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Abstract
We show that if E is a closed convex set in C

n (n > 1) contained in a closed halfspace
H such that E ∩ bH is nonempty and bounded, then the concave domain � = C

n\E
contains images of proper holomorphic maps f : X → C

n from any Stein manifold X
of dimension< n, with approximation of a givenmap on closed compact subsets of X .
If in addition 2 dim X+1 ≤ n then f can be chosen an embedding, and if 2 dim X = n,
then it can be chosen an immersion. Under a stronger condition on E , we also obtain
the interpolation property for such maps on closed complex subvarieties.

Keywords Stein manifold · Holomorphic embedding · Oka manifold · Minimal
surface · Convexity

Mathematics Subject Classification 32H02 · 32Q56; 52A20 · 53A10

1 Introduction

Let X be aSteinmanifold.Denote byO(X , C
n) theFrechet space of holomorphicmaps

X → C
n endowed with the compact-open topology and write O(X , C) = O(X). A

theorem of Remmert [36], Narasimhan [35], and Bishop [7] states that almost proper
maps are residual in O(X , C

n) if dim X = n, proper maps are dense if dim X < n,
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proper immersions are dense if 2 dim X ≤ n, and proper embeddings are dense if
2 dim X < n. A proof is also given in the monograph [29] by Gunning and Rossi.

It is natural to ask how much space proper maps need. We pose the following
question.

Problem 1.1 For which domains � ⊂ C
n are proper holomorphic maps (immersions,

embeddings) X → C
n as above, with images contained in �, dense in O(X ,�)?

It is evident that� cannot be contained in a halfspace ofCn since every holomorphic
map from C to a halfspace lies in a complex hyperplane. In this paper, we give an
affirmative answer for concave domains of which complement E = C

n \ � satisfies
the following condition.

Definition 1.2 A closed convex set E in a finite dimensional affine space V has
bounded convex exhaustion hulls (BCEH) if for every compact convex set K in V

the set h(E, K ) = Conv(E ∪ K ) \ E is bounded. (1.1)

Here, Conv denotes the convex hull. The following is our first main result.

Theorem 1.3 Let E be an unbounded closed convex set in C
n (n > 1) with bounded

convex exhaustion hulls. Given a Stein manifold X with dim X < n, a compactO(X)-
convex set K in X, and a holomorphic map f0 : K → C

n with f0(bK ) ⊂ � = C
n\E,

we can approximate f0 uniformly on K by proper holomorphic maps f : X → C
n

satisfying f (X\K̊ ) ⊂ �. The map f can be chosen an embedding if 2 dim X < n and
an immersion if 2 dim X ≤ n.

In this paper, a map f : K → C
n from a compact set K is said to be holomorphic

if it is the restriction to K of a holomorphic map on an open neighbourhood of K .
In particular, if f0(K ) ⊂ �, then the theorem gives uniform approximation of f0

by proper holomorphic maps f : X → C
n with f (X) ⊂ �. If bE is of class C 1 and

strictly convex near infinity, we obtain an analogue of Theorem 1.3 with additional
interpolation on a closed complex subvariety X ′ of X such that f0 : X ′ → C

n is proper
holomorphic; see Theorem 4.2. Without the condition on the range, interpolation
of proper holomorphic embeddings X ↪→ C

n on a closed complex subvariety was
obtained by Acquistapace et al. [1] in 1975.

The analogue of the BCEH condition for unbounded closed sets in Stein mani-
folds, with the convex hull replaced by the holomorphically convex hull, is used in
holomorphic approximation theory of Arakelyan and Carleman type; see the survey
in [18].

It is evident that a closed convex set E ⊂ R
n has BCEH if and only if there is an

increasing sequence K1 ⊂ K2 ⊂ · · · of compact convex sets exhausting R
n such that

the set h(E, K j ) (see (1.1)) is bounded for every j = 1, 2, . . .. In particular, BCEH is
a condition at infinity which is invariant under perturbations supported on a compact
subset. For compact convex sets E ⊂ C

n , Theorem 1.3 was proved in [24]; in this
case BCEH trivially holds.

We show in Sect. 3 that a closed convex set E in R
n has BCEH if and only if E is

continuous in the sense of Gale and Klee [26]; see Proposition 3.3. If E has BCEH,
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then Conv(E ∪ K ) is closed for any compact convex set K ⊂ R
n (see [26, Theorem

1.5]). If such E is unbounded, which is the main case of interest, there are affine
coordinates (x, y) ∈ R

n−1 × R such that E = Eφ = {(x, y) ∈ R
n : y ≥ φ(x)}

is the epigraph of a convex function φ : R
n−1 → R+ = [0,+∞) growing at least

linearly near infinity (see Proposition 3.4). In particular, an unbounded closed convex
set E ⊂ C

n with BCEH is of the form

E = Eφ = {z = (z′, zn) ∈ C
n : �zn ≥ φ(z′,�zn)}, (1.2)

in some affine complex coordinates z = (z′, zn) on C
n , with φ as above. (Here, �

and � denote the real and the imaginary part.) For a convex function φ of class C 1,
we give a differential characterization of the BCEH condition on its epigraph Eφ ; see
Proposition 3.8. The BCEHproperty holds if the radial derivative of φ tends to infinity;
see Corollary 3.9. On the other hand, there are convex functions of linear growth
of which epigraphs have BCEH; see Example 3.10. By Proposition 3.11, a convex
function φ with at least linear growth at infinity can be approximated uniformly on
compacts by functions ψ ≤ φ of the same kind of which epigraphs Eψ have BCEH.
This allows us to extend Theorem 1.3 as follows; see Sect. 4 for the proof.

Corollary 1.4 The conclusion of Theorem 1.3 holds for any convex epigraph Eφ of the
form (1.2) such that φ ≥ 0 and the set {φ = 0} is nonempty and compact.

A closed convex set E ⊂ C
n with BCEH does not contain any affine real line

(see Proposition 3.4), and for n > 1, its complement � = C
n \ E is an Oka domain

according to Wold and the second named author; see [25, Theorem 1.8]. This fact
plays an important role in our proof of Theorem 1.3, given in Sect. 4. (The precise
result from Oka theory which we shall use is stated as Theorem 4.1.) Among closed
convex epigraphs (1.2), the class of setswithOka complement is strictly bigger than the
class of sets with BCEH. In particular, the former class contains many sets containing
boundary lines, which is impossible for a set with BCEH.

Problem 1.5 Is there a (not necessarily convex) set Eφ ⊂ C
n of the form (1.2) with

φ ≥ 0 of sublinear growth for which Theorem 1.3 holds? Is there a set of this kind in
C
2 such that C

2 \ Eφ contains the image of a proper holomorphic disc D = {z ∈ C :
|z| < 1} → C

2?

