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Abstract. In this paper, we extend the definition of a knotoid to multi-
linkoids that consist of a finite number of knot and knotoid components.
We study invariants of multi-linkoids, such as the Kauffman bracket
polynomial, ordered bracket polynomial, the Kauffman skein module,
and the T -invariant in relation with generalized Θ-graphs.
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Introduction

Knotoids were defined by Turaev [39] as immersions of the unit interval in
surfaces. Knotoids are open-ended knots with two endpoints that can lie
anywhere in the surface. In this sense, the theory of knotoids in S2 generalizes
classical knot theory and has a natural connection with the theory of virtual
knots [22,23] through the virtual closure. Intrinsic invariants of knotoids, as
well as invariants induced from classical and virtual knot invariants have been
studied by many researchers. See [3–5,14–16,19,20,25,26,29,36,39]. Turaev
showed that knotoids in S2 are in one-to-one correspondence with simple
Θ-curves and multi-knotoids in S2, immersions of the unit interval and a
finite number of circles in S2, are in one-to-one correspondence with simple
theta-links [39]. Later, knotoids in R

2 were described as open space curves in
R

3\{two parallel lines} in [14] or as rail arcs in [24].
Topological structures are also an emerging field in modern chemistry

[9] as knots have been identified in DNA [34] and proteins [27,40]. Research
suggests that the existence of knotting increases thermal and kinetic stability
of the molecule [35], as well as to have important functional roles [40]. A
protein’s backbone natively forms an embedded interval in 3-space. Classical
studies of protein topology (i.e. determining the knot type) rely on closing this
interval by some closure method (closure methods are thoroughly discussed
in [28]). Since closures are often ambiguous (in the case when the protein
termini are not located close to the minimal convex surface enveloping the

0123456789().: V,-vol  

http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-023-02370-w&domain=pdf
http://orcid.org/0000-0002-8272-5392


  165 Page 2 of 22 B. Gabrovšek and N. Gügümcü MJOM

protein), knotoids have been identified as natural candidates to study open-
knotted proteins [12,13,18].

One can extend the notion of a knotoid by considering several closed
and open-ended components. A multi-linkoid is a union of a finite number of
immersed unit intervals and circles in a closed orientable surface. The main
goal of this paper is to generalize the mentioned concepts to multi-linkoids
and to introduce invariants for them. We expect that multi-linkoids would
suggest a new setting for the topological analysis of several mutually entan-
gled physical systems such as polymer chains or subchains via the invariants
we introduce here.

The paper is organized as follows. Section 1 is an overview of the required
notions related to multi-linkoids. In Sect. 2 we extend the Kauffman bracket
polynomial to multi-linkoids. In addition, we strengthen this invariant to the
ordered Kauffman bracket polynomial for multi-linkoids with an ordering
on its knotoid components. In Sect. 2.1, we introduce the Kauffman skein
module of multi-linkoids and show that the module is freely generated. In
Sect. 3, we study multi-linkoids in a geometric setting. We introduce simple
generalized Θ-graphs, which are in one-to-one correspondence with multi-
linkoids, where we take also into consideration the possibility of an ordering
on the components.

In Sect. 4, we utilize the T -invariant for spatial graphs [21] and strengthen
it by introducing the colored T -invariant for distinguishing multi-linkoids and
ordered multi-linkoids.

1. Preliminaries

We begin with a presentation of fundamental notions we will use throughout
the paper.

Definition 1.1. [39] A knotoid diagram K in a surface Σ is a generic immersion
of the unit interval [0, 1] into Σ. The immersion K is generic in the sense that
there are only a finite number of intersections of the image curve that are
endowed with under or over information, and are regarded as crossings of K.
The points K(0) and K(1) are considered to be distinct from each other and
from any crossings, and are considered as the endpoints of K. The endpoints
of K are named as the tail and the head, respectively. A knotoid diagram is
oriented from its tail to its head.

A multi-knotoid diagram in Σ is a union of a knotoid diagram with a
number of knot diagrams in Σ.

We extend the definition of a multi-knotoid diagram to a multi-linkoid
diagram that is a union of a finite number of knotoid and knot diagrams. We
assume an orientation for each component of a multi-linkoid diagram where
knotoid components are oriented from tail to head. See Fig. 1.

As in the case of knotoid diagrams [39], we consider multi-linkoid dia-
grams up to the equivalence relation generated by Reidemeister moves that
take place away from the endpoints.
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Figure 1. A multi-linkoid diagram with three components
on the torus

←→

(a) R-0 (surface isotopy)

←→ ←→

(b) R-I

←→

(c) R-II

←→

(d) R-III

Figure 2. Reidemeister moves for multi-linkoid diagrams in
a surface Σ

→←� →←�

Figure 3. The forbidden moves involving the endpoints

Definition 1.2. Two multi-linkoid diagrams in a surface are equivalent if and
only if they differ by a finite sequence of Reidemeister moves R-0 (surface
isotopy), R-I, R-II, and R-III that take place away from the endpoints of the
diagrams, shown in the Fig. 2. The endpoints of a multi-linkoid diagram can
be displaced by surface isotopy moves without adding/deleting a crossing. In
fact, it is forbidden to move an endpoint over or under a strand as illustrated
in Fig. 3.

