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Abstract
Let 𝐺 be a finite group acting on a connected open Rie-
mann surface 𝑋 by holomorphic automorphisms and
acting on a Euclidean space ℝ𝑛 (𝑛 ⩾ 3) by orthogonal
transformations. We identify a necessary and sufficient
condition for the existence of a 𝐺-equivariant con-
formal minimal immersion 𝐹 ∶ 𝑋 → ℝ𝑛. We show in
particular that such a map 𝐹 always exists if 𝐺 acts
without fixed points on 𝑋. Furthermore, every finite
group 𝐺 arises in this way for some open Riemann
surface and 𝑛 = 2|𝐺|. We obtain an analogous result
for minimal surfaces having complete ends with finite
total Gaussian curvature, and for discrete groups act-
ing on 𝑋 properly discontinuously and acting on ℝ𝑛 by
rigid transformations.
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1 INTRODUCTION

Objects with symmetries are of special interest in anymathematical theory. In this paper, we study
the existence of immersed orientable minimal surfaces in Euclidean spaces ℝ𝑛 with a given finite
or countable group of symmetries induced by rigid transformations of ℝ𝑛.
An immersed minimal surface in ℝ𝑛 for 𝑛 ⩾ 3 is the image of a conformal harmonic immer-

sion 𝐹 ∶ 𝑋 → ℝ𝑛 from an open conformal surface 𝑋, which can be taken to be a Riemann
surface if it is orientable; see [5, 47]. We shall call such 𝐹 a conformal minimal immersion.
Euclidean isometries of ℝ𝑛 form an affine group generated by the orthogonal group 𝑂(𝑛, ℝ) and
the additive group (ℝ𝑛, +) acting by translations. By also adding dilations, we obtain the group of
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rigid transformations. Post-composition by a rigid transformation of ℝ𝑛 maps minimal surfaces
to minimal surfaces, and rigid transformations are the largest class of self-maps of ℝ𝑛 with this
property. Hence, it is of interest to find minimal surfaces which are invariant under a given group
of rigid transformations. Symmetries of specific minimal surfaces were studied by many authors,
but we are interested in general existence results.
Let 𝑋 be a connected open Riemann surface and 𝐺 be a finite subgroup of the group Aut(𝑋) of

holomorphic automorphisms of 𝑋. The stabiliser 𝐺𝑥 = {g ∈ 𝐺 ∶ g𝑥 = 𝑥} of any point 𝑥 ∈ 𝑋 is a
cyclic subgroup of 𝐺, which is trivial for points in the complement of a closed discrete subset of𝑋
(see [45, Corollary 3.5, p. 93]). Assume that 𝐺 also acts on ℝ𝑛 by orthogonal transformations. The
following result and Remark 1.2 provide a necessary and sufficient condition for the existence of
a 𝐺-equivariant conformal minimal immersion 𝑋 → ℝ𝑛.

Theorem 1.1. Let 𝐺 be a finite group acting effectively on a connected open Riemann surface 𝑋 by
holomorphic automorphisms, and acting on ℝ𝑛 (𝑛 ⩾ 3) by orthogonal transformations. If for every
non-trivial stabiliser𝐺𝑥 (𝑥 ∈ 𝑋) there is a 2-planeΛ𝑥 ⊂ ℝ𝑛 on which𝐺𝑥 acts effectively by rotations,
then there exists a conformal minimal immersion 𝐹 ∶ 𝑋 → ℝ𝑛 such that

𝐹(g𝑥) = g𝐹(𝑥) holds for all 𝑥 ∈ 𝑋 and g ∈ 𝐺, (1.1)

and the image 𝐹(𝑋) is not contained in any affine hyperplane of ℝ𝑛.

A map 𝐹 ∶ 𝑋 → ℝ𝑛 is said to be 𝐺-equivariant if condition (1.1) holds, and non-degenerate if
𝐹(𝑋) is not contained in any affine hyperplane of ℝ𝑛. Note that the image 𝑆 = 𝐹(𝑋) ⊂ ℝ𝑛 of a
𝐺-equivariant map is 𝐺-invariant, that is, g𝑆 = 𝑆 for all g ∈ 𝐺. Since the fixed-point-set of a non-
trivial linear map onℝ𝑛 is a proper linear subspace ofℝ𝑛, non-degeneracy of 𝐹 implies that every
g ∈ 𝐺 which acts effectively on ℝ𝑛 also acts effectively on 𝐹(𝑋) ⊂ ℝ𝑛. Thus, if 𝐻 is the normal
subgroup of𝐺 consisting of all elements g ∈ 𝐺 which act trivially onℝ𝑛, then𝐺∕𝐻 is a symmetry
group of the minimal surface 𝐹(𝑋) in Theorem 1.1. Any additional symmetries can be eliminated
by using a general position argument in the proof of the theorem.
Our proof of Theorem 1.1 gives several additions concerning approximation, interpolation and

the control of the flux; see Theorem 5.1 and compare with the results in the non-equivariant case
[5, Theorems 3.6.1 and 3.6.2]. In particular, the map 𝐹 in Theorem 1.1 can be chosen to be the real
part of a 𝐺-equivariant null holomorphic immersion 𝑋 → ℂ𝑛; see Theorem 5.3.
In Section 6, we construct 𝐺-equivariant minimal surfaces with complete ends of finite total

curvature on given finitely many orbits of 𝐺 on the Riemann surface 𝑋; see Theorem 6.3 and
Corollary 6.5. However, we do not knowwhether all ends can bemade complete and of finite total
curvature; see Problem 6.2. In particular, the construction of complete 𝐺-equivariant minimal
surfaces of finite total curvature remains an open problem.
Finally, in Section 7, we show that the analogue of Theorem 1.1 also holds if 𝐺 is an infi-

nite discrete group acting on ℝ𝑛 by rigid transformations, and acting on a Riemann surface 𝑋
properly discontinuously by holomorphic automorphisms such that the quotient surface 𝑋∕𝐺 is
non-compact; see Theorem 7.1. This case is only relevant if 𝑋 has genus at most one, since every
Riemann surface of genus ⩾ 2 has at most finitely many automorphisms by a theorem of Hurwitz
[34] (see also [45, Theorem 3.9]).
Minimal surfaces with symmetries appeared in the very origin of the theory; indeed, most clas-

sical examples have symmetries (the catenoid, the helicoid, Scherk’s surfaces, Riemann’sminimal
examples, Schwarz’s surfaces, etc.). All mentioned examples have infinite groups of symmetries
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and are parameterised by plane domains. See also the discussion inExample 1.8. Finding examples
with given groups of symmetries fromRiemann surfaces of genus⩾ 1 is amore difficult task due to
the problemof controlling the periods of theirWeierstrass data, and only a few examples have been
described explicitly. In this paper, we give general existence results for suchminimal surfaces. The
techniques developed in the paper also seem promising for constructing minimal surfaces with
given symmetries and satisfying various additional conditions such as being complete or proper;
see Problems 1.12 and 1.13.