Theorem 1.3 is the first general result in the literature providing proper holomorphic
maps X → C

n from any Stein manifold of dimension < n whose images avoid large
convex sets in C

n close to a halfspace, and with approximation of a given map on a
compact holomorphically convex set in X . Without the approximation condition and
assuming that dim X ≤ n−2, there are proper holomorphic maps of X into a complex
hyperplane in C

n \ E .
On the other hand, there are many known results concerning proper holomorphic

maps in Euclidean spaces and in more general Stein manifolds whose images avoid
certain small closed subsets, such as compact or complete pluripolar ones, and results
in which the source manifold is the disc D = {z ∈ C : |z| < 1}. Proper holomorphic
discs in C

2 avoiding closed complete pluripolar sets of the form E = E ′ × C, with
E ′ ⊂ C, were constructed by Alexander [5] in 1977. The first named author showed
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in [13] that for every closed complete pluripolar set E in a Stein manifold Y with
dim Y > 1 and point p ∈ Y \ E , there is a proper holomorphic disc f : D → Y with
p ∈ f (D) ⊂ Y \ E . If Y = C

2, there also exist embedded holomorphic discs with this
property according to Borell et al. [8], and for dim Y ≥ 3, this holds by the general
position argument. Proper holomorphic discs in C

2 with images contained in certain
concave cones were constructed by Globevnik and the second named author [23] in
2001. They also constructed proper holomorphic discs in C

2 with images in (C\{0})2,
and hence, proper harmonic discs D → R

2, disproving a conjecture by Schoen and
Yau [37, p. 18]. (Another construction of such maps was given by Božin [9].) More
generally, it was shown by Alarcón and López [4, Corollary 1.1] in 2012 that every
open Riemann surface X admits a proper harmonic map to R

2 which is the projection
of a conformal minimal immersion X → R

3. The aforementioned result from [23]
was used by the first named author in [12] to classify closed convex sets in C

2 whose
complement is filled by images of holomorphic discs which are proper in C

2. More
recently, Forstnerič and Ritter [24] proved Theorem 1.3 in the case when E ⊂ C

n is a
compact polynomially convex set and 2 dim X ≤ n (for immersions) or 2 dim X < n
(for embeddings), and for proper holomorphic maps X → C

n when dim X < n and
E is a compact convex set. A further development in this direction is the analogue of
Theorem 1.3 when C

n is replaced by a Stein manifold Y with the density property
and E ⊂ Y is a compact O(Y )-convex set; see [22, Remark 4.5] and the references
therein. However, in all mentioned results except those in [12, 23], the avoided sets
are thin or compact.

Without insisting on approximation, the theorem of Remmert, Bishop, and
Narasimhan is not optimal with respect to the dimension of the target space. Indeed,
it was shown by Eliashberg and Gromov [17] in 1992, with an improvement for odd
dimensional Stein manifolds by Schürmann [38] in 1997 that a Stein manifold X of
dimensionm ≥ 2 embeds properly holomorphically inC

n with n = [ 3m
2

]+1, and for
m ≥ 1 it immerses properly holomorphically in C

n with n = [ 3m+1
2

]
. (See also [20,

Sect. 9.3].) However, the construction method in these papers, which relies on the Oka
principle for sections of certain stratified holomorphic fibre bundles, does not give the
density statement, and we do not know whether Theorem 1.3 holds for maps to these
lower dimensional spaces. It is also an open problem whether every open Riemann
surface embeds properly holomorphically in C

2; see [20, Secs. 9.10−9.11] and the
survey [21].

Theorem 1.3 is proved in Sect. 4. The proof relies on two main ingredients. One is
the result of Wold and the second named author [25, Theorem 1.8] which shows in
particular that the complement � = C

n\E of a closed convex set E having BCEH
is an Oka domain. The second main technique comes from the work of Dor [10, 11],
following earlier papers by Stensønes [39] and Hakim [30]. Dor constructed proper
holomorphic immersions and embeddings of any smoothly bounded, relatively com-
pact, strongly pseudoconvex domain D in a Stein manifold X into any pseudoconvex
domain � in C

n under the dimension conditions in Theorem 1.3. Previously, Hakim
[30] constructed proper holomorphic maps to balls in codimension one. The main
idea is to inductively lift the image of bD under a holomorphic map f : D̄ → �

to a given higher superlevel set of a strongly plurisubharmonic exhaustion function
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ρ : � → R+ in a controlled way, taking care not to decrease the value of ρ ◦ f
very much anywhere on D during the process. When D is a finite bordered Riemann
surface, this can be achieved by using approximate solutions of a Riemann-Hilbert
boundary value problem (see [14]). In higher dimensions, the proof is more subtle
and uses carefully controlled holomorphic peak functions on D̄ to push a given map
f : D̄ → � locally at a point z ∈ f (bD) in the direction of the zero set Sz of the
holomorphic (quadratic) Levi polynomial of the exhaustion function ρ : � → R.
At a noncritical point z ∈ � of ρ, Sz is a smooth local complex hypersurface and
the restricted function ρ|Sz increases quadratically as we move away from z. If ρ is
a strictly convex function, this can be achieved by pushing the image of f (bD) in
the direction of suitably chosen affine complex hyperplanes. Dor’s construction was
extended by the authors to maps from strongly pseudoconvex domains in Stein man-
ifolds to an arbitrary Stein manifold �, and also to q-convex complex manifolds for
suitable values of q ∈ N; see the papers [14, 15] from 2007 and 2010, respectively. In
those papers, we introduced the technique of glueing holomorphic sprays of manifold-
valued maps on a strongly pseudoconvex Cartan pair with control up to the boundary
(a nonlinear version of the Cousin-I problem) and a systematic approach for avoiding
critical points of a q-convex Morse exhaustion function on �.

Earlier constructions of this type, using simpler holomorphic peak functions and
higher codimension, were given in 1985 by Løw [34] and Forstnerič [19] who showed
that every relatively compact strongly pseudoconvex domain D in a Stein manifold
embeds properly holomorphically in a high dimensional Euclidean ball. A related
result with interpolation on a suitable subset of the boundary of D is due to Globevnik
[27]. This peak function technique was inspired by the construction of inner functions
on the ball of C

n by Løw [33] in 1982, based on the work of Hakim and Sibony [31].
We apply this technique to push the boundary f0(bD) ⊂ � = C

n\E of a holo-
morphic map f0 : D̄ → C

n in Theorem 1.3 out of a certain compact convex cap C
attached to E along a part of bC contained in bE and such that the set E1 = E ∪C is
convex and has bounded convex exhaustion hulls. At the same time, we ensure that the
new map g : D̄ → C

n still sends D\K to �. For a precise result, see Proposition 2.1.
In the next step, we use that �1 = C

n \ E1 is an Oka domain (see Corollary 3.6).
Since g(bD) ⊂ �1, we can apply the Oka principle (see Theorem 4.1) to approximate
g by a holomorphic map f1 : X → C

n with f1(X\D) ⊂ �1. Continuing inductively,
we obtain a sequence of holomorphic maps X → C

n converging to a proper map
satisfying Theorem 1.3. The details are given in Sect. 4.

The analogues of Theorem 1.3 and Corollary 1.4 also hold for minimal surfaces in
R
n .

Theorem 1.6 Let n ≥ 3, and let φ : R
n−1 → R+ be a convex function such that the

set {φ = 0} is nonempty and compact. Given an open Riemann surface X, a compact
O(X)-convex set K in X, and a conformal minimal immersion f0 : U → R

n from
a neighbourhood of K with f0(bK ) ⊂ � = {y < φ(x)}, we can approximate f0
uniformly on K by proper conformal minimal immersions f : X → R

n (embeddings
if n ≥ 5) satisfying f (X \ K̊ ) ⊂ �.
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If in addition φ is of class C 1, strictly convex at infinity, and the epigraph Eφ =
{y ≥ φ(x)} has BCEH then one can add to this statement the interpolation of the map
on discrete sets, in analogy to Theorem 4.2.

Theorem 1.6 is obtained by following the proof of Theorem 1.3, replacing Proposi-
tion 2.1 by the analogous result obtained by the Riemann–Hilbert deformation method
for conformal minimal surfaces (see [2] or [3, Chapter 6]). Furthermore, it has recently
been shown by the authors [16, Corollary 1.5] that the complement of a closed convex
set E ⊂ R

n (n ≥ 3) is flexible for minimal surfaces (an analogue of the Oka property
in complex geometry) if and only if E is not a halfspace or a slab; clearly this includes
all sets with BCEH.

