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1. Introduction

One of the most important notions in statistics is the notion of dependence of
random variables. When we measure the dependence, we often try to describe
it with a single real number. The most commonly used measure is Pearson’s
correlation coefficient, which measures linear dependence. For the random
pair (X,Y ) Pearson’s correlation coefficient depends not only on the degree
of association between X and Y but also on the marginal distributions of
the pair (X,Y ). If we want to measure only the degree of association, we
need measures that do not depend on the marginals of the random vector,
but only on the copula connecting its components. This is often done with
the help of a concordance measure, or its generalization, weak concordance
measure.

Intuitively, two continuous random variables X and Y are in concor-
dance when large values of X occur simultaneously with large values of Y .
More precisely, two realizations (x1, y1) and (x2, y2) of the random vector
(X,Y ) are concordant when (x2 − x1)(y2 − y1) > 0 and they are discordant
when (x2 − x1)(y2 − y1) < 0. We can measure the concordance of a pair of
random variables (X,Y ) in various ways, see [26]. The most commonly used
concordance measures are Spearman’s rho, Kendall’s tau, Gini’s gamma and
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Blomqvist’s beta (denoted, respectively, by ρ, τ , γ and β), and a weak con-
cordance measure Spearman’s footrule (denoted by φ). These measures have
been studied intensively since their introduction. Recent references for bivari-
ate concordance measures include [8–10,16,20,24,25] and their multivariate
generalizations were studied in [1,5,29,30], to name just a few.

Given their widespread use in a variety of practical applications, it is
natural to compare different concordance measures in terms of the values
that they can attain. In particular, if a value of one measure is known, we
may ask what are the possible values of the other measures. In this paper, we
study the possible values of Kendall’s tau, if the value of some other (weak)
concordance measure is given.

The investigation of the above question was started by Daniels [3] and
Durbin and Stuart [7], who compared Spearman’s rho and Kendall’s tau and
gave some estimates for the values of the two measures. The exact region of
all possible pairs of values (τ(C), ρ(C)), C ∈ C, was only determined recently
in [27]. The regions determined by Blomqvist’s beta and the other three
concordance measures (Spearman’s rho, Kendall’s tau, and Gini’s gamma)
are given in [23] as an exercise for the reader, while the region determined
by Blomqvist’s beta and Spearman’s footrule is given in [16]. The region
determined by Spearman’s footrule and Gini’s gamma is given in [17], and the
region determined by Spearman’s footrule and Spearman’s rho is considered
in [18]. Observe that the only remaining regions involving Kendall’s tau are
the regions for Kendall’s tau with respect to Gini’s gamma and Spearman’s
footrule. These two regions are determined in the present paper.

The paper is structured as follows. In Sect. 2, we give some basic def-
initions that will be used throughout the paper and recall the known exact
regions involving Kendall’s tau. In Sect. 3 we determine the exact region
between Kendall’s tau and Spearman’s footrule by showing that the two
measures satisfy

4
3
φ(C) − 1

3
� τ(C) � 2

3
φ(C) +

1
3

for any copula C, and in Sect. 4, we show that the exact region between
Kendall’s tau and Gini’s gamma is determined by the inequalities

max
{

2
3
γ(C) − 1

3
, 2γ(C) − 1

}
� τ(C) � min

{
2
3
γ(C) +

1
3
, 2γ(C) + 1

}
.

In both cases the bounds are attained. In Sect. 5, we give the similarity mea-
sure between Kendall’s tau and other (weak) concordance measures.

2. Preliminaries

Let I = [0, 1] be the unit interval and R = [u1, u2] × [v1, v2] a rectangle
contained in I2 with u1 � u2 and v1 � v2. Given a real function C : I2 → R,
we define the C-volume of rectangle R by VC(R) = C(u2, v2) − C(u2, v1) −
C(u1, v2) + C(u1, v1). A (bivariate) copula is a function C : I2 → I with the
following properties:
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(i) C(0, v) = C(u, 0) = 0 for all u, v ∈ I (C is grounded),
(ii) C(u, 1) = u and C(1, v) = v for all u, v ∈ I (C has uniform marginals),

and
(iii) VC(R) � 0 for every rectangle R ⊆ I2 (C is 2−increasing).

