form corre-
sponding to the partition (n, n). Characterize all possible partitions λ corresponding to 
Jordan canonical forms of the nilpotent matrices that commute with B.

There are some known partitions λ, for which the answer to Question 2 is positive. 
Namely, since the centralizers of square-zero matrices intersect all nilpotent orbits, any 
partition of the form λ = (2t, 1s), 2t +s = 2n, gives rise to a nilpotent orbit that intersects 
N (B), [8,26]. Moreover, we can assume that B is already in its Jordan canonical form, 
thus B = J(n) ⊕ J(n). Since every matrix commutes with its polynomial, it follows that 
B commutes with p(J(n)) ⊕ q(J(n)), for any polynomials p, q ∈ F [X]. By the above 
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Table 1
A complete list of the nilpotent orbits Oλ having a non-empty intersection with N (B), B ∈ O(n,n). Here, 
we use the notation α =

⌈
n+z
l+2z

⌉
and β = α(l + 2z) − (n + z).

λ constraints
(P1) [2n]s 1 ≤ s ≤ 2n.

(P2) ([n + m]m+z, [n − m]l−m+z) 0 ≤ z ≤ n − 1, 0 < 2m ≤ l < n − z, 
�n+m

m+z � ≥ � n−m
l−m+z � + 1

or
0 ≤ z ≤ n − 1, 0 < m < n − z, l = n − z

(P3) ([n + α′]m+z, [n − α′]l−m+z) 0 ≤ z ≤ n − 1, 0 < m ≤ l < n − z, l < 2m, 
n + l − m > α(l + 2z), α′ = l − m + (2m − l)α

(P4) ([n + α′′]l−m+z), [n − α′′]m+z) 0 ≤ z ≤ n − 1, 0 < m ≤ l < n − z, l < 2m, 
n + m + 2z ≤ α(l + 2z) < n + l + z,
α′′ = m − (2m − l)α

(P5) ([n]z+1, [n]m+z) 0 ≤ z ≤ n − 1, 2 ≤ m ≤ n − z

(P6) ((2α)l−β , (2α − 1)2z, (2α − 2)β) 0 ≤ z ≤ n − 1, 0 < l < 2m, l < n − z, m ≤
n − z, max{l − m − z, 0} ≤ β < max{m + z, l}

(P7) ((2α − 1)2l−m+z−β , 
(2α − 2)2m−l+2z, (2α − 3)β−m−z)

0 ≤ z ≤ n − 1, 0 < m ≤ l < n − z, l < 2m, 
max{m + z, l} ≤ β < min{2l − m + z, l + 2z}

(P8) ([n + γ′]m+z−t, [n − γ′]m+z+t) 0 ≤ z ≤ n − 1, 0 < m < n−z
2 , �n+m+2z

m+z � = �n+m
m+z � ≥ 5, 

1 ≤ t ≤ min{m, m − n + �n−m
m+z �(m + z)}, 

γ′ = m − � n−z
m+z �t

(P9) ([n + γ′′]m+z+t, [n − γ′′]m+z−t) 0 ≤ z ≤ n − 1, 0 < m < n−z
2 , �n−m

m+z � ≤ � n−z
m+z �, 

�n+m
m+z � ≥ 4, t ≥ 1, 

n + z + t ≤ �n+m
m+z �(m + z) ≤ n + 2m + z − t,

γ′′ = m + �n−m−2z
m+z �t

results, it follows that λ = ([n]t, [n]s), where 1 ≤ t, s ≤ n, gives a positive answer to 
Question 2 as well. Also, in [26, Theorem 3.6(c)] it was proved that any nilpotent orbit 
corresponding to an almost rectangular partition of (2n) intersects N (B). Furthermore, 
it was proved in the same paper that all nilpotent orbits that give a positive answer to 
Question 2 with the corresponding partition λ �= (2n) have λ1 ≤ n + 1, and O(n+1,n−1)
has a non-empty intersection with N (B). It was noted in [26, Example 3.7] that these 
partitions do not constitute the complete list of nilpotent orbits intersecting NB. Some 
of the partitions λ obtained by block antidiagonal and block upper triangular nilpotent 
matrices commuting with B were listed in [24, Theorems 6.7, 6.19].

The main objective of this paper is to resolve Question 2 completely, and to give a 
complete list of nilpotent orbits Oλ having a non-empty intersection with N (B), where 
B has the Jordan canonical form (n, n). We will prove the following theorem.

Theorem 3. Let B ∈ N2n be a nilpotent matrix with the Jordan canonical form corre-
sponding to the partition (n, n). If N (B) intersects the nilpotent orbit Oλ, then λ is one 
of the partitions given in Table 1. The partitions from the cases (P1)-(P7) always belong 
to some nilpotent orbits intersecting N (B), while the occurrence of the partitions from 
(P8)-(P9) depends on the field F . In particular, if F = C, then N (B) intersects exactly 
the nilpotent orbits Oλ, where λ is given in Table 1.
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Note that the cases (P1)-(P9) are not complementary and that some of them coincide. 
Since there are nine different cases, the proof is expected to be technical. This is why we 
first give some auxiliary results in Section 2, which will be used in Section 3, completely 
dedicated to proving Theorem 3. We complete the paper with some examples in Section 4. 
In particular, we show that the partitions in the cases (P8)-(P9) may not occur when 
F = Q.

2. Preliminaries

Let 0n and In be the zero and the identity matrix in Mn(F ), respectively, where we 
omit the subscripts when the order of the matrix is clear from the context.

Throughout the paper, let B ∈ N2n be a nilpotent matrix with the Jordan canonical 
form (n, n). There is no loss of generality if we assume that B is in the Jordan canonical 
form, i.e., B = Jn ⊕ Jn where Jn denotes the n × n Jordan block. A matrix A then 
commutes with B if and only if it is of the form

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 · · · an−1 b0 b1 · · · bn−1
. . . . . .

...
. . . . . .

...
. . . a1

. . . b1
a0 b0

c0 c1 · · · cn−1 d0 d1 · · · dn−1
. . . . . .

...
. . . . . .

...
. . . c1

. . . d1
c0 d0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for some ai, bi, ci, di ∈ F (see e.g., [14]), and with the omitted entries all equal to zero. 
Apart from this, there are two other useful descriptions of the matrices A ∈ N (B): 
the Weyr form [11,28] and the polynomial notation [23]. In general, the notation is 
complicated, but in the case when two Jordan blocks of B are of the same size, the 
notation can be simplified to the following:

• (Weyr form) Using a suitable permutation of the basis of F 2n we can see that the 
matrix Jn ⊕ Jn is similar to the matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

02 I2 02 · · · 02
. . . . . . . . .

...
. . . . . . 02

. . . I2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1)
2
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where all blocks are of size 2 × 2. Such a matrix is said to be in the Weyr canonical 
form and it is very useful when the commutativity questions are considered (see [28]). 
By abuse of the notation we will denote matrix (1) again by B, since it represents 
the same linear transformation. In this basis, the matrix of the linear transformation 
A that commutes with B has the form

A =

⎡⎢⎢⎢⎢⎣
A0 A1 · · · An−1

. . . . . .
...

. . . A1
A0

⎤⎥⎥⎥⎥⎦ , (2)

where Ai =
[
ai bi
ci di

]
for each i = 0, 1, . . . , n − 1. Clearly, A is nilpotent if and only 

if A0 is nilpotent, which was already observed in [4, Lemma 2.3].
• (Polynomial notation) Denote the polynomial ring F [X] by R and define the follow-

ing polynomials in R:

a(X) = an−1X
n−1 + · · · + a1X + a0, b(X) = bn−1X

n−1 + · · · + b1X + b0,

c(X) = cn−1X
n−1 + · · · + c1X + c0, d(X) = dn−1X

n−1 + · · · + d1X + d0.

Then

A =
[
a(Jn) b(Jn)
c(Jn) d(Jn)

]
. (3)

The map

[
a(X) b(X)
c(X) d(X)

]
	→
[
a(Jn) b(Jn)
c(Jn) d(Jn)

]

is a surjective homomorphism of algebras M2(R) → C(B) with the kernel consisting 
of all 2 × 2 matrices with entries in the ideal (Xn), therefore, the algebra C(B) is 
isomorphic to M2(F [X]/(Xn)) (see [23]). For simplicity, we denote the quotient ring 
F [X]/(Xn) by S. Again, we will use the same notation for the matrices from M2(S)
and from C(B). We will also use the same notation for polynomials from R and 
for the corresponding elements of the quotient ring S. This should not cause any 
confusion since we explicitly state which ring is considered in any definition of a new 
polynomial. We also note that in the polynomial notation the matrix B is equal to [
X 0
0 X

]
.
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First, we state a lemma that will help us understand the powers of structured poly-
nomial matrices.