Definition 1.3. A framed knot in R
3 is a knot in R

3 endowed with a framing
that is a smooth, everywhere nonzero vector field perpendicular to the knot
at each point.

Any knot diagram can be endowed with the blackboard framing that is
a smooth, everywhere nonzero vector field parallel to the projection plane.
The blackboard framing on an oriented knot diagram is determined by the
writhe of the knot diagram. Notice that R-0, FR-I, R-II, and R-III moves
(presented in Figs. 2 and 4) do not affect the writhe of a knot diagram. A
framed knot can then be defined as the equivalence class of knot diagrams
up to the isotopy relation generated by R-0, FR-I, R-II, and R-III moves. In
analogy with this definition, framed knotoids in S2 are introduced in [29] as
follows.
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←→

Figure 4. The move FR-I (equivalent to the move R1′ in
[29].)

Definition 1.4. A framed knotoid in S2 is an equivalence class of knotoid
diagrams under the equivalence relation generated by R-0, FR-I, R-II, and R-
III moves. A framed knotoid diagram is a representation of a framed knotoid
in its equivalence class.

This definition can be extended to multi-linkoids directly as follows.

Definition 1.5. A framed multi-linkoid in an orientable surface Σ is an equiv-
alence class of multi-linkoid diagrams under the equivalence generated by
R-0, FR-I, R-II, and R-III.

We assign to each crossing of an oriented multi-linkoid diagram a sign

using the convention sign
( )

= 1 and sign
( )

= −1.

Definition 1.6. The sum of signs over all crossings of an oriented multi-linkoid
diagram of L is called the writhe, w(L), of L.

Note that moves R-0, FR-I, R-II, and R-III do not change the writhe,
w is thus an invariant of framed oriented multi-linkoids.

We now introduce an ordering on the components of a multi-linkoid
diagram.

Definition 1.7. An ordered multi-linkoid diagram is a multi-linkoid diagram
equipped with an ordering on its open components. An ordered multi-linkoid
is an equivalence class of ordered multi-linkoid diagrams under the equiva-
lence relation generated by Reidemeister moves given in Fig. 2.

Let L be an ordered multi-linkoid diagram with n knotoid components.
The ordering on knotoid components of L induces an ordering of the end-
points. Precisely, for any i ∈ {1, ..., n} the endpoints of the ith knotoid com-
ponent of L can be numbered by the pair (2i − 1, 2i) where 2i − 1 is the
number assigned to the tail and 2i is the number assigned to the head of the
knotoid component. In the sequel, some invariants of multi-linkoid diagrams
are constructed with respect to the ordering induced at the endpoints, see
Sect. 2 for the ordered Kauffman bracket, Sect. 2.1 for the ordered Kauffman
bracket skein module and Sect. 4 for the invariant Tcol.

Definition 1.8. A framed ordered multi-linkoid is an equivalence class of or-
dered multi-linkoid diagrams considered up to R-0, FR-I, R-II, and R-III
moves.

Notice that R-0, FR-I, R-II, and R-III moves do not change the ordering
of the components of a multi-linkoid diagram since they take away from the
endpoints.
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Figure 5. Smoothing types of a crossing

2. Kauffman Bracket Polynomial of Multi-linkoids

In this section, we extend the Kauffman bracket polynomial of knotoids to
multi-linkoids in S2 or R

2.
Let L be a multi-linkoid diagram with n crossings. A crossing of L can

be smoothed in two ways as follows. First, we consider L to be orientation
free. There are exactly four local regions that are incident to each crossing
of L. If we rotate the overpassing stand at a crossing counterclockwise for 90
degrees, it passes over two of the four regions incident to the crossing. We
call these two regions A regions and the remaining regions B regions (see left
hand side of Fig. 5). The A-type smoothing (B-type smoothing) of the crossing
removes the crossing and connects the A-regions (B-regions, respectively) as
shown in Fig. 5.

By smoothing each crossing of L by applying either an A− or B− type
smoothing, we obtain a number of simple closed curves and simple arcs con-
taining the endpoints of L. The disjoint union of the resulting curves forms
a state of L that is denoted by σi where i ∈ {A,B}n (an n-ordered tuple of
the labels A and B that correspond to smoothing types at crossings of L to
obtain σi). The collection of closed components of σi is denoted by cσi

and
the collection of open components of σi is denoted by lσi

. Each component
in cσi

is evaluated as −A2 − A−2 and each component in lσi
is associated

with the variable λ. We consider B = A−1 as for the bracket polynomial of
knotoids [39], and we define the bracket polynomial as a Laurent polynomial
in the variables A,A−1, λ for L as follows.

Definition 2.1. The Kauffman bracket polynomial of L, < L > is defined to
be the sum

< L > (A±1, λ) =
∑
σi

< L | σi > (−A2 − A−2)||cσ1 ||λ||lσ1 ||, (1)

where < L | σi > is the product of the labels of the state σi, ||cσi
|| is

the number of closed components of σi and ||lσi
|| is the number of open

components of σi.

If L is a multi-knotoid diagram, we obtain the bracket polynomial in-
troduced in [39], by the substitution λ = 1.