Any copula C induces a probability measure μC on the Borel σ-algebra in I2.
This measure is uniquely determined by the property μC(R) = VC(R) for all
rectangles R ⊆ I2. Furthermore, measure μC is bistochastic in the sense that
μC(B × I) = μC(I×B) = λ(B) for any Borel set B ⊆ I, where λ denotes the
Lebesgue measure on I. The set of all bivariate copulas will be denoted by C.
It is well known that this set is compact in the sup norm. For any copula C
its diagonal will be denoted by δC , i.e., δC(u) = C(u, u) for all u ∈ I.

Given two copulas C and D, we denote C � D if C(u, v) � D(u, v) for
all (u, v) ∈ I2. This is the so-called pointwise order of copulas. For any copula
C, we have W � C � M , where W (u, v) = max{0, u + v − 1} and M(u, v) =
min{u, v} are the lower and upper Fréchet-Hoeffding bounds for the set of all
copulas. Furthermore, any copula C induces reflected copulas Cσ1 and Cσ2

defined by Cσ1(u, v) = v − C(1 − u, v) and Cσ2(u, v) = u − C(u, 1 − v) for all
(u, v) ∈ I2.

Let h : I → I be a measure preserving bijection, where I is equipped
with the Lebesgue measure λ. Then, the function defined by

C(u, v) = λ({t ∈ I; t � u, h(t) � v}) (1)

is a copula whose mass in concentrated on the graph of h, i.e., μC({(t, h(t)); t ∈
I}) = 1. Particular examples of such copulas are the so-called shuffles of min.
A shuffle of min

C = M(n, J, π, ω)

is determined by a positive integer n, a partition J = {J1, J2, . . . , Jn} of the
interval I into n pieces, where Ji = [ui−1, ui] and 0 = u0 � u1 � u2 �
. . . � un−1 � un = 1, shortly written as (n − 1)-tuple of splitting points J =
(u1, u2, . . . , un−1), a permutation π ∈ Sn, written as n-tuple of images π =
(π(1), π(2), . . . , π(n)), and a mapping ω : {1, 2, . . . , n} → {−1, 1}, written as
n-tuple of images ω = (ω(1), ω(2), . . . , ω(n)). The mass of C is concentrated
on the diagonals of the squares Ji × [vπ(i)−1 × vπ(i)], where 0 = v0 � v1 �
v2 � . . . � vn−1 � vn = 1. Hence, C is defined by the measure preserving
bijection hC : I → I given by

hC(u) =

⎧⎪⎨
⎪⎩

u + vπ(i)−1 − ui−1; u ∈ (ui−1, ui), ω(i) = 1,

vπ(i) + ui−1 − u; u ∈ (ui−1, ui), ω(i) = −1,

vi; u = ui.

Furthermore, C is the copula of uniformly distributed random variables U
and V on I with the property P (V = hC(U)) = 1. For more details see [23,
Sect. 3.2.3].

In [26], Scarsini introduced formal axioms for concordance measures.
These are mappings that assign to each copula a real number in [−1, 1] and
are meant to measure the degree of concordance/discordance between the
components of random vectors. Recall that two observations (x, y) and (x′, y′)
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from a random vector (X,Y ) are concordant if (x − x′)(y − y′) > 0 and
discordant if (x − x′)(y − y′) < 0. For the formal definition of concordance
measures and further details, we refer the reader to [6,23]. Here, we give the
properties of concordance measures, which we will need in the sequel: if κ is
a concordance measure, then κ(M) = 1, κ(Cσ1) = κ(Cσ2) = −κ(C) for any
copula C ∈ C, κ is continuous with respect to the pointwise convergence, and
κ is monotone increasing with respect to the pointwise order.

Many of the most important bivariate concordance measures, including
Kendall’s tau and Gini’s gamma, can be expressed with the so-called concor-
dance function Q, introduced by Kruskal [19]. If (X1, Y1) and (X2, Y2) are
pairs of continuous random variables, then the concordance function of ran-
dom vectors (X1, Y1) and (X2, Y2) depends only on the corresponding copulas
C1 and C2 and is given by (see [23, Theorem 5.1.1])

Q = Q(C1, C2) = 4
∫
I2

C2(u, v)dC1(u, v) − 1. (2)

It turns out that the concordance function is symmetric in its arguments,
i.e., Q(C1, C2) = Q(C2, C1), and has several other useful properties, see [23,
Corollary 5.1.2] and [15, Sect. 3].