Lemma 4. Let C ∈ M2(R) be an arbitrary matrix of the form C =
[

0 1
c(X) d(X)

]
for 

some polynomials c(X), d(X) ∈ R. Define the sequence of polynomials s0(X), s1(X), . . . ∈
R by

s0(X) := 0, s1(X) := 1, and sk+1(X) := d(X)sk(X) + c(X)sk−1(X)

for k ≥ 1. Then for each positive integer k, the following equalities hold:

(A) Ck =
[
c(X)sk−1(X) sk(X)
c(X)sk(X) sk+1(X)

]
,

(B) sk−1(X)sk+1(X) − sk(X)2 = (−1)kc(X)k−1,

(C) s2k−1(X) =
k∑

i=1

(2k−i−1
i−1

)
c(X)i−1d(X)2k−2i,

(D) s2k(X) =
k−1∑
i=0

(2k−i−1
i

)
c(X)id(X)2k−2i−1.

(Here, the convention 00 = 1 is used if the corresponding polynomial is zero.)

Proof. The equality for Ck in (A) can be proved by an easy induction using the recursive 
formula for the polynomials sk(X). If c(X) is non-zero, equality (B) follows immediately 
from the identity

(−1)kc(X)k = (detC)k = det(Ck) = c(X)sk−1(X)sk+1(X) − c(X)sk(X)2.

On the other hand, if c(X) = 0, then sk(X) = d(X)k−1 for each k ≥ 1, which completes 
the proof of part (B). Moreover, (C) and (D) can be shown by simultaneous induction 
as well. �

Lemma 5. If B ∈ N2n is a nilpotent matrix corresponding to the Jordan canonical form 
(n, n) and A ∈ N (B) a non-zero matrix, then there exist a maximal non-negative integer 
z and a matrix C ∈ N (B) such that A = BzC. If B is in the Weyr form and A is of the 
form (2), then
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C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C0 · · · Cn−z−1 0 · · · 0
. . . . . . . . .

...
. . . . . . 0

. . . Cn−z−1
. . .

...
C0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ N (B),

with Ci of the form Ci =
[
ai bi
ci di

]
for i ∈ {0, 1, . . . , n − z − 1}.

Proof. Let A ∈ N (B) be as in (2) and let z′ be the smallest non-negative integer 
satisfying Az′ �= 0. If Az′ is nilpotent, we take z = z′ and

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Az′ Az′+1 · · · An−1 0 · · · 0
. . . . . . . . . . . .

...
. . . . . . . . . 0

. . . . . . An−1
. . . . . .

...
. . . Az′+1

Az′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If Az′ is not nilpotent, then z′ ≥ 1, since A is nilpotent. So we take z = z′ − 1 and

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Az′ · · · An−1 0 · · · 0
. . . . . . . . . . . .

...
. . . . . . . . . 0

. . . . . . An−1
. . . . . .

...
. . . Az′

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. �

3. Proof of Theorem 3

Let B ∈ N2n be a nilpotent matrix with the Jordan canonical form (n, n). By 
Lemma 5, any A ∈ N (B) is of the form A = BzC for some non-negative integer z
and C ∈ N (B). If A = 0, then the corresponding partition is [2n]2n, which is listed in 
Table 1(P1). In the rest of the proof we therefore assume that A is non-zero, and hence 
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we assume that z is maximal possible such that C is nilpotent. We will use the Weyr 
form and write B as in (1) and C, Ci as in Lemma 5, or in the polynomial notation and 
write

B =
[
X 0
0 X

]
, C =

[
a(X) b(X)
c(X) d(X)

]
, and A =

[
Xza(X) Xzb(X)
Xzc(X) Xzd(X)

]
,

where a(X) = a0 + · · · + an−z−1X
n−z−1, b(X) = b0 + · · · + bn−z−1X

n−z−1, c(X) =
c0 + · · · + cn−z−1X

n−z−1, and d(X) = d0 + · · · + dn−z−1X
n−z−1 by Lemma 5.

In the proof we consider two possibilities for C0, whether C0 is a non-zero or a zero 
matrix.

3.1. Case 1: C0 is non-zero

Conjugating matrices A, B and C in the Weyr form by G =

⎡⎢⎣ g
. . .

g

⎤⎥⎦ ∈ GL2n(F )

for any g ∈ GL2(F ) changes neither the matrix B nor the partitions corresponding to 
nilpotent orbits in which the matrices lie. On the other hand, each diagonal block of 
G−1CG is equal to g−1C0g. Since C is nilpotent, C0 is nilpotent as well [4, Lemma 2.3]. 
Therefore C0 is similar to the nilpotent 2 × 2 Jordan block over any field F , and hence 

we can assume that C0 =
[

0 1
0 0

]
. In polynomial notation this means that a(X), c(X), 

and d(X) are divisible by X and the constant term of b(X) is 1. Choose now G =[
b(X) 0
−a(X) 1

]
, which is invertible in M2(S), since the constant term of b(X) is non-zero. 

Then

G−1AG =
[

0 Xz

Xz (b(X)c(X) − a(X)d(X)) Xz (a(X) + d(X))

]
,

so without any loss of generality we can assume that a(X) = 0 and b(X) = 1. Note that 
the assumption that c(X) and d(X) are both divisible by X does not change after the 
above conjugation, and that after conjugation we still assume that the degrees of the 
polynomials c(X) and d(X) are bounded by n − z − 1.

Let l, m ≤ n − z be the largest positive integers such that X l divides c(X) and Xm

divides d(X) and let p(X), q(X) ∈ R be unique polynomials satisfying c(X) = X lp(X)
and d(X) = Xmq(X). Polynomials p(X) and q(X) have non-zero constant terms if 
l, m < n − z, while for l = n − z (respectively, m = n − z) the corresponding polynomial 
p(X) (respectively, q(X)) is zero.

We first consider the special case when p(X) is zero. If p(X) = q(X) = 0, then Ak = 0
for each k ≥ 2 and rankA = n − z, so A corresponds to the partition (2n−z, 12z) =
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[2n]n+z. This shows that Table 1(P1) is possible whenever we decompose 2n into an 
almost rectangular partition with at least n parts. As noted in the introduction and 
proved in [8,26], the corresponding nilpotent orbit intersects every nilpotent centralizer. 
If p(X) = 0 and q(X) is non-zero, then an easy induction shows that for each k ≥ 1 we 
have

Ak =
[

0 Xkz+(k−1)mq(X)k−1

0 Xkz+kmq(X)k

]
,

which has rank n − kz − (k− 1)m whenever k ≤ n+m
z+m , and 0 otherwise. Let α = �n+m

z+m �
and β = α(z + m) − (n + m) (so that 0 ≤ β < z + m). Then

rankAk − rankAk+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n + z k = 0,
m + z 1 ≤ k ≤ α− 2,
m + z − β k = α− 1,
0 k ≥ α,

which implies that A corresponds to the partition (αm+z−β , (α − 1)β , 1n−m) = ([n +
m]m+z, 1n−m). These partitions belong to Table 1(P2, l = n − z), and it follows from 
the above proof that for each of these partitions λ there exists A ∈ N (B) ∩ Oλ.