Another method for constructing proper minimal surfaces, which yields the same
result in some examples not covered by Theorem 1.6, was developed by Alarcón
and López [4] in 2012. They showed that Theorem 1.6 holds for any wedge domain
� × R ⊂ R

3, where � ⊂ R
2 is an open cone with angle > π ; see [4, Theorem

5.6]. The complement of this set is convex, but it fails to satisfy the hypotheses of
Theorem 1.6 due to the presence of lines in the boundary. An important difference
between these two fields, which affects the possible constructionmethods, is that every
open Riemann surface admits a proper harmonic map to the planeR

2 (see [4, Theorem
I]), while only few such surfaces admit proper holomorphic maps to C.

The analogue of Problem 1.5 for minimal surfaces asks whether there is a domain
in R

3 of the form {x3 < φ(x1, x2)}, where φ : R
2 → R+ is a function with sublinear

growth, which contains minimal surfaces of hyperbolic type that are proper in R
3, or

just a proper hyperbolic end of a minimal surface. In particular, it would be interesting
to know whether the domain below the upper half of a vertical catenoid has this
property. On the other hand, the strong halfspace theorem of Hoffman andMeeks [32]
says that the only proper minimal surfaces in R

3 contained in a halfspace are planes.

2 Pushing a Strongly Pseudoconvex Boundary Out of a Strictly
Convex Cap

Let O be a convex domain in C
n for some n > 1. Recall that a continuous function

ρ : O → R is said to be strictly convex if for any pair of points a, b ∈ O , we have
that

ρ(ta + (1 − t)b) < tρ(a) + (1 − t)ρ(b) for all 0 < t < 1.

Assume now that ρt : O → R (t ∈ [0, 1]) is a continuous family of C 1 functions
satisfying the following conditions:

(a) For every t ∈ [0, 1] the function ρt is strictly convex. Note that dρt �= 0 on
Mt := {ρt = 0}.

(b) If 0 ≤ s < t ≤ 1, then ρt ≤ 0 on Ms .
(c) There is an open relatively compact subset ω0 of M0 such that for every pair of

numbers 0 ≤ s < t ≤ 1, we have that Mt ∩ M0 = Mt ∩ Ms = M0 \ ω0.
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This means that the hypersurfaces Mt coincide on the subset M0 \ ω0, and as
t ∈ [0, 1] increases the domains ωt = Mt \ M0 ⊂ Mt are pairwise disjoint and move
into the convex direction. Each compact set of the form:

Ct =
⋃

s∈[0,t]
ωs for t ∈ [0, 1], (2.1)

is called a strictly convex cap with the base ω0. Note that bCt = ω0 ∪ωt , Ct is strictly
convex along ωt , strictly concave along ω0, and it has corners along ω0 ∩ ωt . As
t ∈ [0, 1] increases to 1, the caps Ct monotonically increase to C1 and they share the
same base ω0. Likewise, for any 0 ≤ s < t ≤ 1, the setCs,t = ⋃

u∈[s,t] ωu is a strictly
convex cap with the base ωs . The sets

Et = {z ∈ O : ρt (z) ≤ 0} for t ∈ [0, 1], (2.2)

are strictly convex along bEt = {ρt = 0}, they form a continuously increasing family
in t , and

Et = E0 ∪ Ct for every t ∈ [0, 1].

Under these assumptions, we have the following result.

Proposition 2.1 Let D be a smoothly bounded, relatively compact, strongly pseudo-
convex domain in a Stein manifold X with dim X < n. Let the sets Et ⊂ O ⊂ C

n

(t ∈ [0, 1]) be given by (2.2), and let f0 : D̄ → O be a map of classA (D̄) such that
f0(bD) ∩ E0 = ∅. Given a compact set K ⊂ D such that f0(D\K ) ∩ E0 = ∅ and
a number ε > 0, there is a map f : D̄ → O of class A (D̄) satisfying the following
conditions:

(i) f (bD) ∩ E1 = ∅,
(ii) f (D\K ) ∩ E0 = ∅, and
(iii) maxx∈K | f (x) − f0(x)| < ε.

Recall that amap f : D̄ → O is said to be of classA (D̄) if it is continuous on D̄ and
holomorphic on D. In our application of Proposition 2.1 in the proof of Theorem 1.3,
the set O will be a ball (or the entire Euclidean space) and the hypersurfaces Mt =
{ρt = 0} = bEt will be convex graphs over the coordinate hyperplaneC

n−1×R ⊂ C
n .

In the proof of Proposition 2.1 we shall need the following lemma.

Lemma 2.2 Assume that O is a convex open subset of C
n for n > 1, L is a compact

subset of O, and ρ : O → R is a C 1 smooth strictly convex function. Then there
is a number δ > 0 with the following property. If D is a smoothly bounded strongly
pseudoconvex domain in a Stein manifold X of dimension dim X = m < n, K is a
compact subset of D, and f : D̄ → O is a map of class A (D̄) such that

ρ( f (z)) > −δ for all z ∈ bD and ρ( f (z)) > 0 if z ∈ bD and f (z) /∈ L, (2.3)

then given η > 0, there is a map g : D̄ → O of class A (D̄) satisfying the following
conditions:
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(i) ρ(g(z)) > 0 for z ∈ bD,
(ii) ρ(g(z)) > δ for those z ∈ bD for which g(z) ∈ L,
(iii) ρ(g(z)) > ρ( f (z)) − η for z ∈ D\K, and
(iv) | f (z) − g(z)| < η for z ∈ K.

For m = 1, i.e. when D is a finite bordered Riemann surface, this is a simplified
version of [14, Lemmas 6.2 and 6.3], which is proved by using approximate solutions
of a Riemann–Hilbert boundary value problem. This method was employed in several
earlier papers mentioned in [14]. When ρ is strictly convex, C 1 smoothness suffices
since in the proof we may take a continuous family of tangential linear discs to the
sublevel set of ρ.

Form ≥ 2, Lemma 2.2 is a simplified and slightly modified version of [15, Lemma
5.3]. Besides the fact that we are considering single maps D̄ → O instead of sprays
of maps, the only difference is that the assumption in [15, Lemma 5.3] that the set
{ρ = 0} is compact is replaced by the assumption (2.3) saying that ρ( f (z)) for z ∈ bD
may be negative only if f (z) lies in the compact set L ⊂ O . This hypothesis ensures
that the lifting for a relatively big amount (the role of the constant δ) only needs to
be made on a compact subset of O , while elsewhere it suffices to pay attention not to
decrease ρ ◦ f by more than a given amount and to approximate sufficiently closely
on K (the role of the constant η). The proof requires only a minor adaptation of [15,
proof of Lemma 5.3], using its local version [15, Lemma 5.2] in a finite induction with
respect to a covering of bD by small open sets onwhich there are good systems of local
holomorphic peak functions. In fact, Lemma 2.2 corresponds to a simplified version
of [15, Sublemma 5.4], which explains how to lift the image of bD with respect to
ρ for a sufficiently large amount at those points in bD which the map f sends to a
certain coordinate chart Ui in the target manifold. In our situation, the role of Ui is
played by an open relatively compact neighbourhood of the set L ∩{ρ = 0} in O , and
there is no need to use the rest of the proof of [15, Lemma 5.3].