The most important concordance measures include Spearman’s rho,
Kendall’s tau, Gini’s gamma and Blomqvist’s beta. Here, we only define
Kendall’s tau and Gini’s gamma and refer the reader to [23, Sect. 5] for the
definition of the other two. With the concordance function at hand, Kendall’s
tau can be defined by

τ(C) = Q(C,C) = 4
∫
I2

C(u, v)dC(u, v) − 1, (3)

and Gini’s gamma by

γ(C) = Q(C,M) + Q(C,W ) = 4
∫ 1

0

C(u, u)du + 4
∫ 1

0

C(u, 1 − u)du − 2.

(4)

In [20], Liebscher considered weak concordance measures, which are
slightly more general mappings than concordance measures (the formal defi-
nition can be found in Liebscher’s paper). The most important example of a
weak concordance measure is Spearman’s footrule defined by

φ(C) =
1
2

(3Q(C,M) − 1) = 6
∫ 1

0

C(u, u)du − 2. (5)

Spearman’s footrule is not a true concordance measure since its range is
[− 1

2 , 1]. There is an abundance of information in the literature on all three
(weak) concordance measures defined above, including discussions on their
statistical meaning. Kendall’s tau was investigated in [11,13,14,31], Gini’s
gamma in [2,12,22], and Spearman’s footrule in [4,12,28,30].

Connections between different (weak) concordance measures were inves-
tigated in [9,16–18,27]. Here we only give the results which include Kendall’s
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Figure 1. The exact regions determined by Spearman’s
rho and Kendall’s tau (left) and by Blomqvist’s beta and
Kendall’s tau (right)

tau for the sake of completeness. For any copula C ∈ C we have
1
4
(1 + β(C))2 − 1 ≤ τ(C) ≤ 1 − 1

4
(1 − β(C))2

and the bounds are attained (see [23]). The bounds for Kendall’s tau with
respect to Spearman’s rho are given by

−Ψ(−ρ(C)) ≤ τ(C) ≤ Ψ(ρ(C)),

where Ψ : [−1, 1] → [−1, 1] is the inverse of Φ : [−1, 1] → [−1, 1],

Φ(x) =

{
−1; if x = −1,

Φn(x); if x ∈ [−1 + 2
n ,−1 + 2

n−1 ] for some n ≥ 2,

and for every n ∈ N, n � 2, Φn : [−1 + 2
n , 1] → [−1, 1] is a function

Φn(x) = −1 − 4
n2

+
3
n

+
3x

n
− n − 2√

2n2
√

n − 1
(n − 2 + nx)3/2.

The bounds are attained, see [27].
Figure 1 depicts the exact regions determined by Spearman’s rho and

Kendall’s tau and by Blomqvist’s beta and Kendall’s tau.

3. The Exact Region Determined by τ and φ

In this section we will describe the exact region determined by Kendall’s tau
and Spearman’s footrule.

Proposition 1. Let h : I → I be a bijective measure preserving function. Let
C ∈ C be a copula defined by (1) with the mass concentrated on the graph of
h, i.e. μC({(u, h(u)), u ∈ I}) = 1. Then

τ(C) ≥ 4
3
φ(C) − 1

3
.
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Proof. We estimate the integral

I =
∫∫

I2
C(u, v)dC(u, v) =

∫ 1

0

C(u, h(u))du

≥
∫ 1

0

C(min{u, h(u)},min{u, h(u)})du

=
∫

{u∈I;u<h(u)}
C(u, u)du +

∫
{u∈I;u≥h(u)}

C(h(u), h(u))du

=
∫ 1

0

C(u, u)du +
∫ 1

0

C(h(u), h(u))du

−
(∫

{u∈I;u≥h(u)}
C(u, u)du +

∫
{u∈I;u<h(u)}

C(h(u), h(u))du

)

=
∫ 1

0

C(u, u)du +
∫ 1

0

C(h(u), h(u))du

−
∫ 1

0

C(max{u, h(u)},max{u, h(u)})du.

(6)

We introduce a new variable t = h(u) into the second to last integral in (6)
to get

∫ 1

0

C(h(u), h(u))du =
∫ 1

0

C(t, t)dh−1(t) =
∫ 1

0

C(t, t)dt,

since h is bijective and measure preserving. By looking at the mass of the
copula C inside the rectangle from the origin to the point (max{u, h(u)},
max{u, h(u)}), we obtain

C(max{u, h(u)},max{u, h(u)})

= λ({t ∈ I; t � max{u, h(u)}, h(t) � max{u, h(u)}})

=
∫ 1

0

f(t, u)dt,

where

f(t, u) =

{
1; max{t, h(t)} � max{u, h(u)},

0; otherwise.