In the rest of Case 1 we assume that p(X) is non-zero, or equivalently that l < n − z. 
We determine the partition corresponding to A using the same argument as above. First 
we compute the powers of A. By Lemma 4, we have

Ak =
[
Xkzc(X)sk−1(X) Xkzsk(X)
Xkzc(X)sk(X) Xkzsk+1(X)

]

for each positive integer k, where s0(X) = 0, s1(X) = 1, and

sk+1(X) = d(X)sk(X) + c(X)sk−1(X) for k ≥ 1. (4)

Moreover,

s2k−1(X) =
k∑

i=1

(
2k − i− 1

i− 1

)
X2km+i(l−2m)−lp(X)i−1q(X)2k−2i and (5)

s2k(X) =
k−1∑
i=0

(
2k − i− 1

i

)
X2km+i(l−2m)−mp(X)iq(X)2k−2i−1 for k ≥ 1. (6)

Now we consider two subcases.
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3.1.1. Case 1.1: l < 2m
In this case, (5) and (6) imply that the highest powers of X dividing s2k−1(X) and 

s2k(X) are Xkl−l and Xkl−l+m, respectively, unless q(X) = 0 when s2k(X) = 0 for 
each k ≥ 1. For each k ≥ 1, we can write s2k−1(X) = Xkl−lr2k−1(X) and s2k(X) =
Xkl−l+mr2k(X) for some polynomials r2k−1(X), r2k(X) ∈ R, where r2k−1(X) is uniquely 
determined and has non-zero constant term, while r2k(X) is such if q(X) �= 0. Lemma 4
then implies that the equalities

r2k−1(X)r2k+1(X) −X2m−lr2k(X)2 = p(X)2k−1, (7)

X2m−lr2k(X)r2k+2(X) − r2k+1(X)2 = −p(X)2k (8)

hold in R for each k ≥ 1. Furthermore, the last equality holds also for k = 0 if we define 
r0(X) = 0.

Now we first consider the odd powers of A:

A2k′−1 =
[
X(2k′−1)z+k′l−l+mp(X)r2k′−2(X) X(2k′−1)z+k′l−lr2k′−1(X)

X(2k′−1)z+k′lp(X)r2k′−1(X) X(2k′−1)z+k′l−l+mr2k′(X)

]
.

By definition, the polynomial r2k′−1(X) has a non-zero constant term, so it is invertible 
in the quotient ring S = R/(Xn). Let r2k′−1(X)−1 denote its inverse in S. Applying 
Gaussian elimination to A2k′−1 and using (8) we now get

[
r2k′−1(X)−1 0

−Xmr2k′−1(X)−1r2k′(X) 1

]
·A2k′−1 ·

[
r2k′−1(X) 0

−Xmp(X)r2k′−2(X) 1

]
=

=
[

0 X(2k′−1)z+k′l−l

X(2k′−1)z+k′lp(X)
(
r2k′−1(X)2 −X2m−lr2k′−2(X)r2k′(X)

)
0

]
=

=
[

0 X(2k′−1)z+k′l−l

X(2k′−1)z+k′lp(X)2k′−1 0

]
.

Matrices 
[

r2k′−1(X)−1 0
−Xmr2k′−1(X)−1r2k′(X) 1

]
and 

[
r2k′−1(X) 0

−Xmp(X)r2k′−2(X) 1

]
are invertible 

in M2(S) ∼= C(B), therefore,

rankA2k′−1 = rank
[

0 X(2k′−1)z+k′l−l

X(2k′−1)z+k′lp(X)2k′−1 0

]

=

⎧⎪⎪⎨⎪⎪⎩
2n− (2k′ − 1)(2z + l) 1 ≤ k′ ≤ n+z

l+2z ,

n− (2k′ − 1)z − k′l + l n+z
l+2z ≤ k′ ≤ n+l+z

l+2z ,

0 n+l+z ≤ k′.

(9)
l+2z
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For the further use we denote

α :=
⌈
n + z

l + 2z

⌉
and β := α(l + 2z) − (n + z),

and in this case 0 ≤ β < l + 2z and α > 1. Moreover, n+z
l+2z ≤ n+l+z

l+2z ≤ n+z
l+2z + 1, so

⌈
n + l + z

l + 2z

⌉
∈ {α, α + 1}.

Now we consider the even powers of A:

A2k′
=
[
X2k′z+k′lp(X)r2k′−1(X) X2k′z+k′l−l+mr2k′(X)
X2k′z+k′l+mp(X)r2k′(X) X2k′z+k′lr2k′+1(X)

]

for k′ ≥ 1. We have to distinguish between two cases to compute the rank of such a 
matrix.

Case 1.1(a): m ≤ l. In this case q(X) is non-zero as well. With the same argument as 
above we see that r2k′(X) is invertible in S for k′ ≥ 1, and let r2k′(X)−1 be its inverse. 
Using (7), for each k′ ≥ 1 we compute[

r2k′(X)−1 0
−X l−mr2k′(X)−1r2k′+1(X) 1

]
·A2k′ ·

[
r2k′(X) 0

−X l−mp(X)r2k′−1(X) 1

]
=

=
[

0 X2k′z+k′l−l+m

X2k′z+k′l+l−mp(X)
(
X2m−lr2k′(X)2 − r2k′−1(X)r2k′+1(X)

)
0

]
=

=
[

0 X2k′z+k′l−l+m

−X2k′z+k′l+l−mp(X)2k′ 0

]
,

therefore

rankA2k′
= rank

[
0 X2k′z+k′l−l+m

−X2k′z+k′l+l−mp(X)2k′ 0

]

=

⎧⎪⎪⎨⎪⎪⎩
2n− 2k′(2z + l) k′ ≤ n+m−l

l+2z ,

n− k′(2z + l) + l −m n+m−l
l+2z ≤ k′ ≤ n+l−m

l+2z ,

0 n+l−m
l+2z ≤ k′.

(10)

Moreover, it is evident that equality (10) holds for k′ = 0, too.
We now compare fractions in (10) with α. Since n+z

l+2z − 1 ≤ n+m−l
l+2z ≤ n+z

l+2z , we get

⌈
n + m− l

⌉
∈ {α− 1, α}.
l + 2z
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Similarly, n+m−l
l+2z ≤ n+l−m

l+2z ≤ n+l+z
l+2z , so

⌈
n + l −m

l + 2z

⌉
∈ {α− 1, α, α + 1}.

We consider various cases.

(i) Assume first that �n+l−m
l+2z � = α + 1, or equivalently β < l − m − z, and hence in 

particular l > m + z. Then it is clear that �n+l+z
l+2z � = α + 1 as well. Furthermore, 

since l < 2m, we have n+l−m
l+2z − 1 ≤ n+m−l

l+2z , so �n+m−l
l+2z � = α. It follows from (9) and 

(10) that

rankA2k′
=

⎧⎪⎪⎨⎪⎪⎩
2n− 2k′(l + 2z) k′ ≤ α− 1,
l −m− z − β k′ = α,

0 k′ ≥ α + 1

and

rankA2k′−1 =

⎧⎪⎪⎨⎪⎪⎩
2n− (2k′ − 1)(l + 2z) k′ ≤ α− 1,
l − β k′ = α,

0, k′ ≥ α + 1.

In particular, A2α+1 = 0 and rankA2α = l −m − z − β which is strictly positive by 
assumption, so 2α + 1 is the nilpotency index of A. Moreover,

rankAk − rankAk+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

l + 2z k ≤ 2α− 3,
l + 2z − β k = 2α− 2,
m + z k = 2α− 1,
l −m− z − β k = 2α,
0 k ≥ 2α + 1,

which implies that A corresponds to the partition Table 1(P3)

((2α + 1)l−m−z−β , (2α)2m−l+2z+β , (2α− 1)l−m+z−β , (2α− 2)β)

= ([n + l −m + α(2m− l)]m+z, [n + m− l − α(2m− l)]l−m+z),

where 0 ≤ z ≤ n − 1, 0 < m ≤ l < n − z, l < 2m, α > 1 and 0 ≤ β < l −m − z, 
where 0 < m ≤ l is redundant. We note that n +m − l−α(2m − l) is indeed positive 
for α ≥ 1, as it is equal to α(2l − 2m + 2z) + m − l − z − β ≥ l −m + z − β > 0.

(ii) Assume that �n+l−m
l+2z � = α, or equivalently l −m − z ≤ β < 2l −m + z. We know 

that �n+m−l� ∈ {α− 1, α} and �n+l+z � ∈ {α, α + 1}. We consider all options.
l+2z l+2z
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• Assume �n+m−l
l+2z � = α and �n+l+z

l+2z � = α+1, which is equivalent to m + z > β and 
l > β. In this case

rankA2k′
=
{

2n− 2k′(l + 2z) k′ ≤ α− 1,
0 k′ ≥ α

and

rankA2k′−1 =

⎧⎪⎪⎨⎪⎪⎩
2n− (2k′ − 1)(l + 2z) k′ ≤ α− 1,
l − β k′ = α,

0 k′ ≥ α + 1.