Proof of Proposition 2.1 For t ∈ [0, 1], let δt > 0 be a number for which the conclusion
of Lemma 2.2 holds for the function ρt and the compact set L = C1 (see (2.1)). The
open sets

Ut = {z ∈ O : −δt < ρt (z) < δt } for t ∈ [0, 1],

formanopen coveringofC1, so there exists afinite subcovering {Ut j } for 0 ≤ t1 < t2 <

. . . < tk ≤ 1. Applying Lemma 2.2, we inductively find maps f1, . . . , fk ∈ A (D̄)

such that for every j = 1, . . . , k, we have that

(a) f j (bD) ∩ Et j = ∅ (where Et is given by (2.2)),
(b) f j (D\K ) ∩ E0 = ∅, and
(c) | f j − f j−1| < ε/k on K .

Note that conditions (a) and (b) hold for f0 and (c) is void. Assume inductively that for
some j ∈ {1, . . . , k}wehavemaps f0, . . . , f j−1 satisfying these conditions. Applying
Lemma 2.2 with f = f j−1 and taking f j = g, condition (a) follows from part (i) in
Lemma 2.2, (b) follows from (ii) provided that the number η > 0 in Lemma 2.2 is
chosen small enough, and (c) follows from (iii) in Lemma 2.2 provided that η ≤ ε/k.
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This gives the map f j satisfying conditions (a)–(c) and the induction may continue.
The map f = fk then satisfies the proposition. ��
Remark 2.3 Proposition 2.1 also holds, with the same proof, if ρt (t ∈ [0, 1]) are
stronglyplurisubharmonic functions of classC 2 satisfyingdρt �= 0onMt = {ρt = 0}.
Indeed, the results from [15], which are used in the proof, pertain to this case. In the
present paper we shall only use the convex case under C 1 smoothness, which comes
naturally in the construction.

3 Closed Convex Sets with BCEH

In the context of convex analysis, closed unbounded convex sets that share several
important properties with compact convex sets were studied by Gale and Klee [26]
in 1959. They introduced the class of continuous sets, and we show that this class
coincides with the class of sets having BCEH, introduced in Definition 1.2; see Propo-
sition 3.3. We then develop further properties of these sets which are relevant to the
proof of our main theorems.

By a ray in R
n , we shall mean a closed affine halfline. Let E be a closed convex

subset of R
n . A boundary ray of E is a ray contained in the boundary of E . An

asymptote of E is a ray L ⊂ R
n \ E such that dist(L, E) = inf{|x − y| : x ∈ L, y ∈

E} = 0. The function

σ : {u ∈ R
n : |u| = 1} → R ∪ {+∞}, σ (u) = sup{x · u : x ∈ E},

is called the support function of E . (Here, x · u denotes the Euclidean inner product.)
A closed convex set E is said to be continuous in the sense of Gale and Klee [26] if the
support function of E is continuous. Note that every compact convex set is continuous.

The following result is a part of [26, Theorem 1.3] due to Gale and Klee; we only
list those conditions that will be used. The last item (iv) uses also [26, Theorem 1.5].

Theorem 3.1 For a closed convex subset E in R
n the following conditions are equiv-

alent:

(i) E is continuous.
(ii) E has no boundary ray nor asymptote.
(iii) For each point p ∈ R

n the convex hull Conv(E ∪ {p}) is closed.
(iv) For every compact convex set K ⊂ R

n the set Conv(E ∪ K ) is closed.

Condition (iii) implies that the closed convex hull Conv(E ∪ {p}) is the union of
the line segments connecting p to the points in E . It also shows that an unbounded
continuous closed convex subset E of R

n is not contained in any affine hyperplane.
Let us record the following observation which will be used in the sequel.

Lemma 3.2 Let E ⊂ R
n be a closed convex set, p ∈ R

n \ E, and L ⊂ R
n be an affine

subspace containing p. Then, Conv(E ∪ {p}) ∩ L = Conv((E ∩ L) ∪ {p}).
Proof Set E ′ = E ∩ L . It is obvious that Conv(E ′ ∪ {p}) ⊂ Conv(E ∪ {p}) ∩ L .
Conversely, since E is convex, every point q ∈ Conv(E ∪ {p}) belongs to a line
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segment from p to a point q ′ ∈ E . If in addition q ∈ L and q �= p then q ′ ∈ E ′, and
hence q ∈ Conv(E ′ ∪ {p}). ��
Proposition 3.3 A closed convex set E ⊂ R

n has BCEH if and only if it is continuous
in the sense of Gale and Klee [26].

Proof Since all closed bounded convex sets have BCEH and are continuous, it suffices
to consider the case when the set E is unbounded.

If E is not continuous then by Theorem 3.1 it has a boundary ray or an asymptote.
Denote it by L , and let � be the affine line containing L . Pick any affine 2-plane H ⊂ R

n

containing � such that H �⊂ E and a point p ∈ H\(� ∪ E). By considering rays from
p to points q ∈ E approaching L and going to infinity (if L is a boundary ray, we can
choose points q ∈ L), we see that the closure of the set h(E, p) = Conv(E ∪{p})\ E
contains the parallel translate L ′ ⊂ H of L passing through p, so h(E, p) is unbounded
and hence E does not have BCEH.

Assume now that E is continuous and let us prove that it has BCEH. We need to
show that for any closed ball B ⊂ R

n the set h(E, B) = Conv(E ∪ B)\ E is bounded.
Assume to the contrary that there is a sequence xm ∈ h(E, B) with |xm | → ∞ as
m → ∞. Since the sets E and B are convex, we have that

xm = tmbm + (1 − tm)em for tm ∈ [0, 1], bm ∈ B, em ∈ E, and m ∈ N.

Note that (1 − tm)|em | → ∞ as m → ∞. By compactness of the respective sets we
may assume, passing to a subsequence, that em �= 0 for all m and the sequences tm ,
bm , and 1

|em |em are convergent. Denote their respective limits by t , b, and f . We have
that

xm = tmbm + (1 − tm)em = bm + (1 − tm)|em |
(

em
|em | − bm

|em |
)

= bm + (1 − tm)|em | fm ,

where fm = ( em|em | − bm|em |
)
. Note that limm→∞ fm = f . Pick a number α ≥ 0 and set

p = b+α f . Ifm is large enough then (1− tm)|em | > α, so the point ym = bm +α fm
lies on the line segment connecting bm and xm . Since xm ∈ Conv(E ∪ {bm}), it
follows that ym ∈ Conv(E ∪ {bm}). Note that the sequence ym converges to p. Since
E is continuous, Conv(E ∪ {b}) is closed by Theorem 3.1, so p = limm→∞ ym ∈
Conv(E ∪ {b}). Since this holds for every α ≥ 0, the ray L = {b + α f : α ∈
[0,∞)} lies in Conv(E ∪ {b}). By Lemma 3.2 there is α0 ∈ [0,∞) such that the
ray L ′ = {b + α f : α ≥ α0} lies in E . Since E is continuous, L is not a boundary
ray of E by Theorem 3.1, thus L contains a point q = b + α1 f ∈ E \ bE for
some α1 ≥ α0. Choose a neighbourhood Uq ⊂ E of q. For any large enough m we
then have pm := bm + α1 fm ∈ Uq . Let Lm = {bm + α fm : α ≥ 0}. Note that
Lm ∩ Conv(E ∪ {bm}) = Conv((Lm ∩ E) ∪ {bm}) by Lemma 3.2. However, for m
large enough the point xm ∈ Lm lies on the opposite side of pm than bm , so xm belongs
to Lm ∩Conv(E ∪{bm}) but not to Conv((Lm ∩ E)∪{bm}). This contradiction proves
that E has BCEH. ��
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Given a function φ : R
n−1 → R, the epigraph of φ is the set

E = Eφ = {(x, y) ∈ R
n−1 × R : y ≥ φ(x)}. (3.1)

Note that a function is convex if and only if its epigraph is convex.