Proposition 2.2. The Kauffman bracket polynomial is an invariant of framed
multi-linkoids.
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= A A-1 = -A
3

< >

Figure 6. Behavior of the Kauffman bracket polynomial un-
der a R-I move

Proof. The Kauffman bracket polynomial for multi-linkoids behaves the same
under Reidemeister moves as for knots and knotoids. Thus, the verification of
invariance for multi-linkoids under FR-I, R-II and R-III moves runs similarly
with the case of knots. �

In Fig. 6, we illustrate how < L > changes under a R-I move that may
take place on a knotoid or a knot component of a multi-linkoid diagram L.
It is clear that multiplication of < L > by (−A3)−w(L), where w(L) is the
writhe of L, cancels the multiplicative term −A3 resulting from the R-I move.

Definition 2.3. We define the normalized Kauffman bracket polynomial of a
multi-linkoid diagram L as

< L >(A±1, λ) = (−A3)−w(L) < L > (A±1, λ).

Proposition 2.4. The normalized Kauffman bracket polynomial is an invari-
ant of multi-linkoids.

Proof. It is sufficient to observe that multiplying the Kauffman bracket poly-
nomial of a multi-linkoid diagram L with (−A3)−w(L) cancels the change of
the bracket polynomial under a R-I move. This can be verified as in the case
of knotoids [39]. �

We now introduce an ordered version of the bracket polynomial for
ordered multi-linkoids. Let L be an ordered multi-linkoid diagram in S2 or
R

2. The endpoints of L are enumerated with respect to the ordering induced
by the ordering on the knotoid components of L as discussed in Sect. 1. States
of L are obtained as explained above by smoothing all crossings of L with A
and B smoothings. Closed components of a state are assigned to −A2 − A−2

and an open component is assigned to the variable λij , where i < j are the
integer labels at the tail and the head of the component, respectively. We
define the ordered bracket polynomial of L as an integer coefficient Laurent
polynomial in variables A,A−1, λij (i < j) as follows.

Definition 2.5. The ordered bracket polynomial of an ordered multi-linkoid
diagram L, < L >• is defined to be the sum

< L >• (A±1, {λij}i<j) = Σσi
< K | σ > (−A2 − A−2)||c|| ∏

Λ

λij , (2)

where the sum is taken over all states of L, < K | σ > is the product of the
smoothing labels of a state σi and Λ is the collection of open components in
the state σi.

Note that if L is a multi-knotoid diagram, the ordering on L is trivial
since there is only one knotoid component of L. Then, the ordered bracket
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Figure 7. Two ordered linkoids that are distinguished by the
ordered bracket polynomial

polynomial of L can be assumed to be equal to the Kauffman bracket poly-
nomial of L with λ12 = λ = 1.

Proposition 2.6. The ordered bracket polynomial turns into an invariant of
ordered multi-linkoids when multiplied with (−A3)−w.

Proof. It is clear that R-0, R-II, and R-III moves preserve the ordering on
the knotoid components of a multi-linkoid diagram, and the invariance of
the polynomial under these moves follows similarly as the invariance of the
bracket polynomial. A R-I move changes the ordered bracket polynomial
by (−A)±3 as in the case of the bracket polynomial so that multiplying the
ordered bracket polynomial with (−A3)−w makes it invariant under R-I moves
as well. �

Example 1. In Fig. 7, two ordered linkoid diagrams with two components are
given. Explicit computation shows that the normalized Kauffman bracket
polynomial of these linkoids coincide, but they can be distinguished by the
normalized ordered bracket polynomial. Precisely, we find

< L1 >• = (A2 + 1)λ12λ34 + λ13λ24 + A−2λ14λ23 and

< L2 >• = (A2 + 1)λ12λ34 + λ14λ23 + A−2λ13λ24.

Example 2. In Fig. 8, the linkoid diagrams differ only for the orderings on
components. The normalized bracket polynomial is not able to distinguish
them. Direct computation of the normalized ordered bracket polynomials
shows that the linkoids represent different ordered linkoids. Precisely, we
find

< L′
1 >•=A3λ15λ23λ46 + A(λ15λ24λ36 + λ14λ23λ56 + λ16λ23λ45)

+ A−1(λ13λ24λ56 + λ14λ23λ56 + λ16λ24λ35) + A−3λ13λ24λ56 and

< L′
2 >•=A3λ14λ26λ35 + A(λ16λ24λ35 + λ14λ23λ56 + λ14λ25λ36)

+ A−1(λ13λ24λ56 + λ14λ23λ56 + λ15λ24λ36) + A−3λ13λ24λ56.

We observe that < L′
1 >• �= < L′

2 >• and the normalized ordered bracket
polynomials do not coincide.
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L'1

5
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3

4

1 2

L'2

5

6

3 41

2

Figure 8. Two ordered linkoids that are distinguished by the
ordered bracket polynomial

2.1. The Kauffman Bracket Skein Module

Observe that in the bracket polynomial formulas (1) and (2), we only consider
the number of closed components ||c|| in each state, where each component
is assigned the term −A2 − A−2. We can extend the bracket polynomial so
that in each state we also keep information about the homology classes of the
closed components in c in the complement S2\l. We do this by introducing
the Kauffman bracket skein module (KBSM) of multi-linkoids. Furthermore,
we extend this invariant to multi-linkoids in any closed, connected, orientable
genus g surface.