Remark 1.2. The conditions on stabilisers in Theorem 1.1 are necessary. Indeed, let 𝑥 ∈ 𝑋 be a
point with a non-trivial stabiliser 𝐺𝑥 of order 𝑘 > 1. There is a local holomorphic coordinate 𝑧 on
a neighbourhood 𝑈 ⊂ 𝑋 of 𝑥, with 𝑧(𝑥) = 0, in which a generator g of the cyclic group 𝐺𝑥 is the
rotation g𝑧 = e𝚤𝜙𝑧 through the angle𝜙 = 2𝜋∕𝑘 (see [45, Corollary 3.5, p. 93]). Assume𝐹 ∶ 𝑋 → ℝ𝑛

is a 𝐺-equivariant conformal immersion, not necessarily harmonic. Differentiating the identity
(1.1) and taking into account that g acts linearly on ℝ𝑛 gives

𝑑𝐹𝑥◦𝑑g𝑥 = g◦𝑑𝐹𝑥 ∶ 𝑇𝑥𝑋 → Λ𝑥 ∶= 𝑑𝐹𝑥(𝑇𝑥𝑋) ⊂ ℝ𝑛.

Since 𝑑𝐹𝑥 ∶ 𝑇𝑥𝑋 → Λ𝑥 is a conformal linear isomorphism, we infer that Λ𝑥 is a 𝐺𝑥-invariant 2-
plane inℝ𝑛 onwhich g acts as the rotation𝑅𝜙 through the angle𝜙, so the conditions inTheorem 1.1
hold. Conversely, these conditions imply that the local conformal linear embedding𝑈 → Λ is 𝐺𝑥

equivariant. These conditions are superfluous for minimal surfaces with branch points.

Remark 1.3. In Theorem 1.1 and its corollaries presented below, the Riemann surface𝑋 is assumed
to be connected. However, these results generalise to the case when for every connected com-
ponent 𝑋′ of 𝑋 the stabiliser group 𝐺𝑋′ = {g ∈ 𝐺 ∶ g𝑋′ = 𝑋′} acts effectively on 𝑋′. This is
equivalent to asking that the stabiliser 𝐺𝑥 of a generic point 𝑥 ∈ 𝑋 is trivial.
The first immediate reduction is to the case when 𝐺 acts transitively on the set of connected

components of 𝑋. (See the argument preceding [38, Theorem 4.1] by Kutzschebauch et al.)
Assuming this to be the case, fix a component𝑋′ of𝑋. Since𝐺𝑥 ⊂ 𝐺𝑋′ holds for every 𝑥 ∈ 𝑋′, The-
orem 1.1 provides a𝐺𝑋′ -equivariant conformalminimal immersion𝐹′ ∶ 𝑋′ → ℝ𝑛. If𝑋′′ is another
component of 𝑋 and ℎ ∈ 𝐺 is such that ℎ(𝑋′′) = 𝑋′, we define 𝐹 on 𝑋′′ by 𝐹(𝑥) = ℎ−1𝐹′(ℎ𝑥)

for 𝑥 ∈ 𝑋′′. It is immediate that the resulting map 𝐹 ∶ 𝑋 → ℝ𝑛 is a 𝐺-equivariant conformal
minimal immersion.
If on the other hand the stabiliser 𝐺𝑋′ of some component 𝑋′ of 𝑋 does not act effectively on

𝑋′, then the conditions in Theorem 1.1 must be adjusted. We shall not consider this case.

Theorem 1.1 is a special case of Theorem 5.1, which also involves approximation and interpola-
tion of a given 𝐺-equivariant minimal immersion on a suitable 𝐺-invariant subset of 𝑋 by global
𝐺-equivariant conformal minimal immersions. The proof relies on two main ingredients. The
classical Enneper–Weierstrass representation of minimal surfaces in ℝ𝑛 reduces the problem to
constructing holomorphic maps (the so-called Weierstrass data) from the given Riemann surface
𝑋 into the punctured null quadric𝐀∗ in ℂ𝑛 (see (2.1)) having suitable integrals (periods) on a sys-
tem of curves in 𝑋 whose union contains a basis of the homology group𝐻1(𝑋, ℤ) and some other
arcswhich are used to guarantee the interpolation conditions. In our case, theWeierstrass data are
𝐺-equivariant holomorphic maps from 𝑋 to the projective compactification of the null quadric,
and we formulate a Weierstrass representation theorem for 𝐺-equivariant minimal surfaces; see
Theorem 2.4. Themain point is to approximate suchmaps on certain𝐺-invariant Runge subsets of
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𝑋 by global 𝐺-equivariant holomorphic maps having suitable periods. We combine the approach
developed in [2] (see also [5, Theorem 3.6.1]) with [38, Theorem 4.1] due to Kutzschebauch et al.,
which shows how to reduce Oka-theoretic problems for certain𝐺-equivariant holomorphic maps
to the non-equivariant case for sections of an associated holomorphic map having ramification
points; see Section 3. Ultimately, the main complex-analytic tool that we use is an Oka-theoretic
result for sections of ramified holomorphic maps (see [17, Theorem 2.1] and [18, Theorem 6.14.6]),
combined with the techniques from [2] and [5, Chapter 3] which enable us to control periods of
maps 𝑋 → 𝐀∗. The main step is Lemma 4.5, and Theorem 1.1 is then proved in Section 5. The
same method applies if 𝐺 is an infinite discrete group acting on 𝑋 properly discontinuously; see
Theorem 7.1.
In the remainder of this introduction, we give several corollaries to Theorem 1.1 and we place

our results in the context of what is known. The following corollary is immediate.

Corollary 1.4. If𝐺 is a finite group acting freely (without fixed points) on an open Riemann surface
𝑋 by holomorphic automorphisms, then for every action of𝐺 by orthogonalmaps onℝ𝑛 (𝑛 ⩾ 3) there
exists a non-degenerate𝐺-equivariant conformalminimal immersion𝑋 → ℝ𝑛, which can be chosen
to be the real part of a 𝐺-equivariant null holomorphic immersion 𝑋 → ℂ𝑛.

If𝐺 is a finite group acting on a connected Riemann surface𝑋 by holomorphic automorphisms,
then the union 𝑋0 of fixed point sets of elements of 𝐺 is a closed discrete subset of 𝑋 (see (2.3)),
which is finite if 𝑋 has finite genus but may be infinite otherwise; see Section 2. Removing from
𝑋 any closed 𝐺-invariant subset 𝑋′ containing 𝑋0, the group 𝐺 acts freely on the open Riemann
surface 𝑋 ⧵ 𝑋′, and hence Corollary 1.4 applies to the pair (𝑋 ⧵ 𝑋′, 𝐺).

Corollary 1.5. For every connected open Riemann surface 𝑋 and finite subgroup 𝐺 ⊂ Aut(𝑋) of
order 𝑛 ⩾ 2, there are an effective action of 𝐺 by orthogonal transformations on ℝ2𝑛 and a non-
degenerate 𝐺-equivariant conformal minimal immersion 𝑋 → ℝ2𝑛.