We therefore get

rankAk − rankAk+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
l + 2z k ≤ 2α− 3,
l + 2z − β k = 2α− 2,
l − β k = 2α− 1,
0 k ≥ 2α,

so A ∈ Oλ, where

λ = ((2α)l−β , (2α− 1)2z, (2α− 2)β),

corresponds to the partition Table 1(P6), and 0 ≤ z ≤ n − 1, 0 < m ≤ l < n − z, 
l < 2m and max{l − m − z, 0} ≤ β < min{m + z, l}. (Again, the condition 
β < 2l −m + z is redundant.)

• Assume �n+m−l
l+2z � = �n+l+z

l+2z � = α, which is equivalent to l ≤ β < m + z. Then

rankA2k′
=
{

2n− 2k′(l + 2z) k′ ≤ α− 1,
0 k′ ≥ α,

rankA2k′−1 =
{

2n− (2k′ − 1)(l + 2z) k′ ≤ α− 1,
0 k′ ≥ α,

and

rankAk − rankAk+1 =

⎧⎪⎪⎨⎪⎪⎩
l + 2z k ≤ 2α− 3,
2l + 2z − 2β k = 2α− 2,
0 k ≥ 2α− 1.

Consequently, A corresponds to the partition Table 1(P1)
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(
(2α− 1)2l+2z−2β , (2α− 2)2β−l

)
= [2n]l+2z,

where 0 ≤ z ≤ n − 1, 0 < m ≤ l < n − z, l < 2m and l ≤ β < m + z (while the 
conditions l −m − z ≤ β < 2l −m + z and β < l + 2z are redundant).

• Assume �n+m−l
l+2z � = α − 1 and �n+l+z

l+2z � = α + 1, which is equivalent to m + z ≤
β < l. It follows that

rankA2k′
=

⎧⎪⎪⎨⎪⎪⎩
2n− 2k′(l + 2z) k′ ≤ α− 2,
2l −m + z − β k′ = α− 1,
0 k′ ≥ α,

rankA2k′−1 =

⎧⎪⎪⎨⎪⎪⎩
2n− (2k′ − 1)(l + 2z) k′ ≤ α− 1,
l − β k′ = α,

0 k′ ≥ α + 1

and

rankAk − rankAk+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

l + 2z k ≤ 2α− 4,
l + m + 3z − β k = 2α− 3,
l −m + z k = 2α− 2,
l − β k = 2α− 1,
0 k ≥ 2α.

Consequently, A corresponds to the partition Table 1(P4)

((2α)l−β , (2α− 1)z−m+β , (2α− 2)2m+2z−β , (2α− 3)β−m−z)

= ([n + m− α(2m− l)]l−m+z, [n−m + α(2m− l)]m+z),

where 0 ≤ z ≤ n − 1, 0 < m ≤ l < n − z, l < 2m and m + z ≤ β < l (while the 
conditions l −m − z ≤ β < 2l −m + z and also m ≤ l are redundant).

• It remains to consider the case when �n+m−l
l+2z � = α − 1 and �n+l+z

l+2z � = α, which 
is equivalent to β ≥ max{m + z, l}. Now we have

rankA2k′
=

⎧⎪⎪⎨⎪⎪⎩
2n− 2k′(l + 2z) k′ ≤ α− 2,
2l −m + z − β k′ = α− 1,
0 k′ ≥ α,

rankA2k′−1 =
{

2n− (2k′ − 1)(l + 2z) k′ ≤ α− 1,
0 k′ ≥ α,

and
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rankAk − rankAk+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
l + 2z k ≤ 2α− 4,
l + m + 3z − β k = 2α− 3,
2l −m + z − β k = 2α− 2,
0 k ≥ 2α− 1.

Hence, A corresponds to the partition Table 1(P7)(
(2α− 1)2l−m+z−β , (2α− 2)2m−l+2z, (2α− 3)β−m−z

)
,

where 0 ≤ z ≤ n − 1, 0 < m ≤ l < n − z, l < 2m and max{m + z, l} ≤ β <

min{2l −m + z, l + 2z} (and the condition β ≥ l −m − z is redundant).
(iii) Assume now that �n+l−m

l+2z � = α− 1, or equivalently β ≥ 2l−m + z, so in particular 
we have z > l − m, since β < l + 2z. Since l ≥ m, we get also �n+m−l

l+2z � = α − 1. 
Moreover, the conditions m ≤ l and z ≥ 0 imply 2l −m + z ≥ l, so β ≥ l, which is 
equivalent to �n+l+z

l+2z � = α. We thus get

rankA2k′
=
{

2n− 2k′(l + 2z) k′ ≤ α− 2,
0 k′ ≥ α− 1,

rankA2k′−1 =
{

2n− (2k′ − 1)(l + 2z) k′ ≤ α− 1,
0 k′ ≥ α,

and therefore

rankAk − rankAk+1 =

⎧⎪⎪⎨⎪⎪⎩
l + 2z k ≤ 2α− 4,
2n− (2α− 3)(l + 2z) k = 2α− 3,
0 k ≥ 2α− 2.

It follows that A ∈ Oλ, where

λ = ((2α− 2)2n−(2α−3)(l+2z), (2α− 3)(2α−2)(l+2z)−2n) = [2n]l+2z

as in Table 1(P1), for 0 ≤ z ≤ n − 1, 0 < m ≤ l < n − z, l < 2m and 2l −m + z ≤
β < l + 2z.

At the end of Case 1.1(a) we observe that it immediately follows from the above proof 
that for each of the partitions λ obtained in (i)-(iii) there exists A ∈ N (B) ∩ Oλ.

Note that in the special case when l = 1, the condition (a) forces m = 1. Moreover, 
option (i) above and the last two cases in (ii) are not possible, and in all other cases 
we get the partition [2n]2z+1. Hence, in particular we get all odd cases in the first set 
of partitions listed in the theorem, except [2n]2n−1, since 1 < n − z. However, the 
existence of this partition was shown at the beginning of the proof in the case when 
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p(X) = q(X) = 0. The existence of all even cases will be proved in Case 2 below, but 
we note here that we also get almost all of them from the partitions above in the case 
l = 2. Indeed, in this case the condition m ≤ l < 2m implies m = 2, again the option (i) 
and the last two cases in (ii) are not possible, and the only case when we get a partition 
different from [2n]2z+2 is when β = 1. Note also that for n ≥ 2 the partition [2n]2n−2 is 
not covered by the above cases if l = 2, but it has been established when we considered 
the case p(X) = q(X) = 0.

Case 1.1(b): n − z ≥ m > l. We proceed as in Case 1.1(a). As above, the polynomial 
r2k′+1(X) has non-zero constant term, therefore it is invertible in S = R/(Xn) for each 
k′ ≥ 0. Let r2k′+1(X)−1 be its inverse in S. For k′ ≥ 1 we compute, using (7), that[

1 −Xm−lr2k′+1(X)−1r2k′(X)
0 r2k′+1(X)−1

]
·A2k′ ·

[
r2k′+1(X) 0

−Xmp(X)r2k′(X) 1

]
=

=
[
X2k′z+k′lp(X)

(
r2k′−1(X)r2k′+1(X) −X2m−lr2k′(X)2

)
0

0 X2k′z+k′l

]
=

=
[
X2k′z+k′lp(X)2k′ 0

0 X2k′z+k′l

]
,

so

rankA2k′
= rank

[
X2k′z+k′lp(X)2k′ 0

0 X2k′z+k′l

]
=

=
{

2n− 2k′(l + 2z) k′ ≤ n
l+2z ,

0 k′ ≥ n
l+2z ,

(11)

and clearly rankA0 = 2n, so (11) holds for k′ = 0. Since n+z
l+2z − 1 ≤ n

l+2z ≤ n+z
l+2z , we get⌈

n

l + 2z

⌉
∈ {α− 1, α}.

On the other hand, we know that �n+l+z
l+2z � ∈ {α, α + 1}. Moreover, n+l+z

l+2z − n
l+2z ≤ 1, 

therefore �n+l+z
l+2z � − � n

l+2z � ∈ {0, 1}. We consider all options.