Skein modules were independently introduced by Turaev [38] and Przy-
tycki [33], they can be viewed as generalizations of invariants based on the
skein relation for knots in 3-manifolds. The idea behind our construction
(which is closely related to the original construction) is that we first con-
struct a space of all possible linear combinations of multi-linkoids and in this
space impose the relations

[ ]
= A

[ ]
− A−1

[ ]
,

[ ]
= (A2 − A−2)

[ ]
,

which characterize the bracket polynomials given by formulas (1) and
(2). For similar constructions see [7,8,10,11,32].

Definition 2.7. Let Σ be a connected orientable surface of genus g. Let R be
a commutative ring with an invertible element A (e.g. the ring of Laurent
polynomials Z[A,A−1]) and let Lfr

Σ,n be the set of framed multi-linkoids on
Σ with 2n endpoints. Denote by R[Lfr

Σ,n] the free R-module spanned by Lfr
Σ,n

and by S(Lfr
Σ,n, R,A) the submodule of R[Lfr

Σ,n] generated by the following
two expressions (relators):

[ ]
− A

[ ]
− A−1

[ ]
, (3a)

[ ]
− (A2 − A−2)

[ ]
, (3b)
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where
[ ]

,
[ ]

,
[ ]

,
[ ]

, and
[ ]

represent classes of multi-
linkoids that are everywhere the same except inside a small disk where they
look like the figures indicated.

The Kauffman bracket skein module of multi-linkoids in Σ with 2n end-
points is the quotient module

Kfr
Σ,n(R,A) = R[Lfr

Σ,n]/S(Lfr
Σ,n;R,A),

i.e. all formal finite linear sums of multi-linkoids in which we enforce the two
relations obtained by the expressions (3).

Theorem 2.8. Let Bfr
Σ,n be the set of all framed multi-linkoids in Σ with 2n

endpoints without crossings and without trivial contractible components in
Σ. The module Kfr

Σ,n(R,A) is freely generated by Bfr
Σ,n, i.e. Kfr

Σ,n(R,A) =
R[Bfr

Σ,n].

In particular,

(i) Kfr
S2,1 is freely generated by the trivial knotoid ,

(ii) Kfr
R2,1 is generated by the infinite set

{
, , , . . .

}
,

(iii) Kfr
R2,2 is generated by the infinite set

{ , , , , ... , , }.
(iv) Kfr

T 2,1 is generated by the infinite set

{ , ... , , , }.

Proof. In order to prove the theorem, it is enough to show that Bfr
Σ,n generates

Kfr
Σ,n(R,A) and that for a given multi-linkoid L ∈ Lfr

Σ,n the expression [L] ∈
Kfr

Σ,n(R,A), written in terms of the elements in Bfr
Σ,n, is unique.

For a given representative L of [L] ∈ Kfr
Σ,n(R,A), we can first remove

all crossings using (3a) and then remove all trivial components using (3b),
we end up with a formal linear sum of elements Bfr

Σ,n. Elements Bfr
Σ,n thus

generate the module.
To show that the expression [L], written in terms of elements in Bfr

Σ,n,
is unique, we need to show that it does not depend on any choice we can
make during the computation of [L] and that it is invariant under Reidemeis-
ter moves for framed linkoid diagrams. We enumerate the crossings of L by
ordinals 1, 2, . . . , k. We first show that the coefficients do not depend on the
order we perform crossing eliminations via (3a).

Let
i j

represent a multi-linkoid with crossings i and j marked.
The coefficients do not depend on the order of crossings smoothings:

i j

= A
i j

+A−1
i j

= A2
i j

+
i j

+
i j
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+A−2
i j

,

i j

= A
i j

+A−1
i j

= A2
i j

+
i j

+
i j

+A−2
i j

.

In addition, the coefficients do not depend on the elimination order of trivial
components using the framing relation (3b). Also, it does not depend on
the elimination order when a choice is to be made if a crossing or a trivial
component is to be eliminated.

Proving the invariance is similar to the case of classical knots. The
expression is invariant under Reidemeister move R-II:

= A + A−1 = A2 + +

+A−2 = ,

where we used the framing relation (3b) in the last equality. The expression
is also invariant under Reidemeister move R-III:

= A + A−1 = A + A−1 = ,

where the second equality holds by invariance under R-II. �

Let L be a multi-linkoid in Σ with 2n endpoints. We denote by [L]Bfr
Σ,n

the class of L in Kfr
Σ,n written in terms of elements in the basis Bfr

Σ,n (or just
[L] if we fix the basis and the ambient space is known from context). Due to
Theorem 2.8, [L] is an invariant of unordered framed multi-linkoids.

As in the classical case, we can obtain an invariant of non-framed
linkoids by multiplying it by (−A3)−w(L). The expression

[L]Bfr
Σ,n

= (−A3)−w(L) [L]Bfr
Σ,n

is an invariant of multi-linkoids in Σ.
Let us now consider the ordered case. For this, we will need the set of

multi-linkoids with arbitrary ordering on the vertices (not necessarily consec-
utive on the endpoints on the same component). More precisely, each end-
point of a multi-linkoid diagram is assigned to exactly one value in {1, 2, . . . ,
2n}. We call the resulting diagram a vertex-ordered multi-linkoid diagram.