Proof. I wish to thank Urban Jezernik for the following argument. Consider the regular repre-
sentation of 𝐺 on the complex Euclidean space ℂ𝑛 with the basis vectors 𝑒g for g ∈ 𝐺, where
an element ℎ ∈ 𝐺 acts by ℎ𝑒g = 𝑒ℎg . For a fixed g ∈ 𝐺 of order 𝑘 > 1, let Σg denote the 𝑘-
dimensionalℂ-linear subspace ofℂ𝑛 spanned by the vectors 𝑒g𝑗 (𝑗 = 0, 1, … , 𝑘 − 1) corresponding
to the elements of the cyclic group ⟨g⟩. Clearly, Σg is g-invariant and the eigenvalues of the ℂ-
linear isomorphism g ∶ Σg → Σg are precisely all the 𝑘-th roots of 1. In particular, there is a vector
0 ≠ 𝑤 ∈ Σg with g𝑤 = e𝚤2𝜋∕𝑘𝑤. Identifying ℂ𝑛 withℝ2𝑛, the 2-planeΛg ⊂ ℝ2𝑛 determined by the
complex line ℂ𝑤 is g-invariant and g acts on it as a rotation through the angle 2𝜋∕𝑘. Since every
stabiliser 𝐺𝑥 in Theorem 1.1 is a cyclic subgroup of 𝐺, the conditions of Theorem 1.1 hold for this
representation of 𝐺. □

Given a smooth surface 𝑋, an immersion 𝐹 ∶ 𝑋 → ℝ𝑛 induces on 𝑋 a unique structure of a
conformal surface such that 𝐹 is a conformal immersion (see [5, section 1.10]). This conformal
structure is clearly invariant under post-composition of 𝐹 by rigid motions of ℝ𝑛. In particular, if
𝐹 is an embedding and the image surface 𝑋 = 𝐹(𝑋) ⊂ ℝ𝑛 is 𝐺-invariant for a finite subgroup 𝐺
of 𝑂(𝑛, ℝ) (that is, g𝑋 = 𝑋 holds for all g ∈ 𝐺), there is a unique action of 𝐺 on 𝑋 by conformal
automorphisms such that 𝐹 is a 𝐺-equivariant conformal embedding. If in addition the surface
𝑋 is oriented and every g ∈ 𝐺 preserves the orientation on 𝑋, then 𝐺 acts on 𝑋 by holomorphic
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automorphisms. If this action is effective, Remark 1.2 shows that the conditions on stabilisers
hold, so Theorem 1.1 implies the following corollary.

Corollary 1.6. Assume that 𝐺 is a finite subgroup of the orthogonal group 𝑂(𝑛, ℝ) for some 𝑛 ⩾ 3

and 𝑋 ⊂ ℝ𝑛 is a smoothly embedded, connected, oriented, non-compact, 𝐺-invariant surface such
that every g ∈ 𝐺 preserves the orientation on𝑋, and g induces the identity map on𝑋 only if g = 1 ∈

𝐺. Then, 𝑋 endowed with the complex structure induced by the embedding 𝑋 ↪ ℝ𝑛 and with the
induced action of 𝐺 on 𝑋 by holomorphic automorphisms admits a non-degenerate 𝐺-equivariant
conformal minimal immersion 𝐹 ∶ 𝑋 → ℝ𝑛.

Remark 1.7. In the context of Corollary 1.6, it is natural to ask whether there is a regular homotopy
of 𝐺-equivariant (conformal) immersions 𝐹𝑡 ∶ 𝑋 → ℝ𝑛 (𝑡 ∈ [0, 1]) connecting the initial embed-
ding 𝐹0 ∶ 𝑋 ↪ ℝ𝑛 to a conformal minimal immersion 𝐹1 ∶ 𝑋 → ℝ𝑛. An inspection of our proof
of Theorem 1.1 shows that there is a homotopy of𝐺-equivariant maps 𝑓𝑡 ∶ 𝑋 → 𝑌 (𝑡 ∈ [0, 1]) into
the projective closure𝑌 (2.8) of the null quadric such that 𝑓0 = 2𝜕𝐹0∕𝜃 (see (2.6) for the definition
of the holomorphic 1-form 𝜃 on𝑋), the map 𝑓1 is holomorphic and 𝑓1 = 2𝜕𝐹1∕𝜃. However, we do
not knowwhether themaps 𝑓𝑡 for 0 < 𝑡 < 1 can be chosen such that they integrate to immersions
𝐹𝑡 ∶ 𝑋 → ℝ𝑛 with 2𝜕𝐹𝑡 = 𝑓𝑡𝜃.

Example 1.8 (Equivariant minimal surfaces of genus zero). Let 𝑆 be the unit sphere in ℝ3. The
induced Riemann surface structure on 𝑆 is that of the Riemann sphereℂ ∪ {∞} = ℂℙ1, the unique
complex structure on 𝑆 up to biholomorphisms. The special orthogonal group 𝑆𝑂(3, ℝ) acts on 𝑆
by orientation preserving isometries, hence by holomorphic automorphisms, and it forms a real
3-dimensional subgroup of the holomorphic automorphism group

Aut(𝑆) =
{
𝑧 ↦

𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
∶ 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ, 𝑎𝑑 − 𝑏𝑐 = 1

}
.

Finite subgroups of 𝑆𝑂(3, ℝ) are called spherical von Dyck groups. Besides the cyclic and the dihe-
dral groups, there are the symmetry groups of Platonic solids, the so-called crystallographic groups:
The alternating group𝐴4 of order 12 is the group of symmetries of the tetrahedron, the symmetric
group 𝑆4 of order 24 is the group of symmetries of the cube and the octahedron and the alternating
group𝐴5 of order 60 is the group of symmetries of the icosahedron and the dodecahedron. Corol-
lary 1.6 shows that every spherical von Dyck group of order 𝑚 > 1 is a group of symmetries of a
minimal surface in ℝ3 parameterised by a complement of𝑚 points in ℂℙ1. However, this case is
already known. After the initial work of Goursat [24], it was shown by Xu [54], using explicit func-
tions in the Enneper–Weierstrass representation, that any closed subgroup 𝐺 of 𝑆𝑂(3, ℝ), which
is not isomorphic to 𝑆𝑂(2, ℝ) or 𝑆𝑂(3, ℝ), is the symmetry group of a complete immersed mini-
mal surface in ℝ3 of genus zero with finite total curvature and embedded ends. In the genus zero
case, the only period vanishing conditions are those coming from the ends, which amount to van-
ishing of the residues of the Weierstrass data at such points. Examples of (families of) minimal
surfaces in ℝ3 with groups of 𝑆𝑂(3, ℝ) symmetries were given by Jorge and Meeks [36], Rossman
[50], Small [52] and others. Choi, Meeks and White proved in [13] that if 𝑋 is a minimal surface
in ℝ3 with a catenoidal end, then every intrinsic local isometry of 𝑋 extends to a rigid motion of
ℝ3. As a corollary due to Xu [54, Corollary 2.2], one sees that if such 𝑋 has finite total curvature
and embedded ends, at least one of which is catenoidal, then the symmetry group of 𝑋 is a closed
subgroup of 𝑆𝑂(3).
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It is natural to ask which finite groups arise in the context of Theorem 1.1 for Riemann surfaces
of genus 𝔤 ⩾ 1. The study of finite groups 𝐺 acting effectively on a connected Riemann surface
𝑋 by holomorphic automorphisms is based on the observation that the orbit space 𝑋∕𝐺 has the
structure of a Riemann surface such that the quotient projection 𝜋 ∶ 𝑋 → 𝑋∕𝐺 is holomorphic, it
is ramified precisely at the points 𝑥 ∈ 𝑋 with non-trivial stabiliser group 𝐺𝑥, and the ramification
index at such a point equals 𝑘𝑥 = |𝐺𝑥|, the order of the stabiliser. Furthermore, stabilisers of points
in the 𝐺-orbit of 𝑥 are conjugate cyclic subgroups of 𝐺, so there are |𝐺|∕𝑘𝑥 of them (see [45,
Proposition 3.3, p. 77]). By the uniformization theorem for Riemann surfaces, we have that 𝑋 =

𝕌∕𝐾 where 𝕌 is either the Riemann sphere ℂℙ1 = ℂ ∪ {∞}, the complex number field ℂ or the
upper halfplane

ℍ = {𝑧 = 𝑥 + 𝚤𝑦 ∈ ℂ ∶ 𝑦 > 0}, (1.2)

and 𝐾 is a subgroup of Aut(𝕌) acting properly discontinuously and without fixed points. If 𝕌 =