Proposition 3.4 If E � R
n is a closed unbounded convex set with BCEH then

(i) E does not contain any affine real line, and
(ii) for every affine line � intersecting E in a ray and any hyperplane H transverse

to �, E is the epigraph of a convex function on H. In particular, there are affine
coordinates (x, y) on R

n in which E is of the form (3.1) for a convex function
φ : R

n−1 → R+ satisfying

lim inf|x |→+∞
φ(x)

|x | > 0. (3.2)

The condition (3.2) says that φ grows at least linearly at infinity. We show in
Example 3.10 that there are convex epigraphs Eφ having BCEH such that the function
φ has linear growth.

Proof (i) Assume that � ⊂ E is an affine line and let us prove that E does not have
BCEH. Since E is a proper subset ofR

n , there is a parallel translate �′ of �which
is not contained in E , and hence �′ \ E contains a ray L . Let p be the endpoint
of L , and let p′ ∈ L be an arbitrary other point. Since E ∩ L = ∅, there is a
ball B around p′ such that Conv(B ∪ {p}) ∩ E = ∅. Clearly, there is a point
q ∈ B such that the ray Lq with the endpoint p and containing q intersects the
line �, so the line segment from p to q belongs to Conv(E ∪{p})\E = h(E, p).
By moving p′ ∈ L to infinity we see that h(E, p) is unbounded, so E does not
have BCEH.

(ii) Since E is unbounded, it contains a ray L . Denote by � the affine line containing
L . Let �′ be any parallel translate of �. Since E contains no affine lines by part
(i), there is a point p ∈ �′ \ E . The closed convex hull of the union of L and
p contains the parallel translate L ′ ⊂ �′ of L passing through p. Since E has
BCEH, we conclude that L ′ ⊂ Conv(E ∪ {p}) and L ′ \ E is bounded. Since
E ∩ L ′ is convex, L ′ ∩ E is a closed ray with the endpoint on bE . This shows
that E is a union of closed rays contained in parallel translates of the line �,
so it is an epigraph of a convex function defined on any hyperplane H ⊂ R

n

transverse to �. Choosing H such that H ∩ E = ∅ there are affine coordinates
(x, y) on R

n with H = {y = 0} and � = {x = 0}. In these coordinates, E is of
the form (3.1) for a positive convex function φ. Finally, if condition (3.2) fails
then there is a sequence (xk, yk) ∈ E with |xk | → +∞ and yk/|xk | → 0 as
k → ∞. The union of the line segments Lk connecting p = (0,−1) ∈ R

n−1×R

to (xk, yk), intersected with the lower halfspace y ≤ 0, is then an unbounded
subset of h(E, p) = Conv(E ∪ {p}) \ E , contradicting the assumption that E
has BCEH. ��
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Remark 3.5 The growth condition (3.2) for an epigraph can always be achieved in
suitable linear coordinates (even without the BCEH property) if there is a supporting
hyperplane H ⊂ R

n for E such that the set E∩H is nonempty and compact. Indeed,we
may then choose coordinates (x, y) on R

n such that H = {y = 0}, E ⊂ {y ≥ 0}, and
0 ∈ E . If the condition (3.2) fails, there is a sequence (xk, yk) ∈ E with |xk | → +∞
and yk/|xk | → 0 as k → ∞. After passing to a subsequence, a ray in E ∩ H lies in
the closure of the union of the line segments Lk ⊂ E connecting the origin to (xk, yk),
contradicting the assumption that the latter set is compact.

Corollary 3.6 If E is a closed convex set in C
n (n > 1) having BCEH then C

n \ E is
Oka.

Proof By Proposition 3.4 the set E does not contain any affine real line, and hence
C
n \ E is Oka by [25, Theorem 1.8]. ��
The following lemma shows that the BCEH condition is stable under uniform

approximation.

Lemma 3.7 Assume that φ : R
n−1 → R is a convex function whose epigraph Eφ

(3.1) has BCEH. Then for any ε > 0 and convex function ψ : R
n−1 → R satisfying

|φ − ψ | < ε the epigraph Eψ also has BCEH.

Proof If Eψ fails to have BCEH then by Theorem 3.1 and Proposition 3.3 it has
a boundary ray or an asymptote, L . Since dist(L, Eψ) = 0 and Eψ is convex,
dist(x, Eψ) converges to zero as x ∈ L goes to infinity. Thus, by making L shorter
if necessary, we have that L ⊂ Eφ−2ε\Eφ+2ε . Hence, L lies out of Eφ+2ε but the
vertical translation of L for 4ε pushes it in Eφ+2ε . Since Eφ+2ε , being a translate of
Eφ , has BCEH, this contradicts Proposition 3.4 (ii). The contradiction shows that Eψ

has BCEH as claimed. ��
We now give a differential characterization of the BCEH property of an epigraph

(3.1).

Proposition 3.8 If φ : R
n−1 → R is a convex function of classC 1 satisfying condition

(3.2), then the epigraph E = {(x, y) ∈ R
n : y ≥ φ(x)} has BCEH if and only if

lim|x |→∞ |x |
(
1 − φ(x)

x · ∇φ(x)

)
= +∞. (3.3)

Proof We first consider the case n = 2. Then, x is a single variable and (3.3) is
equivalent to

lim
x→+∞

(
x − φ(x)

φ′(x)

)
= +∞ and lim

x→−∞

(
x − φ(x)

φ′(x)

)
= −∞. (3.4)

For every x ∈ R such that φ′(x) �= 0 the number

ξ(x) = x − φ(x)

φ′(x)
, (3.5)
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is the first coordinate of the intersection of the tangent line to the graph of φ at the
point (x, φ(x)) with the first coordinate axis y = 0. By (3.2) and convexity of φ we
have that |φ′(x)| is bounded away from zero for all sufficiently big |x |. This shows
that conditions (3.4) are invariant under translations, so we may assume that φ ≥ 0
and φ(0) = 0. It is easily seen that the function ξ is increasing. If φ is of class C 2, we
have that ξ ′(x) = φ(x)φ′′(x)/φ′(x)2 ≥ 0.

Assume now that conditions (3.4) hold. Pick a pair of sequences a j < b j in R with
lim j→∞ a j = −∞ and lim j→∞ b j = +∞. The intervals I j = [ξ(a j ), ξ(b j )] then
increase to R as j → ∞. We identify I j with I j × {0} ⊂ R

2. Since φ is convex, its
epigraph lies above the tangent line at any point. It follows that the set h(E, I j ) (see
(1.1)) is the bounded region in R × R+ whose boundary consists of I j , the two line
segments L j and L ′

j connecting the endpoints (ξ(a j ), 0) and (ξ(b j ), 0) of I j to the
respective points A j = (a j , φ(a j )) and Bj = (b j , φ(b j )) on bE , and the graph of φ

over [a j , b j ]. The supporting lines of L j and L ′
j intersect at a point C j in the lower

halfspace y < 0, and we obtain a closed triangle � j with the endpoints A j , Bj , and
C j . Note that � j ∩ (R × {0}) = I j . Since φ grows at least linearly (see (3.2)), the
triangles � j ⊂ R

2 exhaust R
2 as j → ∞, and the set h(E,� j ) (1.1) is bounded for

every j . Hence, E has BCEH. This argument furthermore shows that for any point
p = (0,−c) /∈ E there is a unique pair of tangent lines to bE passing through p such
that, denoting by q1, q2 ∈ bE the respective points where these lines intersect bE , the
convex hull Conv(E ∪ {p}) is the union of E and the triangle with vertices p, q1, q2.

Conversely, if (3.3) fails then it is easily seen that E has a boundary ray or an
asymptote, so it does not have BCEH. We leave the details to the reader.