Definition 2.9. Two vertex-ordered multi-linkoid diagrams are equivalent if
there is a finite sequence of Reidemeister moves R-0, R-I, R-II, and R-III
that takes one diagram to the other, such that the orderings on vertices of
the two diagrams coincide. The equivalent classes are called vertex-ordered
multi-linkoids.

Definition 2.10. A framed multi-linkoid diagram with an arbitrary ordering
on its vertices is called a framed vertex-ordered multi-linkoid diagram. Framed
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vertex-ordered multi-linkoids are equivalent classes given by framed Reide-
meister moves.

Definition 2.11. Let L̂fr
Σ,n be the set of all vertex-ordered multi-linkoids with

n open components and S(L̂fr
Σ,n;R,A) be the submodule of the free R-module

R[L̂fr
Σ,n] generated by the relators (3). The quotient module

K̂fr
Σ,n(R,A) = R[L̂fr

Σ,n]/S(L̂fr
Σ,n;R,A)

is the Kauffman bracket skein module of vertex-ordered multi-linkoids in Σ
with 2n endpoints. As ordered multi-linkoids are just special cases of vertex-
ordered multi-linkoids, we will obtain an ordered multi-linkoids invariant
through K̂fr

Σ,n(R,A).

Theorem 2.12. Let B̂fr
Σ,n the set of all isotopy classes on Σ of vertex-ordered

multi-linkoids on Σ with 2n endpoints without crossings and without trivial
contractible components. The module K̂fr

Σ,n(R,A) is freely generated by the
basis B̂fr

Σ,n, i.e. K̂fr
Σ,n(R,A) = R[B̂fr

Σ,n].

Proof. The ordered vertices of vertex-ordered linkoid diagrams lie outside the
areas of relations (3). Since the skein module is defined by relations (3), the
proof is essentially the same to that of Theorem 2.8. Using operations (3),
we can remove all crossings and trivial components, and thus represent every
class of a link as a formal sum of elements in L ∈ L̂fr

Σ,n. Clearly, as before,
the result also does not depend on the order we perform the operations. To
show invariance under Reidemeister moves, we repeat the argument from the
proof of Theorem 2.8 verbatim. �

Remark 2.13. Note that both Bfr
Σ,n and B̂fr

Σ,n are sets consisting of isotopy
classes of links. The surjective map φ : L̂fr

Σ,n → Lfr
Σ,n, obtained by removing

the enumeration on the vertices, linearly extends to a map K̂fr
Σ,n(R,A) →

Kfr
Σ,n(R,A), where several all elements in B̂fr

Σ,n that differ only by a permu-
tation on their vertices, are mapped to the same element in Bfr

Σ,n. In fact,
Kfr

Σ,n(R,A) can be viewed as an orbit space of a group action on K̂fr
Σ,n(R,A).

See Examples 3 and 4.

As before, the normalized expression

[L]B̂fr
Σ,n

= (−A3)−w(L) [L]B̂fr
Σ,n

is an invariant of vertex-ordered multi-linkoids on Σ and, as a special case,
an invariant of ordered multi-linkoids on Σ.

The following propositions follow directly from construction.

Proposition 2.14. Given an (unordered) multi-linkoid diagram L in S2 (or
R

2), the Kauffman bracket polynomial of L, < L > (A±1, λ), is obtained from
[L] by replacing each open component with λ and each closed component with
(−A2 − A−2).
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Figure 9. Two oriented multi-knotoids on R
2

Proposition 2.15. Given an ordered multi-linkoid L in S2 (or R2), the ordered
Kauffman bracket polynomial of L, < L >• (A±1, {λij}(i,j)∈I), where I ⊂ N

2

is the index set, is obtained from [L] by replacing each open component with
endpoints, enumerated by i and j, with λij and each closed component with
(−A2 − A−2).

Example 3. Consider the two oriented multi-linkoids K1 and K2 in R
2 in

Fig. 9. We have w(K1) = w(K2) = −1. A straightforward computation shows
us

[K1]B̂
R2,1

= −2A2 2

1

4

3
− 2A4 4

1

3

2
− A6 4

1

3

2
,

[K2]B̂
R2,1

= −2A2 2

1

4

3
− 2A4 4

1

3

2
− A6 4

1

3

2
,

(4)

By Proposition 2.15, we can obtain the Kauffman bracket polynomial from
the Kauffman bracket skein modules by the replacements

2

1

4

3
→ λ12λ34,

4

1

3

2
→ λ14λ23,

4

1

3

2
→ (−A2 − A−2)λ14λ23,

4

1

3

2
→ (−A2 − A−2)λ14λ23.

The normalized ordered Kauffman bracket polynomial does not distinguish
the two multi-linkoids. In fact, we have

< K1 >• = < K2 >• = −2A2λ12λ34 + (A8 − A4)λ14λ23.

Observe that if we consider that the two multi-linkoids lie in S2, K1 and K2

are isotopic and

[K1]BS2,1
= [K1]BS2,1

= −2A2 2

1

4

3
− 2A4 4

1

3

2
− A6 4

1

3

2
.