ℂℙ1 then 𝐾 is the trivial group, and if 𝕌 = ℂ then 𝐾, if non-trivial, is a free cyclic group of rank
one or two generated by one or two translations. The case 𝕌 = ℍ is more complicated and will
be discussed in Example 1.9. Any subgroup 𝐺 ⊂ Aut(𝑋) is then isomorphic to a quotient group
Γ∕𝐾, where Γ is a subgroup of Aut(𝕌) containing 𝐾 as a normal subgroup. By analysing these
conditions, the Riemann–Hurwitz formula provides limitations on the number and type of finite
or discrete groups acting on a given compact Riemann surface 𝑋; see [45, Chapter III]. These
results also apply to open Riemann surfaces of finite genus. Indeed, by [42], every open Riemann
surface 𝑋 of finite genus embeds in a compact Riemann surface 𝑋∗ of the same genus such that
every holomorphic automorphism of𝑋 extends to a holomorphic automorphism of𝑋∗. Applying
this technique,Miranda [45, pp. 80–82] discusses finite subgroups ofAut(𝑋) for compact Riemann
surfaces. In the simplest case when 𝑋 = ℂℙ1, the quotient projection 𝜋 ∶ ℂℙ1 → ℂℙ1 has either
two or three ramification points. The case of two ramification points corresponds to cyclic groups
of rotations onℂ. In the case of three ramification points and consideringℂℙ1 as the round sphere
in ℝ3, we have the dihedral group and the crystallographic groups 𝐴4, 𝑆4 and 𝐴5 mentioned in
Example 1.8.

Example 1.9 (Equivariant minimal surfaces of genus ⩾ 2). The projective special linear group
𝑃𝑆𝐿(2, ℝ) = 𝑆𝐿(2, ℝ)∕{±𝐼} of degree two over the real numbers can be realised as the group of
orientation preserving isometries of the hyperbolic plane. The Poincaré halfplane model is given
by the upper halfplane ℍ (1.2), endowed with the metric 𝑑𝑥2+𝑑𝑦2

𝑦2
of constant negative curvature,

on which 𝑃𝑆𝐿(2, ℝ) acts by holomorphic automorphisms

ℍ ∋ 𝑧 ↦
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
for 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ, 𝑎𝑑 − 𝑏𝑐 = 1. (1.3)

This action realises 𝑃𝑆𝐿(2, ℝ) as the holomorphic automorphism groupAut(ℍ). (One can also use
the Poincaré disc model 𝔻 = {𝑧 ∈ ℂ ∶ |𝑧| < 1} with the Poincaré metric 4|𝑑𝑧|2

(1−|𝑧|2)2 and 𝑃𝑆𝐿(2, ℝ)

acting as the group Aut(𝔻).) A subgroup Γ ⊂ 𝑃𝑆𝐿(2, ℝ) is called a Fuchsian group if it acts on ℍ

(by maps (1.3)) properly discontinuously. General Fuchsian groups were first studied by Poincaré
[48], who was motivated by Fuchs [23].
Every Riemann surface 𝑋 of genus 𝔤 ⩾ 2 is a quotient 𝑋 = ℍ∕𝐾, where 𝐾 ⊂ Aut(ℍ) is a Fuch-

sian group acting without fixed points. Every group 𝐺 ⊂ Aut(𝑋) is then of the form 𝐺 ≅ Γ∕𝐾,
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MINIMAL SURFACES WITH SYMMETRIES 7 of 32

where Γ ⊂ Aut(ℍ) is subgroup containing 𝐾 as a normal subgroup. If 𝑋 is compact, then Γ is of a
special form described by Moore in [46, p. 923].
For a compact Riemann surface 𝑋 of genus 𝔤 ⩾ 2, Hurwitz’s automorphism theorem [34] (see

also [45, Theorem 3.9, p. 96, and Chapter VII]) says that the automorphism groupAut(𝑋) is finite
of order at most 84(𝔤 − 1). In view of the aforementioned theorem byMaskit [42], the same holds
on every non-compact Riemann surface of finite genus 𝔤 ⩾ 2. Themaximal size 84(𝔤 − 1) can arise
if and only if 𝑋 admits a branched cover 𝑋 → ℂℙ1 with three ramification points, of indices 2, 3
and 7. A group for which themaximum is achieved is called aHurwitz group, and the correspond-
ing Riemann surface is a Hurwitz surface. Klein’s quartic curve of genus 3 (see [37]) is a Hurwitz
surface of lowest genus. From Klein’s result, Macbeath [40] deduced the existence of Hurwitz
surfaces of infinitely many genuses. The next smallest genus of a Hurwitz surface is 𝔤 = 7; see
[41] for an explicit description. Most Riemann surfaces of genus 𝔤 ⩾ 2 do not have any non-trivial
holomorphic automorphisms.

Greenberg [26] proved that every countable group 𝐺 is the automorphism group of a non-
compact Riemann surface, which can be taken to have a finitely generated fundamental group
if 𝐺 is finite. He also proved [27, Theorem 6’] that every finite group is the automorphism group
of a compact Riemann surface (see also [35]). Greenberg’s theorem, together with Corollary 1.5,
implies the following result.

Corollary 1.10. For every finite group 𝐺 of order 𝑛 > 1, there exist an open connected Rie-
mann surface 𝑋, effective actions of 𝐺 by holomorphic automorphisms on 𝑋 and by orthogonal
transformations on ℝ2𝑛 and a non-degenerate 𝐺-equivariant conformal minimal immersion 𝑋 →

ℝ2𝑛. The surface 𝑋 can be chosen to be the complement of 𝑛 points in a compact Riemann
surface.

Since the conditions in Theorem 1.1 pertain to non-trivial isotropy subgroups of a given auto-
morphism group 𝐺 ⊂ Aut(𝑋), it is of interest to understand the possible number of fixed points
of holomorphic automorphisms of Riemann surfaces. There is a considerable literature on this
subject. Hurwitz [34] proved that every non-trivial holomorphic automorphism of a compact Rie-
mann surface of genus 𝔤 has at most 2𝔤 + 2 fixed points. In view of the result of Maskit [42],
Hurwitz’s theorem also holds on every open Riemann surface of finite genus. Moore [46] deter-
mined the number of fixed points of each element of a cyclic group of automorphisms of a compact
Riemann surface with genus at least two. It was shown by Minda [44, Theorem 1] that if 𝑋 is a
Kobayashi hyperbolic Riemann surface and 𝜙 ∶ 𝑋 → 𝑋 is a holomorphic self-map with at least
two fixed points, then 𝜙 is an automorphism of 𝑋 of finite order. We refer to the survey in [45,
Chapter 3] for further information on this topic.

Problem 1.11. Let 𝑋 be an open Riemann surface of genus 𝔤 ⩾ 2 with a non-trivial automorphism
groupAut(𝑋). Which subgroups𝐺 ofAut(𝑋) are symmetry groups of conformalminimal surfaces
𝑋 → ℝ𝑛 for a given 𝑛 ⩾ 3? (By Corollary 1.5 every such group arises for 𝑛 = 2|𝐺|.)
Of particular interest are minimal surfaces of finite total Gaussian curvature. We discuss this

case in Section 6 and obtain an analogue of Theorem 1.1 for𝐺-equivariantminimal surfaces having
some ends of finite total Gaussian curvature; see Problem 6.2 and Theorem 6.3.
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8 of 32 FORSTNERIČ

One may also ask whether the Calabi–Yau problem for minimal surfaces (see [5, Chapter 7] for
background and a survey on this problem) has an affirmative answer for minimal surfaces with
symmetries. Explicitly, we pose the following problem.