(i) Assume first that �n+l+z
l+2z � = α+1, which is equivalent to β < l. Then it is clear that 

� n
l+2z � = α. Furthermore, we get from (9) and (11) that

rankA2k′
=
{

2n− 2k′(l + 2z) k′ ≤ α− 1,
0 k′ ≥ α,

rankA2k′−1 =

⎧⎪⎨⎪⎩
2n− (2k′ − 1)(l + 2z) k′ ≤ α− 1,
l − β k′ = α,

0 k′ ≥ α + 1,
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and

rankAk − rankAk+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
l + 2z k ≤ 2α− 3,
l + 2z − β k = 2α− 2,
l − β k = 2α− 1,
0 k ≥ 2α,

and the corresponding partition is Table 1(P6)

(
(2α)l−β , (2α− 1)2z, (2α− 2)β

)
,

for 0 ≤ z ≤ n − 1, 0 < l < m ≤ n − z and 0 ≤ β < l.
(ii) Assume now that �n+l+z

l+2z � = � n
l+2z � = α, which is equivalent to l ≤ β < l + z. It 

follows from (9) and (11) that

rankA2k′
=
{

2n− 2k′(l + 2z) k′ ≤ α− 1,
0 k′ ≥ α,

rankA2k′−1 =
{

2n− (2k′ − 1)(l + 2z) k′ ≤ α− 1,
0 k′ ≥ α,

and

rankAk − rankAk+1 =

⎧⎪⎨⎪⎩
l + 2z k ≤ 2α− 3,
2n− 2(α− 1)(l + 2z) k = 2α− 2,
0 k ≥ 2α− 1,

so the corresponding partition is Table 1(P1)

(
(2α− 1)2n−2(α−1)(l+2z), (2α− 2)−2n+(2α−1)(l+2z)

)
= [2n]l+2z,

where 0 ≤ z ≤ n − 1, 0 < l < m ≤ n − z and l ≤ β < l + z.
(iii) It remains to consider the case when � n

l+2z � = α − 1 (and hence �n+l+z
l+2z � = α), 

which is equivalent to β ≥ l + z. In this case we have

rankA2k′
=
{

2n− 2k′(l + 2z) k′ ≤ α− 2,
0 k′ ≥ α− 1,

rankA2k′−1 =
{

2n− (2k′ − 1)(l + 2z) k′ ≤ α− 1,
0 k′ ≥ α,

and
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rankAk − rankAk+1 =

⎧⎪⎨⎪⎩
l + 2z k ≤ 2α− 4,
2n− (2α− 3)(l + 2z) k = 2α− 3,
0 k ≥ 2α− 2,

and the corresponding partition is Table 1(P1)(
(2α− 2)2n−(2α−3)(l+2z), (2α− 3)−2n+(2α−2)(l+2z)

)
= [2n]l+2z,

where 0 ≤ z ≤ n − 1, 0 < l < m ≤ n − z and β ≥ l + z.

As before, it follows from the above proof that for each of the partitions obtained in 
(i)-(iii) there indeed exists A ∈ N (B) that corresponds to the partition.

3.1.2. Case 1.2: l ≥ 2m
Then q(X) has non-zero constant term. Moreover, it follows from (5) and (6) that, 

for each k ≥ 1, the polynomial sk(X) is divisible by Xkm−m. For each k ≥ 1, we write 
sk(X) = Xkm−mrk(X) for some uniquely determined polynomial rk(X) ∈ R, and let 
r0(X) = 0. Then

rk+1(X) = q(X)rk(X) + X l−2mp(X)rk−1(X) (12)

for k ≥ 1 by (4). Furthermore, Lemma 4 implies that

Ak =
[
Xkz+km−2m+lp(X)rk−1(X) Xkz+km−mrk(X)
Xkz+km−m+lp(X)rk(X) Xkz+kmrk+1(X)

]

for k ≥ 1, and

rk−1(X)rk+1(X) − rk(X)2 = (−1)kX(k−1)(l−2m)p(X)k−1 (13)

holds in R for each k ≥ 2. Clearly, (13) holds also for k = 1. If l > 2m, then it is also 
clear from (5) and (6) that rk(X) has non-zero constant term for each k ≥ 1.

As we will see below, it is convenient to define the numbers

α =
⌈
n + m

z + m

⌉
, β = α(z+m)−(n+m), γ =

⌈
n−m

z + l −m

⌉
, and δ = γ(z+ l−m)−(n−m).

Then 0 ≤ β < z +m and 0 ≤ δ < z + l−m. Moreover, since l ≥ 2m, we get z + l−m ≥
z + m, hence n+m

z+m ≥ n−m
z+l−m , and consequently α ≥ γ. Furthermore, l < n − z implies 

γ > 1.
Suppose first that k ≥ 1 is such that rk(X) is not divisible by X. (As noted above, 

this happens always if l > 2m.) Then it is invertible in S = R/(Xn), and let rk(X)−1

be its inverse in S. Using (13) we now compute
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[
rk(X)−1 0

−Xmrk(X)−1rk+1(X) 1

]
·Ak ·

[
rk(X) 0

−X l−mp(X)rk−1(X) 1

]
=

=
[

0 Xkz+km−m

Xkz+km+l−mp(X)
(
rk(X)2 − rk−1(X)rk+1(X)

)
0

]
=

=
[

0 Xkz+km−m

(−1)k+1Xkz+kl−km+mp(X)k 0

]
.

We can therefore compute

rankAk = rank
[

0 Xkz+km−m

(−1)k+1Xkz+kl−km+mp(X)k 0

]

=

⎧⎪⎪⎨⎪⎪⎩
2n− k(l + 2z) k ≤ n−m

z+l−m ,

n + m− k(m + z) n−m
z+l−m ≤ k ≤ n+m

z+m ,

0 k ≥ n+m
z+m .

If k ≥ 1 and rk(X) is not divisible by X, we get

rankAk =

⎧⎪⎨⎪⎩
2n− k(l + 2z) k ≤ γ − 1,
n + m− k(m + z) γ ≤ k ≤ α− 1,
0 k ≥ α,

(14)

and it is clear that the above holds also for k = 0.
Suppose now that X divides rk(X) for some k ≥ 1. We already know that this forces 

l = 2m, hence γ = �n−m
z+m �, and in particular α ≤ γ + 2. Moreover, if X divides rk−1(X), 

too, then (12) implies that rj(X) is divisible by X for any j. (Recall that p(X) is not 
divisible by X.) However, this contradicts r1(X) = 1. It follows that no two consecutive 
polynomials rj(X) and rj−1(X) are divisible by X.

Let t be the largest positive integer smaller than or equal to m + 1 such that Xt

divides rk(X), and let r̃k(X) ∈ R be the unique polynomial satisfying rk(X) = Xtr̃k(X). 
If t ≤ m, then the polynomial r̃k(X) has non-zero constant term, so it is invertible in 
S = R/(Xn). Let r̃k(X)−1 be its inverse in S. For t ≤ m, we get by (13) that[

r̃k(X)−1 0
−Xm−tr̃k(X)−1rk+1(X) 1

]
·Ak ·

[
r̃k(X) 0

−Xm−tp(X)rk−1(X) 1

]
=

=
[

0 Xkz+km−m+t

Xkz+km+m−tp(X)
(
rk(X)2 − rk−1(X)rk+1(X)

)
0

]
=

=
[

0 Xkz+km−m+t

(−1)k+1Xkz+km+m−tp(X)k 0

]
,
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so

rankAk =

⎧⎪⎪⎨⎪⎪⎩
2n− 2k(m + z) k ≤ n−m+t

m+z ,

n + m− t− k(m + z) n−m+t
m+z ≤ k ≤ n+m−t

m+z ,

0 k ≥ n+m−t
m+z .

(15)

On the other hand, for t = m + 1 we use the fact that rk+1(X) has a non-zero constant 
term, as shown above. Hence rk+1(X) is invertible in S and we obtain[

1 −Xr̃k(X)rk+1(X)−1

0 rk+1(X)−1

]
·Ak ·

[
rk+1(X) 0

−Xmp(X)rk(X) 1

]
=

=
[
Xkz+kmp(X)

(
rk−1(X)rk+1(X) − rk(X)2

)
0

0 Xkz+km

]
=

=
[
Xkz+kmp(X)k 0

0 Xkz+km ,

]

hence

rankAk =
{

2n− 2k(m + z) k ≤ n
m+z ,

0 k ≥ n
m+z ,

which is a special case of (15) when t = m. If t = m + 1, we get no additional partitions 
corresponding to orbits intersecting N (B), so we do not consider this case below.