Example 4. Let us denote by K ′
1 and K ′

2 two multi-linkoids on R
2 that are

obtained respectively from K1 and K2 from Fig. 9, except that we remove
information about the orientation and the ordering of the vertices, i.e. if we
take the map φ from Remark 2.13, it holds φ(K1) = K ′

1 and φ(K2) = K ′
2.
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Figure 10. A multi-linkoid diagram L in a plane and the cor-
responding space curve L̃ with endpoints on the lines per-
pendicular to the plane

Since it also holds that

φ(
2

1

4

3
) = φ(

4

1

3

2
) = and φ(

4

1

3

2
) = φ(

4

1

3

2
) = ,

it follows from (4) that

[K ′
1]B

R2,1
= [K ′

2]B
R2,1

= −2(A2 + A4) − A6 ,

which we could also compute easily from the definition.

3. Spatial Graphs and Multi-linkoids

Knotoids in R
2 and S2 can be described geometrically via open space curves

whose endpoints are attached to two parallel lines or a class of spatial graphs
called Θ-graphs, respectively, as described in [39] and [14]. This geometric
approach can directly be extended to multi-linkoids in R

2, so that they can
be understood as unions of space curves whose endpoints are attached to
a number of parallel lines parpendicular to the plane of the diagram, see
Fig. 10.

In the sequel, we discuss a geometric interpretation of multi-linkoids in
S2 by introducing generalized Θ-graphs.

Definition 3.1. A spatial graph Γ in S3 (or R3) of a graph G is an embedding
Γ : G ↪→ S3 (or R

3).

Definition 3.2. Two spatial graphs are equivalent if they are ambient isotopic.

Definition 3.3. A regular projection p(Γ) of a spatial graph Γ is an orthogonal
projection of Γ to a plane in R

3 (or a sphere in S3) that is locally one-to-one
and the inverse image of every point y in p(Γ) contains either one or two
points, if p−1(Γ) contains two points, neither of these points is a vertex.

Definition 3.4. A spatial graph diagram is a regular projection of a spatial
graph to R

2 in R
3 (or S2 in S3), endowed with under or over information at

each intersection of the edges.
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←→

←→

(a) R-IV

←→

(b) R-V

Figure 11. Reidemeister moves for spatial graph diagrams
involving a vertex. The vertex involved in the move can be
of any degree

The following theorem is an analog of Reidemeister’s theorem, which
makes it possible to study spatial graphs through their diagrams.

Theorem 3.5 (Kauffman [21]). Two spatial graphs diagrams represent ambi-
ent isotopic spatial graphs if and only if one of them can be transformed into
the other by a finite sequence of move R-0, R-I, R-II, R-III involving the
edges (Fig. 2) and moves R-IV and R-V involving the vertices (Fig. 11).

Definition 3.6. A Θ-graph is a spatial graph with two labeled vertices v0, v1

and three labeled edges e+, e0, e− connecting the vertices. Two Θ-graphs are
equivalent if there is an orientation preserving isotopy of S3 taking one to
another that preserves the labeling of the vertices and the edges.

Definition 3.7. A Θ-graph is called simple if the edges e+ and e− bound a
2-disk in R

3.

As described in [39], a knotoid diagram in S2 can be uniquely associated
with a simple Θ-graph by assuming the two vertices of the graph as the
endpoints of the knotoid diagram and the e0 edge as the knotoid diagram
itself. The edge e+ is unknotted and goes above the rest of the diagram and
the edge e− is unknotted and goes below the rest of the diagram.

Theorem 3.8 ([39]). There is a bijective map between the set of all isotopy
classes of knotoids in S2 and the set of all simple Θ-graphs.

We now generalize this correspondence to multi-linkoids by introduc-
ing generalized Θ-graphs and then extract invariants for multi-linkoids from
spatial graph invariants.

Definition 3.9. A generalized Θ-graph is a connected graph embedded in S3

with an even number, say 2n, n ∈ N, of trivalent vertices, labeled vi and wi

where i ∈ {1, . . . , n}, and exactly two vertices v∞, v−∞ that are located at
N(0, 0, 0, 1) ∈ S3 and S(0, 0, 0,−1) ∈ S3, respectively. The edge set E(G)
consists of edges {viwi}n

i=1, edges {viv∞}n
i=1 and edges {viv−∞}n

i=1 connect-
ing vi and the vertices v∞ and v−∞, and edges {wiv∞}n

i=1 and {wiv−∞}n
i=1

connecting wi and the points v∞ and v−∞. Note that each vertex of a pair
(vi, wi) is adjacent to both v∞ and v−∞.
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Definition 3.10. A generalized Θ-graph is simple if for every pair of vertices
in E = {v1, ..., vn, w1, ..., wn}, the subgraph induced by the edges connecting
the pair of vertices to v∞ and v−∞ bounds a disk. See the right hand side of
Fig. 12 as an example.