The case with n ≥ 3 now follows easily. Pick a unit vector v ∈ R
n−1, |v| = 1,

and let Lv denote the 2-plane in R
n passing through the origin and spanned by v and

en = (0, . . . , 0, 1). Then, Ev := E ∩ Lv = {(t, y) ∈ R
2 : y ≥ φ(tv)} and the first

condition in (3.4) reads

lim
t→+∞

⎛

⎝t − φ(tv)
∑n−1

j=1 v j
∂φ
∂x j

(tv)

⎞

⎠ = +∞. (3.6)

Writing x = tv with t ≥ 0 and v = x/|x |, this is clearly equivalent to (3.3). As
before, let p = (0, . . . , 0,−c) /∈ E . If (3.3) holds then Conv(Ev ∪ {p}) ⊂ Lv is
obtained by adding to Ev the triangle in Lv obtained by the two tangent lines to bEv

passing through p as described in the case n = 2. The sizes of these triangles are
uniformly bounded with respect to the direction vector |v| = 1, and condition (3.2)
implies that these triangles increase to Lv as c → +∞, uniformly with respect to v.
Since

⋃
|v|=1 Lv = R

n , Lemma 3.2 shows that

Conv(E ∪ {p}) =
⋃

|v|=1

Conv(Ev ∪ {p}),

and hence E has BCEH. The converse is seen as in the special case n = 2. ��
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Corollary 3.9 If φ : R
n−1 → R+ is a convex function of class C 1 such that

lim|x |→+∞
x · ∇φ(x)

|x | = +∞,

then the epigraph E = {(x, y) ∈ R
n : y ≥ φ(x)} has BCEH.

Proof By restricting to planes as in the above proof, it suffices to consider the case
n = 2. We may assume that φ ≥ 0 and φ(0) = 0. Since φ is convex, g(x) = φ′(x) is
an increasing function and the above condition reads limx→±∞ g(x) = ±∞. For any
x0 > 0 and x ≥ x0 we have that

ξ(x) := x − 1

g(x)

∫ x

0
g(t)dt =

∫ x

0

(
1 − g(t)

g(x)

)
dt ≥

∫ x0

0

(
1 − g(t)

g(x)

)
dt .

Letting x → +∞ we have that g(t)
g(x) → 0 uniformly on t ∈ [0, x0], and hence the

last integral converges to x0. Letting x0 → ∞ we see that limx→+∞ ξ(x) = +∞.
The analogous argument applies when x → −∞. Hence, conditions (3.3) hold and
therefore E has BCEH. ��
Example 3.10 There exist convex epigraphs (3.1) having BCEH where the function φ

grows linearly, although it cannot be too close to linear near infinity in the absence
of boundary rays and asymptotes. We give such an example in R

2. Let g : R →
(−1, 1) be an odd, continuous, increasing function with limx→+∞ g(x) = 1 and∫ ∞
0 (1 − g(x))dx = +∞. (An explicit example is g(x) = 2

π
Arctan x .) Its integral

φ(x) = ∫ x
0 g(t)dt for x ∈ R then clearly satisfiesφ(x) ≥ 0,φ′(x) = g(x) ∈ (−1,+1)

(hence φ grows linearly), and φ is convex. We now show that (3.3) holds. Let x > 0
be large enough so that g(x) > 0. We have that

ξ(x) = x − 1

g(x)

∫ x

0
g(t)dt =

∫ x

0

(
1 − g(t)

g(x)

)
dt .

Fix x0 > 0 and let x ≥ x0. Then, ξ(x) ≥ ∫ x0
0 (1 − g(t)/g(x))dt . Since

limx→+∞ g(x) = 1 and ξ is increasing for large enough |x |, it follows that
limx→+∞ ξ(x) ≥ ∫ x0

0 (1 − g(t))dt . Sending x0 → +∞ gives limx→+∞ ξ(x) ≥∫ ∞
0 (1 − g(t))dt = +∞. Similarly we see that limx→−∞ ξ(x) = −∞. Thus, (3.3)
holds, and hence the epigraph of φ has BCEH.

By using the idea in the above example we now prove the following approximation
result, which extends Theorem 1.3 to a much bigger class of convex epigraphs (see
Corollary 1.4).

Proposition 3.11 Assume that φ : R
n−1 → R+ is a convex function such that the

set {φ = 0} is nonempty and compact. Given numbers ε > 0 (small) and R > 0
(big) there is a smooth convex function ψ : R

n−1 → R such that ψ < φ on R
n−1,

φ(x) − ψ(x) < ε for all |x | ≤ R, and the epigraph Eψ = {y ≥ ψ} has BCEH.
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Proof By Remark 3.5 the function φ grows at least linearly near infinity (see (3.2)).
Set

A = lim inf|x |→∞
φ(x)

|x | > 0. (3.7)

Since the set φ = 0 does not contain any affine line, Azagra’s result [6, Theorem 1 and
Proposition 1] implies that for every ε > 0 there is a smooth strictly convex function
ψ on R

n−1 satisfying φ − ε < ψ < φ. Replacing φ by ψ − minx ψ(x) ≥ 0 we may
therefore assume that φ is smooth. By increasing the number R > 0 if necessary, we
may assume that

φ(x)

|x | ≥ A

2
for all |x | ≥ R. (3.8)

Pick a number r ∈ (0, 1) close to 1 such that

(1 − r) sup
|x |≤R

φ(x) < ε. (3.9)

Choose a smooth increasing function h : R → R+ such that

h(t) = 0 for t ≤ R, lim
t→+∞ h(t) = 1, and

∫ ∞

0
(1 − h(t))dt = +∞.

(We can take a smoothing of the Arctan function used in Example 3.10.) Set

H(x) =
∫ |x |

0
h(s)ds for x ∈ R

n−1.

Clearly, H ≥ 0 is a radially symmetric smooth convex function that vanishes on
|x | ≤ R and satisfies H(x) ≤ |x | for all x ∈ R

n−1. With A and r as in (3.7) and (3.9)
we set

δ = A(1 − r)

2
.

We claim that the function

ψ(x) = rφ(x) + δH(x) for x ∈ R
n−1,

satisfies the conditions in the theorem. Clearly, ψ ≥ rφ is a smooth convex function.
For |x | ≤ R we have H(x) = 0, so ψ(x) = rφ(x) ≤ φ(x) and φ(x) − ψ(x) =
(1 − r)φ(x) < ε by (3.9). If |x | > R then φ(x)/|x | ≥ A/2 by (3.8) and H(x) < |x |,
which implies

ψ(x)

|x | ≤ r
φ(x)

|x | + δ ≤ φ(x)

|x | .

Indeed, we have that φ(x)
|x | − r φ(x)

|x | = (1 − r)φ(x)
|x | ≥ A(1−r)

2 = δ. Hence, ψ ≤ φ on

R
n−1.
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It remains to show that the epigraph Eψ satisfiesBCEH.We shall verify (3.3), which
is equivalent to (3.6) with uniform convergence with respect to the vector v = x/|x |.
Write

gv(t) = r
∂φ(tv)

∂t
, k(t) = δh(t), g̃v(t) = ∂ψ(tv)

∂t
= gv(t) + k(t).

The quantity in (3.6) associated to the function ψ is given by

ξv(t) = t − ψ(tv)

g̃v(t)
=

∫ t

0

(
1 − gv(s) + k(s)

gv(t) + k(t)

)
ds

=
∫ t

0

gv(t) − gv(s)

gv(t) + k(t)
ds +

∫ t

0

k(t) − k(s)

gv(t) + k(t)
ds

≥
∫ t

0

gv(t) − gv(s)

gv(t) + δ
ds +

∫ t

0

k(t) − k(s)

gv(t) + δ
ds,

where the last inequality holds since the functions gv and k are nonnegative and
increasing and k < δ. Pick c > 0. We will show that for large enough t > 0 and
any unit vector v ∈ R

n−1 the above expression is bigger than or equal to c. Choose
positive numbers t0, a, t1 as follows:

t0 = 3c, a = max{3 max|v|=1
gv(t0), 3δ},

∫ t1

0
(k(t1) − k(s))ds > ac.