Suppose that k ≤ γ−1. If rk(X) is not divisible by X, then (14) shows that rankAk =
2n − k(l + 2z). On the other hand, if Xt is the highest power of X that divides rk(X)
for some 1 ≤ t ≤ m, then l = 2m and it is clear that k ≤ k−m+t

m+z , so (15) implies that 
again we have rankAk = 2n − 2k(m + z) = 2n − k(l + 2z). Similarly, the rank of Ak in 
(15) is zero if k ≥ α. It follows that the ranks of Ak in (14) and in (15) are different only 
if γ ≤ k ≤ α− 1. Now we consider two cases.

Case 1.2(a): rk(X) is not divisible by X for any k ∈ {γ, . . . , α− 1}. As noted above, 
this case in particular includes the case when l > 2m. We consider various cases with 
respect to α and γ:

(i) If α ≥ γ + 2, then (14) implies

rankAk − rankAk+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

l + 2z k ≤ γ − 2,
l + 2z − δ k = γ − 1,
m + z γ ≤ k ≤ α− 2,
m + z − β k = α− 1,
0 k ≥ α,
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hence the matrix A belongs to Oλ, where

λ = (αm+z−β , (α− 1)β , γl−m+z−δ, (γ − 1)δ) = ([n + m]m+z, [n−m]l−m+z),

as in Table 1(P2), for 0 ≤ z ≤ n − 1, 0 < 2m ≤ l < n − z and α ≥ γ + 2.
(ii) If α = γ + 1, then we again use (14) to get

rankAk − rankAk+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
l + 2z k ≤ γ − 2,
l + 2z − δ k = γ − 1,
m + z − β k = γ,

0 k ≥ γ + 1.

It follows that A ∈ Oλ, where

λ = ((γ + 1)m+z−β , γl−m+z+β−δ, (γ − 1)δ) = ([n + m]m+z, [n−m]l−m+z),

as in Table 1(P2), for 0 ≤ z ≤ n − 1, 0 < 2m ≤ l < n − z and α = γ + 1.
(iii) If α = γ, then

rankAk − rankAk+1 =

⎧⎪⎨⎪⎩
l + 2z k ≤ γ − 2,
2n− (γ − 1)(l + 2z) k = γ − 1,
0 k ≥ γ,

so A corresponds to the partition Table 1(P1)

(γ2n−(γ−1)(l+2z), (γ − 1)γ(l+2z)−2n) = [2n]l+2z,

where 0 ≤ z ≤ n − 1, 0 < 2m ≤ l < n − z and α = γ.

Conversely, it follows from the above proof that for each partition obtained in (i)-
(iii) there indeed exists A ∈ N (B) that corresponds to this partition. The only case of 
existence that might not be obvious is when l = 2m and rk(X) is not divisible by X for 
any k ≥ 1. However, in this case we can define p(X) = q(X) = 1, and then (12) implies 
that rk(X) is a strictly positive constant for each k ≥ 1, and hence non-zero.

Case 1.2(b): l = 2m and there exists j ∈ {γ, . . . , α − 1} such that rj(X) is divisible 
by X. Since r2(X) = q(X) has non-zero constant term, we immediately get j ≥ 3, and 
consequently α ≥ 4. As shown above, we may assume that rj(X) = Xtr̃j(X) for some 
t ≤ m and some polynomial r̃j(X) ∈ R with non-zero constant term. We have shown 
above also that rj−1(X) and rj+1(X) are not divisible by X. Moreover, since l = 2m, 
we have n−m

l−m+z + 2 = n+m+2z
m+z ≥ n+m

m+z , so γ + 2 ≥ α. It follows that j ∈ {α− 2, α− 1}. 
We consider each of the two options.
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(i) Assume first that j = α−2. Then γ = α−2 and δ = β−2z, so β ≥ 2z and δ < m −z. 
(Recall that β < m + z.) Furthermore, from (15) we get

rankAα−2 =
{

2n− 2(α− 2)(m + z) m ≥ t > δ,

n + m− t− (α− 2)(m + z) t ≤ δ.

Note that the third option in (15) is not possible, since it would imply t ≥ 2m − δ >

m +z ≥ m, which contradicts our assumption on t. If t ≤ δ, then (14) and (15) imply

rankAk − rankAk+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2(m + z) k ≤ α− 4,
2m + 2z + t− δ k = α− 3,
m + z − t k = α− 2,
m + z − β k = α− 1,
0 k ≥ α,

so A corresponds to the partition Table 1(P8),

λ =
(
αm−z−δ, (α− 1)δ+2z−t, (α− 2)m+z+2t−δ, (α− 3)δ−t

)
=

=
(
[n + m− (α− 1)t]m+z−t, [n−m + (α− 1)t]m+z+t

)
,

where 0 ≤ z ≤ n − 1, 0 < 2m < n − z, α ≥ 5, γ = α − 2 and t ≤ δ. On the other 
hand, if m ≥ t > δ, then

rankAk − rankAk+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2(m + z) k ≤ α− 3,
m + z − δ k = α− 2,
m + z − β k = α− 1,
0 k ≥ α,

so A corresponds to the partition Table 1(P8), (αm−z−δ, (α − 1)2z, (α − 2)m+z+δ), 
which is a special case (for t = δ) of the partition considered in the case when t ≤ δ.

(ii) Assume now that j = α − 1, which is (because of the assumption γ ≤ j ≤ α − 1) 
equal either to γ or to γ + 1. Using (15), we get

rankAα−1 =

⎧⎪⎨⎪⎩
2n− 2(α− 1)(m + z) t > m− z + β,

m + z − t− β t ≤ min{m− z + β,m + z − β},
0 m ≥ t > m + z − β.

We consider two cases:
• Assume first that j = γ +1. Then, as in (i), we get γ = α− 2 and δ = β− 2z ≥ 0. 

In particular, we get t ≤ m ≤ m − z + β.
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If t ≤ m + z − β, then we get from (14) and (15) that

rankAk − rankAk+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2(m + z) k ≤ α− 4,
2m + 2z − δ k = α− 3,
m + z + t k = α− 2,
m + z − t− β k = α− 1,
0 k ≥ α,

so A ∈ Oλ, where

λ =
(
αm+z−t−β , (α− 1)β+2t, (α− 2)m+z−t−δ, (α− 3)δ

)
=

=
(
[n + m + γt]m+z+t, [n−m− γt]m+z−t

)
as in Table 1(P9) for 0 ≤ z ≤ n − 1, 0 < 2m < n − z, γ = α − 2 ≥ 2, and 
t ≤ m + z − β.
On the other hand, if m ≥ t > m + z − β, then

rankAk − rankAk+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2(m + z) k ≤ α− 4,
2m + 2z − δ k = α− 3,
2m− δ k = α− 2,
0 k ≥ α− 1,

so A corresponds to the partition 
(
(α− 1)2m−δ, (α− 2)2z, (α− 3)δ

)
, which is a 

special case (for t = m + z − β) of the partition considered above.
• Assume now that j = γ, so γ = α − 1, or, equivalently, z − m ≤ β < 2z. More 

precisely, we have β = z −m + δ.
If t ≤ min{m − z + β, m + z − β}, then we get from (14) and (15) that

rankAk − rankAk+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2(m + z) k ≤ α− 3,
m + 3z + t− β k = α− 2,
m + z − t− β k = α− 1,
0 k ≥ α,

so A ∈ Oλ, where

λ =
(
αm+z−t−β , (α− 1)2z+2t, (α− 2)m−z−t+β

)
=

=
(
αm+z−t−β , (α− 1)2t+β , (α− 1)2z−β , (α− 2)m−z−t+β

)
=

=
(
[n + m + (α− 2)t]m+z+t, [n−m− (α− 2)t]m+z−t

)
corresponds to the partition Table 1(P9) for 0 ≤ z ≤ n − 1, 0 < 2m < n − z, 
γ = α− 1 ≥ 3 and t ≤ min{m + z − β, m − z + β}.
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If m ≥ t > m + z − β, then

rankAk − rankAk+1 =

⎧⎪⎨⎪⎩
2(m + z) k ≤ α− 3,
2n− 2(α− 2)(m + z) k = α− 2,
0 k ≥ α− 1,

so A corresponds to the partition(
(α− 1)2n−2(α−2)(m+z), (α− 2)2(α−1)(m+z)−2n

)
= [2n]2(m+z),

which is of the form Table 1(P1) and whose existence will be shown in Case 2.
Similarly, if m ≥ t > m − z + β, then

rankAk − rankAk+1 =

⎧⎪⎨⎪⎩
2(m + z) k ≤ α− 2,
2n− 2(α− 1)(m + z) k = α− 1,
0 k ≥ α,

so A corresponds to the partition (α2n−2(α−1)(m+z), (α− 1)2α(m+z)−2n), which is 
again of the form [2n]2(m+z).