Notice that f(t, u) + f(u, t) = 1 almost everywhere on I2, since

λ2({(t, u) ∈ I2;max{t, h(t)} = max{u, h(u)}}) = 0,

where λ2 is the Lebesgue measure on I2. It follows that the last integral in
(6) equals

∫ 1

0

C(max{u, h(u)},max{u, h(u)})du =
∫∫

I2
f(t, u)dtdu =

1
2
.
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Figure 2. The scatterplots of copulas Aa and Ba from Ex-
amples 2 and 3

We finally obtain that

I =
∫∫

I2
C(u, v)dC(u, v) ≥ 2

∫ 1

0

C(u, u)du − 1
2

and

τ(C) = 4I − 1 ≥ 8
∫ 1

0

C(u, u)du − 3 = 8 · φ(C) + 2
6

− 3 =
4
3
φ(C) − 1

3
.

�

The following example gives copulas for which the bound of Proposi-
tion 1 is attained.

Example 2. Let a ∈ [0, 1] and let Aa be a shuffle of min

Aa = M(2, (a), (1, 2), (1,−1)).

The scatterplot of copula Aa is shown in Fig. 2 (left). Notice that A0 = W
and A1 = M . We have

δAa
(u) =

⎧⎪⎨
⎪⎩

u; 0 � u � a,

a; a � u � a+1
2 ,

2u − 1; a+1
2 � u � 1,

and

hAa
(u) =

{
u; 0 � u < a,

a + 1 − u; a � u � 1.

It follows that

φ(Aa) = − 3
2a2 + 3a − 1

2 and τ(Aa) = −2a2 + 4a − 1,

so that τ(Aa) = 4
3φ(Aa) − 1

3 and the point (φ(Aa), τ(Aa)) lies on the line
segment AB, where A(− 1

2 ,−1) and B(1, 1). Every point on this line segment
is attained by some Aa with a ∈ [0, 1].
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In next example, we give copulas that will correspond to the points on
the lower bound of the region determined by Kendall’s tau and Spearman’s
footrule.

Example 3. Let a ∈ [12 , 1] and let Ba be a shuffle of min

Ba = M(2, (a), (2, 1), (1, 1)).

The scatterplot of copula Ba is shown in Fig. 2 (right). Notice that B1 = M .
We have

δBa
(u) =

⎧⎪⎨
⎪⎩

0; 0 � u � 1 − a,

u + a − 1; 1 − a � u � a,

2u − 1; a � u � 1,

and

hBa
(u) =

⎧⎪⎨
⎪⎩

u + 1 − a; 0 � u < a,

u − a; a � u < 1,

1; u = 1.

It follows that

φ(Ba) = 6a2 − 6a + 1 and τ(Ba) = 4a2 − 4a + 1,

so that τ(Ba) = 2
3φ(Ba) + 1

3 and the point (φ(Ba), τ(Ba)) lies on the line
segment CB, where C(− 1

2 , 0) and B(1, 1). Every point on this line segment
is attained by some Ba with a ∈ [ 12 , 1].

We can now describe the exact region determined by τ and φ.

Theorem 4. The exact region determined by Kendall’s tau and Spearman’s
footrule of all points {(φ(C), τ(C)) ∈ [− 1

2 , 1]× [−1, 1]; C ∈ C} is a triangular
region given by

4
3
φ(C) − 1

3
� τ(C) � 2

3
φ(C) +

1
3
.

Proof. We will first prove that the lower bound from Proposition 1 holds for
any copula C.

Let ε > 0. Since τ is a concordance measure, there exists δ > 0 such that
for every copula C ′ with sup(u,v)∈I2 |C(u, v) − C ′(u, v)| < δ we have |τ(C) −
τ(C ′)| < ε. By [21] there exists a shuffle of min C ′ with sup(u,v)∈I2 |C(u, v)−
C ′(u, v)| < min{ε, δ}. Hence |φ(C) − φ(C ′)| < 6ε by the definition of φ and

τ(C) > τ(C ′) − ε ≥ 4
3
φ(C ′) +

1
3

− ε >
4
3
φ(C) +

1
3

− 9ε

by Proposition 1. By sending ε to 0, we obtain the desired lower bound.
Next we prove the upper bound. For any copula C we can estimate

τ(C) = 4
∫∫

I2
C(u, v)dC(u, v) − 1 � 4

∫∫
I2

M(u, v)dC(u, v) − 1.