Such t1 exists since limt→+∞
∫ t
0 (k(t) − k(s))ds = δ

∫ ∞
0 (1 − h(s))ds = +∞. Since

the integrands in the bound for ξv(t) are nonnegative, we have for t ≥ max{t0, t1} and
|v| = 1 that

ξv(t) ≥
∫ t0

0

gv(t) − gv(s)

gv(t) + δ
ds +

∫ t1

0

k(t) − k(s)

gv(t) + δ
ds. (3.10)

Assume that for some such (t, v) we have that gv(t)+ δ ≥ a. Since a ≥ 3δ, it follows
that gv(t) ≥ 2δ and hence

gv(t)

gv(t) + δ
≥ 2

3
.

Furthermore, from a ≥ 3max|v|=1 gv(t0) we get for 0 ≤ s ≤ t0 that

gv(s)

gv(t) + δ
≤ gv(t0)

a
≤ 1

3
.

These two inequalities imply that the first integral in (3.10) is bounded below by
t0/3 ≥ c. If on the other hand gv(t) + δ < a then the denominator of the second
integral in (3.10) is at most a, so the integral is ≥ c by the choice of t1. This shows
that ξv(t) ≥ c for all |v| = 1 and t ≥ max{t0, t1}. Since c was arbitrary, condition
(3.3) holds and hence Eψ has BCEH. ��
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The following observation will be used in the proof of Theorem 1.3.

Proposition 3.12 Denote by B the open unit ball in R
n. Let Eφ ⊂ R

n be a closed
convex set of the form (3.1) with C 1 boundary having BCEH, where the function
φ : R

n−1 → R is bounded from below and strictly convex near infinity. Then there is
an r0 > 0 such that for every r ≥ r0 the convex hull Conv(Eφ ∪ rB) = {y ≥ ψ(x)}
is a closed convex set with BCEH, and ψ : R

n−1 → R is a convex function of class
C 1 such that ψ ≤ φ and these functions agree near infinity. Furthermore, if r ≥ r0 is
large enough then the function φt : R

n−1 → R defined by

φt (x) = (1 − t)φ(x) + tψ(x), x ∈ R
n−1, (3.11)

is strictly convex for every t ∈ (0, 1), and for any 0 < t0 < t1 < 1 the closure of the
set

{(x, y) ∈ R
n : φt1(x) < y < φt0(x)},

is a strictly convex cap with the base in the strictly convex hypersurface {y = φt0(x)}.
Proof Consider the function on R

n−1 given by

φ̃r (x) =
{
min{φ(x),−√

r2 − |x |2}, |x | < r ,
φ(x), |x | ≥ r .

(Note that φ̃r may be discontinuous at the points of the sphere |x | = r .) The convex
hull of its epigraph Eφ̃r

equals Conv(E∪rB), which is closed by Theorem 3.1 (iv), and

the set h(E, rB) = Conv(E ∪ rB)\E is bounded since E has BCEH. By smoothing
φ̃r we get a function ψ̃r of class C 1 which agrees with φ near infinity such that
Conv(Eψ̃r

) = Conv(E ∪ rB). By [28, Theorem 3.2] we conclude that Conv(E ∪ rB)

has C 1 boundary, so it is the epigraph Eψr of a convex function ψr : R
n−1 → R of

class C 1 which agrees with φ near infinity.
Since φ grows at least linearly, there is a function τ(r) defined for r ∈ R+ large

enough such thatψr (x) = −√
r2 − |x |2 for |x | ≤ τ(r) and τ(r) → +∞ as r → +∞.

By choosing r large enough, the compact set of points where the function φ fails to
be strictly convex is contained in the ball |x | < τ(r). Since on this ball we have that
ψr (x) = −√

r2 − |x |2 which is strictly convex, the convex combinations φt in (3.11)
of φ and ψ = ψr are strictly convex on R

n−1 for all 0 < t < 1. For such r , the
last statement in the proposition is evident. (Note that the strictly convex functions
ρt (x, y) = exp(ψt (x) − y) − 1 for t ∈ (0, 1) correspond to those used in Sect. 2.) ��

4 Proof of Theorem 1.3

For the definition and the main theorem on Oka manifolds, see [20, Definition 5.4.1
and Theorem 5.4.4]. We shall use the following version of the Oka principle; see [22,
Theorem 1.3].
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Theorem 4.1 Assume that X is a Stein manifold, K is a compact O(X)-convex set in
X, X ′ is a closed complex subvariety of X,� is an Oka domain in a complex manifold
Y , f : X → Y is a continuous map which is holomorphic on a neighbourhood of
K , f |X ′ : X ′ → Y is holomorphic, and f (X\K̊ ) ⊂ �. Then there is a homotopy
{ ft }t∈[0,1] of continuous maps ft : X → Y connecting f = f0 to a holomorphic
map f1 : X → Y such that for every t ∈ [0, 1] the map ft is holomorphic on a
neighbourhood of K , it agrees with f on X ′, it approximates f uniformly on K and
uniformly in t ∈ [0, 1] as closely as desired, and ft (X\K̊ ) ⊂ �.

Proof of Theorem 1.3 By Proposition 3.4 there are complex coordinates z = (z′, zn)
on C

n such that the given set E is an epigraph of the form (1.2). We shall write
z = (x, y) where x = (z′,�zn) ∈ C

n−1 × R ∼= R
2n−1 and y = �zn ∈ R, so

E = Eφ = {y ≥ φ(x)} where φ ≥ 0 is a convex function as in Proposition 3.4.
Let the set K ⊂ X and the map f0 : K → C

n be as in the theorem; in particular,
f0(bK ) ⊂ C

n \ E . Thus, there are an open neighbourhood U ⊂ X of K and ε > 0
such that f0 is holomorphic inU and f0(U\K̊ ) ⊂ C

n\Eφ−ε . By Azagra [6, Theorem
1.8] there is a a real analytic strictly convex function φ0 : R

2n−1 → R such that
φ − ε < φ0 < φ. Its epigraph E0 = {(x, y) ∈ C

n : y ≥ φ0(x)} is a closed
strictly convex set with real analytic boundary which has BCEH by Lemma 3.7, and
f0(U\K̊ ) ⊂ C

n\E0.
Let B denote the open unit ball in C

n centred at 0. Recall the notation h(E, K ) in
(1.1). Pick a number r0 > 0. We can find an increasing sequence rk > 0 diverging to
infinity such that

h(E0, rkB) ⊂ rk+1B for k = 0, 1, 2, . . . . (4.1)

Indeed, since E0 has BCEH, the set h(E0, rkB) is bounded for each k, and hence (4.1)
holds if the number rk+1 is chosen large enough. Set

Ek+1 = Conv(E0 ∪ rkB) = E0 ∪ h(E0, rkB) for k = 0, 1, 2, . . . .