To finish the proof of Case 1 it remains to show that when F = C the partitions 
obtained in the case 1.2(b) are indeed all possible. First we set the notation. Given 
polynomials p(X), q(X) ∈ R, we define the sequence of polynomials rk(X) ∈ R by

r0(X) = 0, r1(X) = 1, and rk+1(X) = q(X)rk(X) + p(X)rk−1(X) for k ≥ 1.

Note that Lemma 4 then holds for the polynomials p(X), q(X), and r0(X), r1(X), . . ..
Now let z ≤ n − 1 be a non-negative integer, let m < n−z

2 be a positive integer, 
and let α =

⌈
n+m
m+z

⌉
and β = α(m + z) − (n + m). To show that all partitions obtained 

in the case 1.2(b) are indeed possible it suffices to show that for j = α − 2 ≥ 3 and 
1 ≤ t ≤ min{2z + β, m}, and for j = α− 1 ≥ 3 and 1 ≤ t ≤ min{m + z − β, m − z + β}
there exist polynomials p(X), q(X) ∈ R with non-zero constant terms such that X does 
not divide rk(X) for any 1 ≤ k < α satisfying k �= j and that Xt is the highest power 
of X that divides rj(X). We will show that this happens if we define q(X) = 1 and 
p(X) = Xt + u for a suitable non-zero u ∈ C. In this case Lemma 4 implies that for 
k ≥ 1 we have

r2k−1(X) =
k∑

i=1

(
2k − i− 1

i− 1

)
ui−1 +

k∑
i=1

(i− 1)
(

2k − i− 1
i− 1

)
ui−2Xt +

∑
i≥1

viX
t+i

and
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r2k(X) =
k−1∑
i=0

(
2k − i− 1

i

)
ui +

k−1∑
i=0

i

(
2k − i− 1

i

)
ui−1Xt +

∑
i≥1

v′iX
t+i

for some vi, v′i ∈ C, and recall that r0(X) = 0. We define h0(u) := 0 and for k ≥ 1 let

h2k−1(u) :=
k∑

i=1

(
2k − i− 1

i− 1

)
ui−1 and h2k(u) :=

k−1∑
i=0

(
2k − i− 1

i

)
ui.

It follows that

rk(X) = hk(u) + h′
k(u)Xt + higher terms (16)

for all k ≥ 0 (where h′
k is the derivative of hk). Since rk(X) = rk−1(X) +(Xt+u)rk−2(X)

for k ≥ 2, we get

h0(u) = 0, h1(u) = 1, and hk(u) = hk−1(u) + uhk−2(u) for k ≥ 2.

Note that we have assumed that u �= 0. Assume now that u �= −1
4 as well. Then we 

can show, either by solving the above difference equation or by induction, that

hk(u) = 1√
1 + 4u

((
1 +

√
1 + 4u
2

)k

−
(

1 −
√

1 + 4u
2

)k
)

for each k ≥ 0. Here we define the square root as one with an argument within [0, π). 
An easy computation shows that

hk(u) = 0 ⇔
√

1 + 4u = i tg k′π

k
for some k′ ∈ {1, . . . , k − 1} \

{
k

2

}
. (17)

(Note that k′ = 0 is not possible, since we have assumed that u �= −1
4 .) Fix now 

j ≥ 3 and assume that either j = α − 2 and t ≤ min{2z + β, m} or j = α − 1 and 
t ≤ min{m + z − β, m − z + β} (and hence α ≥ 4 in both cases). Let uj = − 1

4 cos2 π
j
. 

Then 
√

1 + 4uj = i tg π
j and hj(uj) = 0 by (17).

We now consider k �= j. We will show that hk(uj) �= 0. Assume first that k < j. 
If k′ > �k

2 �, then tg k′π
k < 0 and therefore i tg k′π

k cannot be a square root and hence 
equal to 

√
1 + 4uj . On the other hand, if k′ ≤ �k

2 �, then k′

k ≥ 1
k > 1

j and hence 

i tg k′π
k �= i tg π

j =
√

1 + 4uj . On the other hand, if k > j, then the only possibility is 
j = α − 2 and k = α − 1, as k < α. If k − 1 ≥ k′ > �α−1

2 �, then tg k′π
k < 0 and hence 

i tg k′π
k �=

√
1 + 4uj . On the other hand, it is clear that i tg π

α−1 �=
√

1 + 4uj and that 
for 2 ≤ k′ ≤ �α−1

2 � we have k′

α−1 > 1
α−2 , which again implies i tg k′π

k �=
√

1 + 4uj . Using 
(17) we therefore see that hk(uj) = 0 if and only if k = j, and (16) then implies that 
rk(X) is not divisible by X for k �= j and that rj(X) is divisible by Xt if we define 
p(X) = Xt + uj .
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It remains to show that rj(X) is not divisible by Xt+1, which is by (16) equivalent to 
h′
j(uj) �= 0. In the neighborhood of 1 − 1

cos2 π
j

the square root is a holomorphic function, 
so we can compute

h′
j(u) = − 2

(1 + 4u) 3
2

((
1 +

√
1 + 4u
2

)j

−
(

1 −
√

1 + 4u
2

)j
)

+

+ j

1 + 4u

((
1 +

√
1 + 4u
2

)j−1

+
(

1 −
√

1 + 4u
2

)j−1)
=

= − 2
1 + 4uhj(u) + j

1 + 4u

((
1 +

√
1 + 4u
2

)j−1

+
(

1 −
√

1 + 4u
2

)j−1)
.

In particular,

h′
j(uj) = j

1 + 4uj

((1 + i tg π
j

2

)j−1

+
(1 − i tg π

j

2

)j−1)
=

j cos (j−1)π
j

2j−2(1 + 4uj)
(
cos π

j

)j−1

�= 0

for j ≥ 3, which had to be proved. It follows that all the partitions obtained in case 
1.2(b) indeed correspond to nilpotent orbits in N (B).

3.2. Case 2: C0 is a zero matrix

Since A is non-zero and z is maximal possible, we get that C1 is not nilpotent. We 
consider two subcases.

3.2.1. Case 2.1: C1 is invertible
In this case it is clear that rankAk = 2n − 2k(z + 1) for k < n

z+1 and Ak = 0 for 
k ≥ n

z+1 . Let α =
⌈

n
z+1

⌉
. Since we have assumed at the beginning of the proof that 

A �= 0, we have α ≥ 2, and hence

rankAk − rankAk+1 =

⎧⎪⎨⎪⎩
2(z + 1) k ≤ α− 2,
2n− 2(α− 1)(z + 1) k = α− 1,
0 k ≥ α,

so A corresponds to the partition Table 1(P1)

(
α2n−2(α−1)(z+1), (α− 1)2α(z+1)−2n

)
= [2n]2(z+1).
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Conversely, it is clear from the above proof that for each partition [2n]2(z+1) where 
0 ≤ z ≤ n − 2 there exists A ∈ N (B) corresponding to this partition. This concludes the 
proof for the even cases in the first set of partitions stated in the theorem.

3.2.2. Case 2.2: C1 is not invertible
Since C1 is not nilpotent and the multiplication with a non-zero constant has no in-

fluence on the Jordan canonical form of a nilpotent matrix, we may assume that C1 is 
idempotent, so C2

1 = C1. Moreover, we may conjugate C by an invertible matrix in C(B)

to assume that C1 =
[

1 0
0 0

]
or, equivalently, a1 = 1 and b1 = c1 = d1 = 0. We write ma-

trix C as C =
[
Xa′(X) X2b′(X)
X2c′(X) X2d′(X)

]
for some polynomials a′(X), b′(X), c′(X), d′(X). 