Definition 3.11. Consider S3 = R
3 ∪ {∞}. A simple generalized Θ-graph in

S3 is standard if
(i) the vertices that are labeled by vi, wj lie on R

2 × {0} ⊂ R
3 at different

horizontal positions for all i, j ∈ {1, . . . , n}, i �= j,
(ii) for all i, where i ∈ {1, . . . , n}, the edges viv∞ and wiv∞ lie in the upper

half-space while the edges viv−∞ and wiv−∞ lie in the lower half-space,
(iii) there is no braiding between the edges viv±∞ and vjv±∞ or wiv±∞ and

wjv±∞.

Given a generalized simple Θ-graph, we can always move (using isotopy)
the vertices E = {v1, ..., vn, w1, ..., wn} in the plane R

2 × {0} ⊂ R
3 in such a

way, that condition (i) is satisfied. In addition, we can move the points v∞
and v−∞ by isotopy, respectively, to the upper and lower half-space. Since
any two vertices u, u′ ∈ E, together with the vertices v∞ and v−∞, bound a
disk, the edges connecting v∞ and v−∞ can be moved by isotopy so that (ii)
and (iii) are also satisfied. Thus, the following proposition holds (Fig. 12):

Proposition 3.12. Every simple generalized Θ-graph is equivalent to a stan-
dard generalized Θ-graph.

Let L be a linkoid diagram in S2 with 2n endpoints. We assign to L
a standard generalized Θ-graph embedded in S3, which we denote by Θ(L).
The graph Θ(L) is constructed as follows. We label each component of L
by i ∈ {1, . . . , n}, and denote by vi the tail and by wi and the head of
component i, such that component i corresponds to an edge viwi in Θ(L).
We also add two vertices, denoted by v∞ and v−∞ at N(0, 0, 0, 1) ∈ S3 and
S(0, 0, 0,−1) ∈ S3, respectively.

Then we add edges viv∞, viv−∞, wiv∞, and wiv−∞ that connect the
vertices vi and wi for all i ∈ {1, ..., 2n} to the vertices v∞ and v−∞ in a
way that the edges viv∞ and wiv∞ lie in the upper hemisphere while the
edges viv−∞ and wiv−∞ lie in the lower hemisphere of S3. Moreover, every
quadruplet of edges viv∞, viv−∞, wjv∞, and wjv−∞ bounds a disk. The
resulting graph, denoted by Θ(L) is a simple generalized Θ-graph with 2n+2
vertices such that 2n vertices are of degree 3, and the two vertices at the poles
are of degree 2n.

Theorem 3.13. There is a bijective map between the set of all linkoids in S2,
L(S2) and the set of all simple generalized Θ-graphs in S3, Θ(S3).

Proof. Let θ : L(S2) → Θ(S3) be defined as θ(L) = Θ(L), where L ∈ L(S2)
and Θ(L) ∈ Θ(S3) is the simple generalized spatial graph assigned to L as
described above.

To prove the statement, we show that the map θ is a bijection. For
this, we first show that θ is well-defined. That is, we show that if two linkoid
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Figure 12. A linkoid and the corresponding generalized Θ-
graph

Figure 13. Spatial graph moves involving vertices. Planar
isotopy of the knotoid (in bold) can be expressed with a
sequence of Reidemeister moves of the corresponding θ-graph
diagram (bold and non-bold edges)

diagrams are equivalent, then the assigned simple generalized Θ-graph dia-
grams are equivalent. By definition, Reidemeister moves of linkoid diagrams
take place away from the endpoints. We observe that each Reidemeister move
on a linkoid diagram L transforms to the corresponding Reidemeister move
on a diagram of Θ(L), if the move does not interact with any of the edges
connecting the vertices vi, wj to the vertices v±∞ in Θ(L). If the move in-
teracts with any of the edges connecting vi, wj to v±∞ in Θ(L), then the
Reidemeister move that takes place on the linkoid diagram transforms to a
combination of Reidemeister moves of the diagram of Θ(L).

Isotopy of S2 (R-0 moves) may displace endpoints of the linkoid diagram
and in this case it transforms to a combination of spatial graph Reidemeister
moves including R-IV and R-V-moves on the corresponding generalized θ-
graph diagram. See Fig. 13 for two of the related instances.

We show now that the map θ has an inverse so that there is a unique
linkoid assigned to each simple generalized Θ-graph. This would prove the
map θ is a bijection.

Let θ be a simple generalized Θ-graph. By Proposition 3.12, we can con-
sider θ standard so that the vertices vi, wi lie in a plane for all i ∈ {1, ..., 2n}.
For every pair of vertices vi and wi, there are two lines passing through the
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−→ {
, ,

}

Figure 14. Local replacements t(G, v) at a vertex v

vertices and are orthogonal to the plane, and these lines span a vertical plane.
Let Pi denote this plane, i ∈ {1, ..., n}.

On the other hand, each quadruplet of edges vi, v±∞ and wi, v±∞)
bound a disk for all i ∈ {1, ..., 2n} that can be deformed to a disk so that
there are only finitely many intersections with each edge connecting the ver-
tices vi to wi, and each disk that is bounded by vi, v±∞ and wi, v±∞ for some
i is a subset of the plane Pi spanned by vi and wi. Let Di denote such disk
spanned by vi, v±∞, wi, v±∞, i ∈ {1, ..., 2n}.