Since the concordance function is symmetric we obtain

τ(C) � 4
∫∫

I2
C(u, v)dM(u, v) − 1 = 4

∫ 1

0

C(u, u)du − 1
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Figure 3. The exact region determined by Kendall’s tau and
Spearman’s footrule

= 4 · φ(C) + 2
6

− 1 =
2
3
φ(C) +

1
3

as claimed.
So, any copula C satisfies the given inequalities and all the points on

the upper and lower boundary of the region are attained by copulas from
Examples 2 and 3. It remains to be shown that all the points in between are
attained as well.

Fix p ∈ [− 1
2 , 1]. By the above there exist copulas C� and Cu such that

φ(C�) = φ(Cu) = p, τ(C�) = 4
3p − 1

3 , and τ(Cu) = 2
3p + 1

3 . Define a map
v : [0, 1] → [− 1

2 , 1] × [−1, 1] by v(t) = (φ(Ct), τ(Ct)), where Ct = tCu +
(1 − t)C�. Then v(0) = (p, 4

3p − 1
3 ) and v(1) = (p, 2

3p + 1
3 ). Furthermore,

φ(Ct) = tφ(Cu) + (1 − t)φ(C�) = p for all t ∈ [0, 1], so the image of v is
contained in the line segment connecting the points v(0) and v(1). Since φ
and τ are weak concordance measures, the map v is also continuous, hence,
its image is connected. This implies that the image of v is precisely the line
segment connecting the points v(0) and v(1). Since p was arbitrary, this
concludes the proof. �

The exact region determined by Kendall’s tau and Spearman’s footrule
is a triangle with vertices A(−1

2 ,−1), B(1, 1), and C(− 1
2 , 0), shown in Fig. 3.

4. The Exact Region Determined by τ and γ

In this section, we will describe the exact region determined by Kendall’s tau
and Gini’s gamma. We first provide examples of copulas that will correspond
to the points on the boundary of the region.

Example 5. Let a ∈ [0, 1
2 ] and define shuffles of min

Ca = M(2, (a), (1, 2), (−1,−1)),
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Figure 4. The scatterplots of copulas Ca and Da from Ex-
ample 5

Da = M(3, (a, 1 − a), (1, 2, 3), (−1, 1,−1)).

The scatterplot of copulas Ca and Da are shown in Fig. 4. We have

Ca(u, u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0; 0 � u � a
2 ,

2u − a; a
2 � u � a,

a; a � u � a+1
2 ,

2u − 1; a+1
2 � u � 1,

Ca(u, 1 − u) =

⎧⎪⎨
⎪⎩

u; 0 � u � a,

a; a � u � 1 − a,

1 − u; 1 − a � u � 1,

Da(u, u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0; 0 � u � a
2 ,

2u − a; a
2 � u � a,

u; a � u � 1 − a,

1 − a; 1 − a � u � 1 − a
2 ,

2u − 1; 1 − a
2 � u � 1,

Da(u, 1 − u) =

{
u; 0 � u � 1

2 ,

1 − u; 1
2 � u � 1,

hCa
(u) =

⎧⎪⎨
⎪⎩

a − u; 0 � u � a,

a + 1 − u; a < u < 1,

1; u = 1,

and

hDa
(u) =

⎧⎪⎨
⎪⎩

a − u; 0 � u � a,

u; a < u < 1 − a,

2 − a − u; 1 − a � u � 1.
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It follows that

γ(Ca) = −6a2 + 6a − 1 and τ(Ca) = −4a2 + 4a − 1,

γ(Da) = −2a2 + 1 and τ(Da) = −4a2 + 1,

so that τ(Ca) = 2
3γ(Ca) − 1

3 , γ(Ca) ∈ [−1, 1
2 ], and τ(Da) = 2γ(Da) − 1,

γ(Da) ∈ [12 , 1]. The point (γ(Ca), τ(Ca)) lies on the line segment AB, and
the point (γ(Da), τ(Da)) lies on the line segment BC, where A(−1,−1),
B( 12 , 0) and C(1, 1). Every point on these line segments is attained by some
Ca or Da with a ∈ [0, 1

2 ].

We can now describe the exact region determined by τ and γ.

Theorem 6. The exact region determined by Kendall’s tau and Gini’s gamma
of all points {(γ(C), τ(C)) ∈ [−1, 1] × [−1, 1]; C ∈ C} is given by

max
{

2
3
γ(C) − 1

3
, 2γ(C) − 1

}
� τ(C) � min

{
2
3
γ(C) +

1
3
, 2γ(C) + 1

}
.