Problem 1.12. Assume the hypotheses of Theorem 1.1, and let𝑀 be a compact, smoothly bounded,
𝐺-invariant domain in the Riemann surface 𝑋 such that no element of 𝐺 has any fixed point
on 𝑏𝑀. Does there exist a continuous 𝐺-equivariant map 𝐹 ∶ 𝑀 → ℝ𝑛 whose restriction to the
interior 𝑀̊ = 𝑀 ⧵ 𝑏𝑀 is a complete conformal minimal immersion?

An affirmative answer for the trivial group is given by [1, Theorem 1.1] (see also [5, Theorem
7.4.1]), where in addition the map 𝐹|𝑏𝑀 ∶ 𝑏𝑀 → ℝ𝑛 is a topological embedding.
Here is another interesting problem.

Problem 1.13. In the context of Theorem 1.1, is there a proper non-degenerate 𝐺-equivariant
conformal minimal immersion 𝑋 → ℝ𝑛?

We expect the answer to be affirmative. Without the equivariance condition, proper conformal
minimal immersions 𝑋 → ℝ𝑛 (𝑛 ⩾ 3) from an arbitrary open Riemann surface 𝑋 exist in great
abundance; see Alarcón and López [7] for a construction of such surfaces in ℝ3 which project
properly to a plane ℝ2 ⊂ ℝ3, and [5, Theorem 3.10.3] for any dimension 𝑛 ⩾ 3. In [5, section 10.3]
the reader can also find a survey of the history of this subject.
It seems likely that an analogue of Theorem 1.1 holds for non-orientable conformal surfaces;

however, the nature of the isotropy groups can be more complicated, and the fixed point set of a
Euclidean isometry restricted to the surfacemay contain curves.We shall not study this case here.
Recall that every conformal minimal immersion 𝑋 → ℝ𝑛 from a non-orientable open conformal
surface𝑋 is given by aℑ-invariant conformal minimal immersion𝑋 → ℝ𝑛 from the orientable 2-
sheeted cover𝑋 → 𝑋whose deck transformation is a fixed-point-free antiholomorphic involution
ℑ ∶ 𝑋 → 𝑋. For the theory of such surfaces, see [4, 8].
The problem treated in this paper can be considered for conformal minimal surfaces in any

Riemannian manifold of dimension ⩾ 3with a non-trivial group of isometries. Although the con-
nection to complex analysis is lost in general, there are some other special cases (besides the
Euclidean spaces) which could possibly be approached with these techniques. One of them con-
cerns superminimal surfaces in self-dual or anti–self-dual Einstein four-manifolds. This case can
be treated using the Bryant correspondence in Penrose twistor spaces, thereby reducing problems
on superminimal surfaces to those concerning holomorphic Legendrian curves in complex con-
tact three-manifolds. We refer to the survey of this subject in [19] where the Calabi–Yau problem
(see Problem 1.12) was solved affirmatively for superminimal surfaces in such Riemannian four-
manifolds. (The special case concerning the four-sphere with the spherical metric was obtained
beforehand by Alarcón et al. in [3].) See also [21] for the construction of proper superminimal
surfaces in the hyperbolic four-space.
Important examples of minimal surfaces are holomorphic curves in complex Euclidean spaces

ℂ𝑛 (𝑛 > 1) and, more generally, in Kähler manifolds. In principle, equivariant holomorphic maps
are easier to construct than general minimal surfaces sincemanymore operations and techniques
are available. Heinzner proved in [29] that if 𝐺 is a reductive complex Lie group acting on a
reduced Stein space 𝑋 by holomorphic automorphisms, then 𝑋 is 𝐺-equivariantly embeddable
in a Euclidean space ℂ𝑛 on which 𝐺 acts by ℂ-linear automorphisms if and only if the Luna slice
type of (𝑋, 𝐺) is finite. Heinzner’s theorem implies in particular that every open Riemann surface
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MINIMAL SURFACES WITH SYMMETRIES 9 of 32

with an action of a finite group 𝐺 of holomorphic automorphisms is equivariantly embeddable in
some ℂ𝑛 with a ℂ-linear action of 𝐺. See also [30, 31]. Further results were obtained by Heinzner
and Huckleberry [32], Fritsch and Heinzner [22], D’Angelo [14], among many others. In partic-
ular, D’Angelo and Xiao [15] studied equivariant proper rational maps between balls in complex
Euclidean spaces. For results on the 𝐺-equivariant Oka principle, also used in this paper, see the
survey by Kutzschebauch et al. [39].

2 PRELIMINARIES

Let 𝑋 be a connected open Riemann surface. An immersion 𝐹 ∶ 𝑋 → ℝ𝑛 is conformal if and only
if its (1,0)-differential 𝜕𝐹 = (𝜕𝐹1, … , 𝜕𝐹𝑛) satisfies the nullity condition

𝑛∑
𝑖=1

(𝜕𝐹𝑖)
2 = 0,

and it is harmonic if and only if 𝜕𝐹 is a holomorphic 1-form on 𝑋 (see [47] or [5, section 2.3]). A
conformal immersion is harmonic if and only if its image is a minimal surface, that is, its mean
curvature vector field vanishes identically.
Pick a nowhere vanishing holomorphic 1-form 𝜃 on𝑋; such exists by Gunning andNarasimhan

[28] and can be chosen to be the differential 𝜃 = 𝑑ℎ of a holomorphic immersion ℎ ∶ 𝑋 → ℂ.
Then, a conformal minimal immersion 𝐹 ∶ 𝑋 → ℝ𝑛 satisfies 2𝜕𝐹 = 𝑓𝜃 with 𝑓 = 2𝜕𝐹∕𝜃 ∶ 𝑋 →

𝐀∗ = 𝐀 ⧵ {0} a holomorphic map into the punctured null quadric, where the null quadric in ℂ𝑛

is the affine subvariety

𝐀 =
{
𝑧 = (𝑧1, … , 𝑧𝑛) ∈ ℂ𝑛 ∶ 𝑧21 + 𝑧22 +⋯ + 𝑧2𝑛 = 0

}
. (2.1)

These observations lead to the Enneper–Weiestrass formula (see [5, Theorem 2.3.4]), which says
that any conformal minimal immersion 𝐹 ∶ 𝑋 → ℝ𝑛 is of the form

𝐹(𝑥) = 𝐹(𝑥0) + ∫
𝑥

𝑥0

ℜ(𝑓𝜃), 𝑥, 𝑥0 ∈ 𝑋, (2.2)

where 𝑓 ∶ 𝑋 → 𝐀∗ is a holomorphic map such that ∫𝐶 ℜ(𝑓𝜃) = 0 for any closed path 𝐶 in 𝑋 (so
the integral in (2.2) is independent of the path of integration), and 2𝜕𝐹 = 𝑓𝜃.
In the sequel, we shall allow the 1-form 𝜃 on 𝑋 to have a discrete zero set and will let 𝑓 be a

meromorphic map such that the vector-valued 1-form 𝑓𝜃 is holomorphic and nowhere vanishing
on 𝑋, that is, the poles of 𝑓 exactly cancel the zeros of 𝜃. (In the proof of Theorem 6.3, we shall
allow 𝑓𝜃 to have poles.)
Let 𝐺 be a finite group acting faithfully on𝑋 by holomorphic automorphisms. We have already

mentioned that the stabiliser 𝐺𝑥 of any point 𝑥 ∈ 𝑋 is a cyclic group of some order 𝑘 = 𝑘(𝑥) ∈ ℕ

which is generated in a suitable local holomorphic coordinate 𝑧 on a neighbourhood of 𝑥 ∈ 𝑋,
with 𝑧(𝑥) = 0, by the rotation 𝑧 ↦ e𝚤𝜙𝑧, where e𝚤𝜙 is a primitive 𝑘-th root of 1. It follows that
𝑧𝑘 is a local holomorphic coordinate on the orbit space 𝑋∕𝐺𝑥, which is therefore non-singular.
Note that 𝐺g𝑥 = g𝐺𝑥g