We pull pieces of strands of the edge viwi that intersect Pi − Di across
the vertices vi or wi so that viwi have intersections only with Di. Note here
that the edge viwi can also intersect Pj − Dj for some j �= i. We pull the
intersections of viwi with Pj − Dj across the vertices vj , wj .

Then the union of the edges viwi and the vertices {vi, wi} of the resulting
graph forms a linkoid diagram in the plane when the intersections with Di’s
are projected to the plane. In fact, the resulting linkoid diagram differs with
respect to the choice of the vertex (vi or wi) but considering the resulting
linkoid diagram in S2 provides the equivalence of the diagrams via isotopy
of S2. �

Theorem 3.13 can be generalized to multi-linkoids directly by consider-
ing generalized Θ-graphs with knot components.

4. A Colored Version of Kauffman’s T Invariant

In [21] an invariant T of spatial graphs in S3 was introduced as follows.

Definition 4.1. Let G be a spatial graph (a graph embedded in S3 or R3) and
let v be a vertex of G of degree d. We associate to (G, v) a set consisting of
d(d−1)

2 spatial graphs obtained by connecting two pairs of edges at this vertex
and leaving all other edges as free ends (leaves) as in Fig. 14. We call such
an operation a local replacement.

Let T (G) be the set of all local replacements made on all vertices of
G, where, in addition, we remove all non-closed curves. More precisely, let
t(G, v) denote the set of spatial graphs obtained by local replacements on the
vertex v (as in Fig. 14) and let c(G) be the set of closed circles of a (possibly
non-connected) spatial graph G. T is a map from the set of spatial graphs to
the set of links defined recursively as

T (G) =

{
∪g∈t(G,v)T (g), where v is a vertex of G,

{c(G)}, if G contains no vertices.
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Figure 15. Colored local replacements at a vertex

Figure 16. Colored local replacements at a vertex

Note that the invariant T is also known in literature as the unplugging
invariant [17].

Theorem 4.2 ([21]). Let G be a spatial graph. Then the collection T (G), taken
up to ambient isotopy, is a topological invariant of G.

We will extend T to an invariant of edge-colored graphs, Tcol, which we
will use as an invariant of generalized Θ-graphs.

Let (G,C) be an edge-colored spatial graph, i.e. a spatial graph G
equipped with a coloring function γ : E(G) → Γ for a set of colors Γ. We
define a colored local replacement as a local replacement of uncolored graphs,
where, in addition, we color the new arcs by a subset ω ⊆ Γ, such that ω
consists of all the colors of the edges in the preimage of the replacement as
in Fig. 15.

Now Tcol is defined exactly as T , except that the local replacement is
replaced by the colored version presented in Fig. 15.

Clearly, the value of Tcol(G) is a set of colored links with colors in
the power set P(C). Such sets can be distinguished using any colored link
invariant, for example, the multivariate Alexander polynomial [31,37] or the
colored Jones-type polynomial [2].

Theorem 4.3. Let (G, γ) be an edge-colored spatial graph, the collection of
colored links Tcol(G), taken up to ambient isotopy, is a topological invariant
of (G, γ).

Proof. It is easy to check that Reidemeister moves R-I – R-IV do not change
the isotopy types of elements in Tcol(G) and the move R-V permutes the
elements (compare Figs. 15 and 16). �

Example 5. Consider the Θ-curve Θ31 from [30], where we color two edges
with color 1 and one edge with color 2 as depicted in Fig. 17 (cf. bonded knots
independently introduced in [10] and [1]). We have three coloring choices of
colored graphs, which we name A, B, and C.

It holds Tcol(A) = Tcol(B) �= Tcol(C). One can check, using Reidemeister
moves, that A and B are ambient isotopic and C is neither ambient isotopic
to A nor B, thus Tcol is able to detect the two isotopy classes.
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Figure 17. Three 2-colorings of Θ31 and their values under
the function Tcol

Given a multi-linkoid L, we can construct different invariants, based
on Tcol, by modifying the coloring function on Θ(L). The invariants vary in
strength and function:

• An invariant of unordered unoriented multi-linkoids: choose c(viwi) = 0
for the edges of K and choose c(viv±∞) = c(wiv±∞) = 1 for the edges
adjacent to points v∞ and v−∞,

• An invariant of unordered unoriented multi-linkoids (stronger version):
choose c(viwi) = 0 for the edges of K and choose c(viv∞) = c(wiv∞) = 1
and c(viv−∞) = c(wiv−∞) = −1,

• An invariant of unordered oriented multi-linkoids: choose c(viwi) = 0
for the edges of K and choose c(viv±∞) = 1 and c(wiv±∞) = 2,

• An invariant of unordered oriented multi-linkoids (stronger version):
choose c(viwi) = 0 for the edges of K and choose c(viv∞) = 1, c(viv−∞) =
−1, c(wiv∞) = 2, c(wiv−∞) = −2,

• An invariant of ordered multi-linkoids: choose c(viwi) = i for the edges
of K and choose c(viv±∞) = (i, 1) and c(wiv±∞) = (i, 2),

• An invariant of ordered multi-linkoids (stronger version): choose c(viwi) =
i for the edges of K and choose c(viv∞) = (i, 1), c(wiv∞) = (i, 2),
c(wiv−∞) = (i,−1) and = c(wiv−∞) = (i,−2).
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