As the constant term of a′(X) is 1, it is invertible in S. Therefore, by defining first the 
constant term, then the linear term, and so on, we may find f(X), r(X) ∈ S such that 
the equalities

a′(X) (f(X) − d′(X)) = −Xc′(X)b′(X) −Xf(X)d′(X) + Xf(X)2,

a′(X)r(X) = X
(
c′(X) + d′(X)r(X) − b′(X)r(X)2

)
are satisfied in S. We furthermore define

e(X) = a′(X) + Xb′(X)r(X) and q(X) = −Xb′(X) (a′(X) −Xf(X))−1

in S, and the matrices P =
[

1 q(X)
r(X) 1

]
and D =

[
Xe(X) 0

0 X2f(X)

]
. Note that 

e(X) is invertible in S, while q(X) and r(X) are divisible by X, which implies that 
matrix P is invertible in M2(S). Furthermore, a short calculation shows that CP = PD, 

so we may replace C by a diagonal matrix D = P−1CP =
[
Xe(X) 0

0 Xmg(X)

]
for 

some m ≥ 2 where e(X), g(X) ∈ S are invertible or g(X) = 0 and m = n. Consequently, 

P−1AP =
[
Xz+1e(X) 0

0 Xz+mg(X)

]
and it is clear that such a matrix corresponds to 

the partition Table 1(P5)

([n]z+1, [n]z+m)

and that all such partitions are possible. Note that here we have m ≥ 2; the case m = 1
was considered in the case 2.1. �
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Table 2
A complete list of the nilpotent orbits intersecting the nilpotent centralizer of B ∈ O(6,6). Partitions listed 
for each type are only the ones that do not appear in the lines above them. The underlined partition had 
not been previously resolved.

λ, such that Oλ has a non-empty intersection with N (B), B ∈ O(6,6)

(P1) (12), (62), (43), (34), (32, 23), (26), (25, 12), (24, 14), (23, 16), (22, 18), (2, 110), (112)
(P2) (7, 5), (7, 3, 2), (7, 22, 1), (7, 2, 13), (7, 15), (42, 22), (42, 2, 12), (42, 14), (4, 32, 2), (4, 3, 22, 1), 

(4, 3, 2, 13), (4, 3, 15), (33, 13), (32, 22, 12), (32, 2, 14), (3, 24, 1), (3, 23, 13), (3, 22, 15)
(P3) (5,4,3)
(P4) (4, 24)
(P5) (6, 32), (6, 23), (6, 22, 12), (6, 2, 14), (6, 16), (32, 16)

Table 3
A complete list of the nilpotent orbits intersecting the nilpotent centralizer of B ∈ O(7,7). Partitions listed 
for each type are only the ones that do not appear in the lines above them.

λ, such that Oλ has a non-empty intersection with N (B), B ∈ O(7,7)

(P1) (14), (72), (52, 4), (42, 32), (34, 2), (32, 24), (27), (26, 12), (25, 14), (24, 16), (23, 18), (22, 110), 
(2, 112), (114).

(P2) (8, 6), (8, 32), (8, 23), (8, 22, 12), (8, 2, 14), (8, 16), (5, 4, 3, 2), (5, 4, 22, 1), (5, 4, 2, 13), (5, 4, 15), 
(42, 23), (42, 22, 12), (42, 2, 14), (42, 16), (4, 32, 2, 12), (4, 32, 14), (33, 22, 1), (33, 2, 13), (33, 15), 
(32, 23, 12), (32, 22, 14), (32, 2, 16), (3, 25, 1), (3, 24, 13), (3, 23, 15),

(P3)
(P4) (6, 42), (4, 3, 23, 1), (4, 25)
(P5) (7, 4, 3), (7, 3, 22), (7, 23, 1), (7, 22, 13), (7, 2, 15), (7, 17), (4, 32, 22), (4, 3, 22, 13), (4, 3, 2, 15), 

(4, 3, 17), (3, 22, 17)
(P6) (43, 2)
(P7)
(P8) (5, 33)
(P9) (34, 12)

4. Examples and open questions

We conclude our paper with a few examples that illustrate the methods and results 
obtained by our work.

Example 6. Assume that F = C. The list of orbits Oλ that have a non-empty intersection 
with the nilpotent centralizer of a nilpotent matrix B ∈ O(6,6) were not completely 
characterized yet, as noted in [26, Example 3.7]. Among the undecided partitions λ
(listed in [24, Example 6.25]) there is only one partition λ = (5, 4, 3) (of type (P3)), 
which has a non-empty intersection with NB. The complete list is presented in Table 2.

Moreover, we also provide the complete list of Oλ that have a non-empty intersection 
with the nilpotent centralizer of a nilpotent matrix B ∈ O(7,7) in Table 3. It shows that 
also partitions of type (P6), (P8), and (P9) appear for n = 7.

Note that examples n = 6 and n = 7 show different structures of partitions λ for 
which the nilpotent orbit Oλ intersects N (B). Although partitions of type (P7) do not 
appear in these two cases, note that for example for n = 22 (z = 1, m = 3, l = 5, α = 4, 
β = 5) the partition (73, 63, 5) is of the form (P7) but not (P1)-(P6). This shows that, 
although types (P1)-(P9) of partitions in Table 1 are not complementary, they are all 
significant to describe N (B).
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Example 7. Let n = 11 and consider the nilpotent orbit O(7,53). It can be checked that 
this orbit is of type (P8) with the corresponding parameters z = 0, m = 2, t = 1, and 
that it does not belong to any of the types (P1)-(P7) or (P9). We will show that it does 
not intersect with the nilpotent centralizer of a nilpotent matrix B ∈ O(11,11) if F = Q.

As shown in the proof of Theorem 3, we may assume that the corresponding matrix 

in N (B) is of the form A =
[

0 1
X4p(X) X2q(X)

]
, and let p0 and q0 be the (non-zero) 

constant terms of p(X) and q(X), respectively. A short calculation shows that

A5 =

⎡⎣X10
(
2p(X)2q(X) + p(X)q(X)3

)
X8
(
p(X)2 + 3p(X)q(X)2 + q(X)4

)
0 X10

(
3p(X)2q(X) + 4p(X)q(X)3 + q(X)5

) ⎤⎦ .

By the assumption the matrix A corresponds to the partition (7, 53), which implies that 
rankA5 = 2, and consequently the constant term of p(X)2 + 3p(X)q(X)2 + q(X)4 has 
to be zero. However, the equation p2

0 + 3p0q
2
0 + q4

0 = 0 has no non-zero solutions in Q, 
which shows that the nilpotent orbit O(7,53) does not intersect the nilpotent centralizer 
of B if F = Q.

Example 8. Let n = 9 and consider the nilpotent orbit O(53,3), which is of type (P9) with 
parameters z = 0, m = 2, t = 1, and it does not belong to any of the types (P1)-(P8). 

Let A =
[

0 1
X4p(X) X2q(X)

]
be the corresponding matrix in N (B). Then

A5 =
[

0 X8
(
p(X)2 + 3p(X)q2(X) + q(X)4

)
0 0

]
,

which has to be the zero matrix, as A corresponds to the partition (53, 3). As in the 
previous example we get the equation p2

0 + 3p0q
2
0 + q4

0 = 0, which has no non-zero 
solutions in Q. It follows that the nilpotent orbit O(53,3) of type (P9) does not intersect 
the nilpotent centralizer of B ∈ O(9,9) if F = Q.

Although we were able to characterize nilpotent orbits Oλ that have a non-empty 
intersection with the nilpotent centralizer of a nilpotent matrix B ∈ O(n,n), the partitions 
λ in Table 1 are presented in a somewhat scattered way.

Question 9. Is there a combinatorial description of partitions obtained in Table 1?

Moreover, there are plenty of possible generalizations to Theorem 3 that would be 
interesting to resolve.

Question 10. Do any of the above methods apply to the case when:
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1. B ∈ O(μ1,μ2), μ1 �= μ2, i.e., in the case when the matrix B still has just two Jordan 
blocks, but different in size,

2. B ∈ O(n�), � ≥ 3, i.e., in the case when the matrix B has at least three Jordan 
blocks, all of the same size,

3. we consider some special nilpotent orbits over other simple Lie algebras?

Alternatively, could we use the results from Theorem 3 to further extend the partial 
answers to open questions mentioned in this paper?
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