−1 for all 𝑥 ∈ 𝑋 and g ∈ 𝐺, so the stabilisers of points in a 𝐺-orbit are pair-
wise conjugate subgroups of 𝐺. We can identify the orbit 𝐺𝑥 = {g𝑥 ∶ g ∈ 𝐺}with the set of cosets
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10 of 32 FORSTNERIČ

{g𝐺𝑥 ∶ g ∈ 𝐺}. For any g ∈ 𝐺 ⧵ {1} the set of fixed points Fix(g) = {𝑥 ∈ 𝑋 ∶ g𝑥 = 𝑥} is a closed
discrete subset of𝑋 (see [45, Proposition 3.2, p. 76]), which is finite if the surface𝑋 has finite genus
(see [44]), but it can be infinite otherwise. Their union

𝑋0 =
⋃

g∈𝐺⧵{1}

Fix(g) = {𝑥 ∈ 𝑋 ∶ 𝐺𝑥 ≠ {1}} (2.3)

is a closed, discrete, 𝐺-invariant subset of 𝑋, and its complement

𝑋1 = 𝑋 ⧵ 𝑋0 = {𝑥 ∈ 𝑋 ∶ g𝑥 ≠ 𝑥 for all g ∈ 𝐺 ⧵ {1}} (2.4)

is an open 𝐺-invariant domain. For every 𝑥 ∈ 𝑋, the orbit 𝐺𝑥 has |𝐺|∕|𝐺𝑥| points; this number
equals |𝐺| if and only if𝑥 ∈ 𝑋1. Since the group𝐺 is finite, the orbit space𝑋∕𝐺 is an openRiemann
surface, the quotient projection 𝜋 ∶ 𝑋 → 𝑋∕𝐺 is a holomorphic map which branches precisely
at the points in 𝑋0, and 𝜋 ∶ 𝑋1 → 𝑋1∕𝐺 is a holomorphic covering projection of degree |𝐺|. (See
[45, Theorem 3.4, p. 78] for these facts.) Choose a holomorphic immersion ℎ̃ ∶ 𝑋∕𝐺 → ℂ; see [28].
Then, the holomorphic map

ℎ ∶= ℎ̃◦𝜋 ∶ 𝑋 → ℂ (2.5)

is 𝐺-invariant and it branches precisely at the points of 𝑋0. Applying the chain rule to the
equation ℎ◦g = ℎ (g ∈ 𝐺) shows that the holomorphic 1-form

𝜃 = 𝑑ℎ = 𝑑(ℎ̃◦𝜋) = 𝜋∗𝑑ℎ̃ (2.6)

on 𝑋 satisfies the following invariance conditions for every g ∈ 𝐺:

𝜃g𝑥◦𝑑g𝑥 = 𝜃𝑥 for all 𝑥 ∈ 𝑋, and 𝜃𝑥 = 0 if and only if 𝑥 ∈ 𝑋0. (2.7)

More precisely, 𝜃 has a zero of order |𝐺𝑥| − 1 at a point 𝑥 ∈ 𝑋0.

Remark 2.1. Everything said so far in this section also holds if 𝑋 is disconnected and for
every connected component 𝑋′ of 𝑋 the stabiliser subgroup 𝐺𝑋′ = {g ∈ 𝐺 ∶ g𝑋′ = 𝑋′} acts
effectively on 𝑋′. (This is equivalent to asking that the stabiliser 𝐺𝑥 of a generic point
𝑥 ∈ 𝑋 is trivial.) Without loss of generality, one may always assume that 𝐺 acts transi-
tively on the set of connected components of 𝑋, so the orbit space 𝑋∕𝐺 is connected.
These observations can be used to justify the generalisation of our results mentioned in
Remark 1.3.

Suppose now that the group 𝐺 also acts on ℝ𝑛 (𝑛 ⩾ 3) by orthogonal maps. Considering ℝ𝑛

as the standard real subspace of ℂ𝑛, the orthogonal group 𝑂(𝑛, ℝ) is a subgroup of the com-
plex orthogonal group 𝑂(𝑛, ℂ), the subgroup of 𝐺𝐿(𝑛, ℂ) preserving the ℂ-bilinear form (𝑧, 𝑤) ↦∑𝑛

𝑖=1 𝑧𝑖𝑤𝑖 . The punctured null quadric 𝐀∗ = 𝐀 ⧵ {0} (see (2.1)) is smooth and 𝑂(𝑛, ℂ)-invariant,
hence also 𝐺-invariant. Consider ℂ𝑛 as an affine chart in the projective space ℂℙ𝑛. Let 𝐀 ⊂ ℂℙ𝑛

denote the projective closure of 𝐀 and set

𝑌 = 𝐀 ⧵ {0} = 𝐀∗ ∪ 𝑌0, (2.8)
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MINIMAL SURFACES WITH SYMMETRIES 11 of 32

𝑌0 = 𝑌 ⧵ 𝐀∗ =
{
[𝑧1 ∶ ⋯ ∶ 𝑧𝑛] ∈ ℂℙ𝑛−1 ∶ 𝑧21 + 𝑧22 +⋯ + 𝑧2𝑛 = 0

}
. (2.9)

Let 𝑝 ∶ ℂ𝑛 ⧵ {0} → ℂℙ𝑛−1 denote the projection 𝑝(𝑧1, … , 𝑧𝑛) = [𝑧1 ∶ ⋯ ∶ 𝑧𝑛]. The restriction 𝑝 ∶

𝐀∗ → 𝑌0 is a holomorphic fibre bundle with fibre ℂ∗ = ℂ ⧵ {0}, and the natural extension 𝑝 ∶

𝑌 → 𝑌0 which equals the identity map on 𝑌0 is a holomorphic line bundle. The action of 𝑂(𝑛, ℂ)
on ℂ𝑛 extends to an action on ℂℙ𝑛 with the hyperplane at infinity as an invariant complex sub-
manifold. Hence, the action of 𝐺 on ℂ𝑛 extends to an action of 𝐺 on the manifold 𝑌 (2.8) by
holomorphic automorphisms.
We denote by 𝑢 ⋅ 𝑣 the Euclidean inner product on ℝ𝑛 and by ‖𝑢‖ =

√
𝑢 ⋅ 𝑢 the Euclidean

norm. To any oriented 2-plane 0 ∈ Λ ⊂ ℝ𝑛, we associate a complex line 𝐿 ⊂ ℂ𝑛, contained in the
null quadric𝐀 (2.1), by choosing an oriented basis (𝑢, 𝑣) ofΛ such that ‖𝑢‖ = ‖𝑣‖ ≠ 0 and 𝑢 ⋅ 𝑣 =

0 (such a pair is called a conformal frame) and setting

𝐿 = 𝐿(Λ) = ℂ(𝑢 − 𝚤𝑣) ⊂ 𝐀 ⊂ ℂ𝑛. (2.10)

Clearly, 𝐿 does not depend on the choice of the oriented conformal frame on Λ. A rotation 𝑅𝜙 on
Λ in the positive direction corresponds to the multiplication by e𝚤𝜙 on the complex line 𝐿(Λ).
If 𝐹 ∶ 𝑋 → ℝ𝑛 is a conformal immersion then, in any local holomorphic coordinate 𝑧 = 𝑥 + 𝚤𝑦

on 𝑋, the vectors 𝜕𝐹

𝜕𝑥
(𝑧) and 𝜕𝐹

𝜕𝑦
(𝑧) form a conformal frame and the corresponding complex line

𝐿(𝜁) ⊂ 𝐀 is spanned by the vector 𝜕𝐹

𝜕𝑥
(𝑧) − 𝚤 𝜕𝐹

𝜕𝑦
(𝑧) = 2𝜕𝐹

𝜕𝑧
(𝑧).