We clearly have that E0 ⊂ E1 ⊂ · · · ⊂ ⋃∞
k=0 Ek = C

n . Furthermore, (4.1) shows
that for j = 0, 1, . . . , k + 1 we have that E0 ⊂ E j ⊂ E0 ∪ rk+1B and hence

Ek+2 = Conv(E j ∪ rk+1B) for j = 0, 1, . . . , k + 1. (4.2)

Proposition 3.12 shows that for each k = 1, 2, . . . we have Ek = {y ≥ φk(x)} where
φk a convex function of classC 1 which agrees with φ0 near infinity, and Ek has BCEH.
Hence,

�k = C
n \ Ek = {(x, y) ∈ C

n : y < φk(x)},

is an Oka domain for every k = 0, 1, . . . by Corollary 3.6. In view of Ek+2 =
Conv(Ek ∪ rk+1B) (see (4.2)), Proposition 3.12 also shows that if rk+1 is chosen large
enough then the function

ψt = (1 − t)φk + tφk+2 : C
n−1 × R → R, (4.3)
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is strictly convex for every t ∈ (0, 1), and for each 0 < t0 < t1 < 1 the closure of the
set

C = {(x, y) : ψt1 < y < ψt0}, (4.4)

is a strictly convex cap as described in Sect. 2. (Note that the strictly convex functions
ρt (x, y) = exp(ψt (x) − y) − 1 for t ∈ (0, 1) correspond to those used in Sect. 2.)

Choose an exhaustion D0 ⊂ D1 ⊂ · · · ⊂ ⋃∞
k=0 Dk = X by smoothly bounded,

relatively compact, strongly pseudoconvex domains withO(X)-convex closures such
that K ⊂ D0 ⊂ D̄0 ⊂ U . For consistency of notation we set D−1 = K . We now
construct a sequence of holomorphic maps fk : D̄k → C

n satisfying the following
conditions for k = 0, 1, 2, . . .:

(a) fk(Dk\Dk−1) ⊂ �k = C
n\Ek ,

(b) fk+1(Dk\Dk−1) ⊂ �k , and
(c) fk+1 approximates fk uniformly on D̄k−1 as closely as desired.

For k = 0 the initial map f0 in Theorem 1.3 satisfies condition (a) while conditions (b)
and (c) are void. Assuming inductively that we foundmaps f0, . . . , fk satisfying these
conditions, the construction of the next map fk+1 is made in two steps as follows.

By compactness of the set fk(bDk) ⊂ �k = {y < φk(x)}we can choose t0 ∈ (0, 1)
small enough such that f (bDk) ⊂ {y < ψt0(x)}, where the function ψt (t ∈ [0, 1])
is given by (4.3). By (4.1) we can also choose t1 ∈ (t0, 1) sufficiently close to 1 such
that

Ek+1 ⊂ {(x, y) : y ≥ ψt1(x)}.

Proposition 2.1 applied to the map fk : D̄k → C
n , the set Ek , and the strictly convex

cap C (4.4) (which corresponds to C1 in Proposition 2.1) gives holomorphic map
gk : D̄k → C

n approximating fk on Dk−1 and satisfying

gk(bDk) ⊂ {(x, y) : y < ψt1(x)} ⊂ C
n \ Ek+1 = �k+1 and gk(Dk \ Dk−1) ⊂ �k .

(4.5)
In the second step, we use that �k+1 is an Oka domain. Since �k+1 is contractible

and gk(bDk) ⊂ �k+1 by (4.5), gk extends from D̄k to a continuous map X → C
n

sending X \ Dk to �k+1. Theorem 4.1 applied to gk gives a holomorphic map fk+1 :
D̄k+1 → C

n approximating gk on D̄k and satisfying fk+1(Dk+1\Dk) ⊂ �k+1 (which
is condition (a) for k + 1) and fk+1(Dk \ Dk−1) ⊂ �k (condition (b)). Since fk+1
approximates gk on D̄k and gk approximates fk on D̄k−1, fk+1 also satisfies condition
(c). This completes the induction step.

If the approximations are close enough then the sequence fk converges uniformly
on compacts in X to a holomorphic f : X → C

n . Conditions (a)–(c) and the fact
that the sets Ek exhaust C

n imply that f is a proper holomorphic map satisfying
f (X \ K̊ ) ⊂ �0 = C

n \ E0. To construct proper holomorphic immersions and
embeddings in suitable dimensions given in the theorem, we use the general position
argument at every step to ensure that every map fk in the sequence is an immersion or
an embedding. (See e.g. [20, Corollary 8.9.3].) If the convergence is fast enough then
the same holds for the limit map f by a standard argument. ��
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Proof of Corollary 1.4 Given aholomorphicmap f0 : K → C
n with f0(bK ) ⊂ C

n\Eφ

as in Theorem 1.3, Proposition 3.11 furnishes a closed convex set Eψ ⊃ Eφ with
BCEH such that f0(bK ) ⊂ C

n\Eψ . Applying Theorem 1.3 with Eψ gives the desired
conclusion. ��

We have the following analogue of Theorem 1.3 with interpolation on a closed
complex subvariety of X . Unlike in the above corollary, approximation of E from the
outside by convex sets enjoying BCEH cannot be used since the subvariety f (X ′)may
have zero distance to bE . This results extends the case of [24, Theorem 15] when E
is a compact convex set.

Theorem 4.2 Let E be a closed convex set in C
n (n > 1) with C 1 boundary which is

strictly convex near infinity and has bounded convex exhaustion hulls. Let X be a Stein
manifold, K ⊂ X be a compactO(X)-convex set,U ⊂ X be an open set containing K ,
X ′ be a closed complex subvariety of X, and f0 : U ∪X ′ → C

n be a holomorphic map
such that f0|X ′ : X ′ → C

n is proper holomorphic and f0(bK ∪ (X ′\K )) ∩ E = ∅.
Given ε > 0 there exists a proper holomorphic map f : X → C

n satisfying the
following conditions:

(a) f (X \ K̊ ) ⊂ C
n \ E, (b) ‖ f − f0‖K < ε, (c) f |X ′ = f0|X ′ .

If 2 dim X ≤ n then f can be chosen an immersion (andan embedding if2 dim X+1 ≤
n) provided that f0|X ′ is one.

Proof This is proved by a small modification of the proof of Theorem 1.3, similar to
the one in [24, proof of Theorem 15]. The initial step in the proof, approximating E
from the outside by a strictly convex set, is unnecessary since bE is strictly convex
near infinity. The main (and essentially the only) change comes in the choice of the
exhaustion Dk of the Stein manifold X . In the inductive step when constructing the
map fk+1, we must assume in addition that fk(bDk ∩ X ′) ⊂ �k+1 = C

n \ Ek+1.
Then, we push the image of bDk out of Ek+1 by the same method as before, using
Proposition 2.1 but ensuring that the modifications are kept fixed on X ′ and small
near bDk ∩ X ′. This is possible since the method from [15] is applied locally near
bDk (away from bDk ∩ X ′), and these local modifications are glued together by
preserving the value of the map on X ′. We refer to [24, proof of Theorem 15] for
a more precise description. This gives the next holomorphic map fk+1 : X → C

n

satisfying fk+1(X \ Dk) ⊂ �k+1, fk+1|X ′ = fk |X ′ , and conditions (b) and (c) in
the proof of Theorem 1.3. We then choose the next domain Dk+1 ⊂ X big enough
such that fk+1(bDk+1 ∩ X ′) ⊂ �k+2 = C

n\Ek+2. This is possible since the map
fk+1|X ′ = f0|X ′ : X ′ → C

n is proper, f0(X ′\K̊ ) ⊂ � = C
n\E , and the domain

�k+2 agrees with � near infinity by the construction. Clearly the induction step is
now complete. Assuming that the approximations are close enough, the sequence fk
converges to a limit holomorphic map f : X → C

n satisfying the stated conditions.
��
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19. Forstnerič, F.: Embedding strictly pseudoconvex domains into balls. Trans. Am. Math. Soc. 295(1),
347–368 (1986)
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