Proof. For any copula C, we have∫ 1

0

Cσ2(u, u)du =
1
2

−
∫ 1

0

C(u, 1 − u)du,

hence

γ(C) = 4
∫ 1

0

C(u, u)du + 4
(

1
2

−
∫ 1

0

Cσ2(u, u)du

)
− 2

= 4 · φ(C) + 2
6

− 4 · φ(Cσ2) + 2
6

=

=
2
3
(φ(C) − φ(Cσ2)).

Since τ is a concordance measure, we infer

τ(C) =
2
3
τ(C) +

1
3
τ(C) =

2
3
τ(C) − 1

3
τ(Cσ2).

Using Theorem 4 to estimate both terms on the right-hand side, we obtain

τ(C) � 2
3

(
2
3
φ(C) +

1
3

)
− 1

3

(
4
3
φ(Cσ2) − 1

3

)

=
4
9
(φ(C) − φ(Cσ2)) +

1
3

=
2
3
γ(C) +

1
3
. (7)

On the other hand, we may use Theorem 4 and the inequality φ(C) ≥ − 1
2 to

estimate

τ(C) = −τ(Cσ2) � −4
3
φ(Cσ2) +

1
3

=
4
3

·
(

−1
2

)
− 4

3
φ(Cσ2) + 1

� 4
3
(φ(C) − φ(Cσ2)) + 1 = 2γ(C) + 1. (8)

Inequalities (7) and (8) imply

τ(C) � min
{

2
3
γ(C) +

1
3
, 2γ(C) + 1

}
, (9)
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Figure 5. The exact region determined by Kendall’s tau and
Gini’s gamma

which proves the upper bound for τ(C). We obtain the lower bound if we
apply inequality (9) to Cσ2

τ(C) = −τ(Cσ2) ≥ −min
{

2
3
γ(Cσ2) +

1
3
, 2γ(Cσ2) + 1

}

= −min
{

−2
3
γ(C) +

1
3
,−2γ(C) + 1

}

= max
{

2
3
γ(C) − 1

3
, 2γ(C) − 1

}
.

Example 5 implies that any point on the lower boundary is attained by either
Aa or Ba with a ∈ [0, 1

2 ]. Furthermore, by an analogous argument as above,
any point on the upper boundary is attained by either Aσ2

a or Bσ2
a with

a ∈ [0, 1
2 ]. The proof that any point in between is also attained is similar as

the corresponding part of the proof of Theorem 4. �

The exact region determined by Kendall’s tau and Gini’s gamma is a
parallelogram with vertices A(−1,−1), B(12 , 0), C(1, 1), and D(− 1

2 , 0), shown
in Fig. 5.

5. Concordance Similarity Measure Between Kendall’s Tau
and Other Concordance Measures

In paper [17] the authors introduce the (κ1, κ2)-similarity measure between
(weak) concordance measures κ1 and κ2 as

κsm(κ1, κ2) = 1 − A(κ1, κ2)
(1 − κ1(W ))(1 − κ2(W ))

,

where A(κ1, κ2) is the area of the exact region determined by κ1 and κ2. They
also compute concordance similarity measure between the pairs Kendall’s
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Table 1. Concordance similarity measure between Kendall’s
tau and other (weak) concordance measures

κ ρ γ φ β

κsm(τ, κ) 0.7114 0.7500 0.7500 0.3333

tau and Spearman’s rho κsm(τ, ρ) = 0.7114 and between Kendall’s tau and
Blomqvist’s beta κsm(τ, β) = 1

3 = 0.3333.
We now compute concordance similarity measure between the pairs

Kendall’s tau and Spearman’s footrule and between Kendall’s tau and Gini’s
gamma. We have

A(τ, φ) = area ΔA(− 1
2 ,−1)B(1, 1)C(− 1

2 , 0) = 3
4 ,

so κsm(τ, φ) = 1 − 1
3A(τ, φ) = 3

4 = 0.75, and

A(τ, γ) = area A(−1,−1)B(12 , 0)C(1, 1)D(− 1
2 , 0) = 1,

so κsm(τ, γ) = 1 − 1
4A(τ, γ) = 3

4 = 0.75. Table 1 gives all the values
Thus, knowing the value of Blomqvist’s beta gives us in average very

little information about possible values of Kendall’s tau. On the other hand,
knowing the value of Spearman’s rho, Spearman’s footrule, or Gini’s gamma
gives us more information about possible values of Kendall’s tau. The amount
of information is in average almost the same for all three measures.
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