The following proposition summarises the main properties of immersed 𝐺-equivariant
conformal minimal surfaces, and it justifies the hypotheses in Theorem 1.1.

Proposition 2.2. Assume that𝑋 is a connected open Riemann surface and𝐺 is a finite group acting
effectively on𝑋 by holomorphic automorphisms and acting onℝ𝑛 (𝑛 ⩾ 3) by orthogonal transforma-
tions. Let the sets 𝑋0 ⊂ 𝑋 and 𝑌0 ⊂ 𝑌 be given by (2.3) and (2.9), respectively. Set 𝑋1 = 𝑋 ⧵ 𝑋0, and
let 𝜃 be the holomorphic 1-form on 𝑋 given by (2.6). If 𝐹 ∶ 𝑋 → ℝ𝑛 is a 𝐺-equivariant conformal
minimal immersion, then

𝑓 = 2𝜕𝐹∕𝜃 ∶ 𝑋 → 𝑌 (2.11)

is a holomorphic 𝐺-equivariant map satisfying 𝑓−1(𝑌0) = 𝑋0, and the following assertions hold for
every point 𝑥0 ∈ 𝑋0.

(a) The stabiliser 𝐺𝑥0
is a cyclic group with a generator g0 acting in a local holomorphic coordinate

𝑧 on 𝑋, with 𝑧(𝑥0) = 0, by g0𝑧 = e𝚤𝜙𝑧, where 𝜙 = 2𝜋∕𝑘 and 𝑘 = |𝐺𝑥0
|.

(b) The tangent plane Λ = 𝑑𝐹𝑥0(𝑇𝑥0𝑋) ⊂ ℝ𝑛 is 𝐺𝑥0
-invariant, g0 acts on Λ by rotation 𝑅𝜙 through

the angle 𝜙 = 2𝜋∕𝑘 in the positive direction (with respect to the orientation induced from 𝑇𝑥0𝑋

by 𝑑𝐹𝑥0), and g0 acts on the null line 𝐿 = 𝐿(Λ) (2.10) as multiplication by e𝚤𝜙.
(c) We have that g0𝐹(𝑥0) = 𝐹(𝑥0), and the vector 𝐹(𝑥0) is orthogonal to Λ.
(d) We have that 𝑓(𝑥0) = 𝑝(𝐿) ∈ 𝑌0 ⊂ ℂℙ𝑛 ⧵ ℂ𝑛, and 𝑓 has a pole of order |𝐺𝑥0

| − 1 at 𝑥0.

Proof. Recall that 𝜕𝐹 = (𝜕𝐹1, … , 𝜕𝐹𝑛) is a holomorphic 1-form with values in 𝐀∗ = 𝐀 ⧵ {0} (2.1).
Since 𝜃 vanishes precisely on 𝑋0, the map (2.11) is holomorphic and satisfies

𝑓−1(𝑌0) = {𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) ∈ 𝑌0} = 𝑋0. (2.12)
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12 of 32 FORSTNERIČ

Differentiation of the 𝐺-equivariance equation 𝐹◦g = g𝐹 (see (1.1)), taking into account that g
acts on ℝ𝑛 as a linear (orthogonal) transformation, gives

𝑑𝐹g𝑥◦𝑑g𝑥 = g 𝑑𝐹𝑥 for every 𝑥 ∈ 𝑋 and g ∈ 𝐺. (2.13)

Writing 𝑑𝐹 = 𝜕𝐹 + 𝜕𝐹, we have

𝜕𝐹g𝑥◦𝑑g𝑥 + 𝜕𝐹g𝑥◦𝑑g𝑥 = g 𝜕𝐹𝑥 + g 𝜕𝐹𝑥.

Since 𝑑g𝑥 is ℂ-linear on 𝑇𝑥𝑋, the (1,0)-part of the above equation gives

𝜕𝐹g𝑥◦𝑑g𝑥 = g 𝜕𝐹𝑥 for every 𝑥 ∈ 𝑋 and g ∈ 𝐺. (2.14)

From this and the condition (2.7) on the 1-form 𝜃, we obtain

𝑓(g𝑥) =
2𝜕𝐹g𝑥

𝜃g𝑥
=

2𝜕𝐹g𝑥◦𝑑g𝑥
𝜃g𝑥◦𝑑g𝑥

=
g 2𝜕𝐹𝑥
𝜃𝑥

= g𝑓(𝑥), (2.15)

which shows 𝑓 ∶ 𝑋 → 𝑌 is 𝐺-equivariant. (The second equality holds since the quotient of two
ℂ-linear forms on ℂ is invariant under precomposition by a linear isomorphism.)
Let 𝑘 = |𝐺𝑥0

| > 1. By Remark 1.2, a generator g0 of 𝐺𝑥0
acts in a certain local holomorphic

coordinate 𝑧 on 𝑋 based at 𝑥0 by the rotation through the angle 𝜙 = 2𝜋∕𝑘, so (a) holds. Since
the map 𝑑𝐹𝑥0 ∶ 𝑇𝑥0𝑋 ≅ ℝ2 → Λ = 𝑑𝐹𝑥0(ℝ

2) ⊂ ℝ𝑛 is a conformal linear isomorphism, the rela-
tion (2.13) at 𝑥 = 𝑥0 implies (b). Since g0 ∈ Aut(𝑋) fixes 𝑥0 and 𝐹 is g0-equivariant, we have
g0𝐹(𝑥0) = 𝐹(g0𝑥0) = 𝐹(𝑥0). As g0 acts onℝ𝑛 by an orthogonal transformation which restricts to a
non-trivial rotation on Λ, we infer that 𝐹(𝑥0) is either the zero vector or an eigenvector of g0 with
the eigenvalue 1 which is orthogonal to Λ, so (c) holds. Since the holomorphic 1-form 𝑓𝜃 = 2𝜕𝐹

has values in 𝐀∗ and {𝜃 = 0} = 𝑋0, 𝑓 is a meromorphic map to 𝐀∗ with poles at the points of 𝑋0,
and the order of the pole of 𝑓 at 𝑥0 ∈ 𝑋0 equals the order of zero of 𝜃 at 𝑥0, which is |𝐺𝑥0

| − 1.
This proves (d). □

Conversely, given a connected open Riemann surface𝑋, a holomorphic 1-form on𝑋 of the form
(2.6) and a holomorphic map 𝑓 ∶ 𝑋 → 𝑌 such that the 1-form 𝑓𝜃 is holomorphic and nowhere
vanishing on 𝑋 and

ℜ∫𝐶 𝑓𝜃 = 0 holds for every smooth closed curve 𝐶 in 𝑋, (2.16)

we obtain for any 𝑥0 ∈ 𝑋 and 𝑣 ∈ ℝ𝑛 a conformal minimal immersion 𝐹 ∶ 𝑋 → ℝ𝑛 given by

𝐹(𝑥) = 𝑣 + ∫
𝑥

𝑥0

ℜ(𝑓𝜃) for all 𝑥 ∈ 𝑋. (2.17)

Since 𝑓𝜃 is holomorphic, the integral is independent of the path of integration in view of the
period vanishing conditions (2.16). If 𝑥0 ∈ 𝑋0 then (2.18) implies g𝑣 = 𝑣 for all g ∈ 𝐺𝑥0

, which is
compatible with Proposition 2.2(c). If on the other hand 𝑥0 ∈ 𝑋 ⧵ 𝑋0, then there is no restriction
on 𝑣 = 𝐹(𝑥0) ∈ ℝ𝑛. Let us observe the following.
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MINIMAL SURFACES WITH SYMMETRIES 13 of 32

Lemma 2.3 (Assumptions as above). The conformal minimal immersion 𝐹 ∶ 𝑋 → ℝ𝑛, defined by
(2.17), is 𝐺-equivariant if and only if the map 𝑓 ∶ 𝑋 → 𝑌 is 𝐺-equivariant and

g𝑣 = 𝑣 + ∫
g𝑥0

𝑥0

ℜ(𝑓𝜃) holds for all g ∈ 𝐺. (2.18)

Proof. Suppose that a map 𝐹 ∶ 𝑋 → ℝ𝑛 of the form (2.17) is 𝐺-equivariant. The 𝐺-equivariance
condition at the point 𝑥 = 𝑥0 gives

g𝑣 = g𝐹(𝑥0) = 𝐹(g𝑥0) = 𝑣 + ∫
g𝑥0

𝑥0

ℜ(𝑓𝜃) for all g ∈ 𝐺,

so (2.18) holds. By Proposition 2.2, the map 𝑓 = 2𝜕𝐹∕𝜃 ∶ 𝑋 → 𝑌 is 𝐺-equivariant as well.
Conversely, assume 𝑓 ∶ 𝑋 → 𝑌 is a 𝐺-equivariant holomorphic map. Given a piecewise 𝒞1

path 𝛾 ∶ [0, 1] → 𝑋, we have in view of (2.7) for any g ∈ 𝐺 that

∫g𝛾

𝑓𝜃 = ∫
1

0

𝑓(g𝛾(𝑡)) 𝜃g𝛾(𝑡)(𝑑g𝛾(𝑡)𝛾̇(𝑡)) 𝑑𝑡 = ∫
1

0

g𝑓(𝛾(𝑡)) 𝜃𝛾(𝑡)(𝛾̇(𝑡)) 𝑑𝑡 = g ∫𝛾 𝑓𝜃. (2.19)

If 𝑓 also satisfies the period vanishing conditions (2.16), then the integral of 𝑓𝜃 between a pair of
points is independent of the choice of a path. From (2.17) and (2.18), we obtain

𝐹(g𝑥) = 𝑣 + ∫
g𝑥

𝑥0

ℜ(𝑓𝜃) = 𝑣 + ∫
g𝑥0

𝑥0

ℜ(𝑓𝜃) + ∫
g𝑥

g𝑥0

ℜ(𝑓𝜃)

= g𝑣 + g ∫
𝑥

𝑥0

ℜ(𝑓𝜃) = g𝐹(𝑥),

showing that the map 𝐹 is 𝐺-equivariant. □

Summarising, Proposition 2.2 and Lemma 2.3 give the following representation formula. We
explain in Section 7 that the same result holds for infinite discrete groups 𝐺 acting on 𝑋 properly
discontinuously provided that 𝑋∕𝐺 is non-compact.

Theorem 2.4 (Weierstrass representation of𝐺-equivariant minimal surfaces).Assume that𝑋 and
𝐺 are as in Theorem 1.1, 𝜃 is given by (2.5)–(2.6), and 𝑌 is given by (2.8). Fix a point 𝑥0 ∈ 𝑋. Then,
every 𝐺-equivariant conformal minimal immersion 𝐹 ∶ 𝑋 → ℝ𝑛 is of the form

𝐹(𝑥) = 𝐹(𝑥0) + ∫
𝑥

𝑥0

ℜ(𝑓𝜃) for 𝑥 ∈ 𝑋,

where 𝑓 = 2𝜕𝐹∕𝜃 ∶ 𝑋 → 𝑌 = 𝐀∗ ∪ 𝑌0 is a 𝐺-equivariant holomorphic map satisfying 𝑓−1(𝑌0) =

𝑋0 such that 𝑓𝜃 has no zeros or poles and satisfies the period conditions

∫𝐶 ℜ(𝑓𝜃) = 0 for every [𝐶] ∈ 𝐻1(𝑋, ℤ) and

g𝐹(𝑥0) = 𝐹(𝑥0) + ∫
g𝑥0

𝑥0

ℜ(𝑓𝜃) for every g ∈ 𝐺.

 1460244x, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12590 by C

ochrane Slovenia, W
iley O

nline L
ibrary on [13/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 of 32 FORSTNERIČ

3 CONSTRUCTING HOLOMORPHIC 𝑮-EQUIVARIANTMAPS
𝑿 → 𝒀

In this section, we explain the setup and outline the proof of Theorem 1.1; the details are given
in the following two sections. We shall use the notation from Proposition 2.2. In particular, the
holomorphic 1-form 𝜃 on 𝑋 is as in (2.6) and the manifolds 𝑌0 ⊂ 𝑌 are given by (2.8) and (2.9).
We begin by defining a𝐺-equivariant conformalminimal immersion 𝐹0 from a neighbourhood

of the closed discrete subset 𝑋0 of 𝑋 (see (2.3)) to ℝ𝑛. Fix a point 𝑥0 ∈ 𝑋0 and set 𝑘 = |𝐺𝑥0
| > 1,

where 𝐺𝑥0
is the (cyclic) stabiliser group of 𝑥0. By Proposition 2.2(a), there is a local holomor-

phic coordinate 𝑧 on a 𝐺𝑥0
-invariant disc neighbourhood Δ ⊂ 𝑋 of 𝑥0, with 𝑧(𝑥0) = 0, such that

a generator g0 of 𝐺𝑥0
is the rotation g0𝑧 = e𝚤𝜙𝑧 with 𝜙 = 2𝜋∕𝑘. By the assumption of Theorem 1.1

there is a𝐺𝑥0
-invariant plane 0 ∈ Λ ⊂ ℝ𝑛 onwhich g0 acts as the rotation through the angle 𝜙. Let

𝐿 = 𝐿(Λ) (2.10) be the associated complex line contained in the null quadric 𝐀 ⊂ ℂ𝑛 (2.1). Then,
g0 acts on 𝐿 as multiplication by e𝚤𝜙. Choose a non-zero vector 𝑦0 ∈ 𝐿 and set

𝑓0(𝑧) =
𝑦0

𝑧𝑘−1
for all 𝑧 ∈ Δ. (3.1)

Thus, 𝑓0 ∶ Δ → 𝑌 is a holomorphic map with the point 𝑓0(𝑥0) = 𝑝(𝑦0) ∈ 𝑌0 at infinity. Since
e𝚤𝑘𝜙 = 1, we have that

𝑓0(g0𝑧) = 𝑓0(e
𝚤𝜙𝑧) =

𝑦0

e𝚤(𝑘−1)𝜙𝑧𝑘−1
= e𝚤𝜙

𝑦0

e𝚤𝑘𝜙𝑧𝑘−1
= g0𝑓0(𝑧),

so 𝑓0 is 𝐺𝑥0
-equivariant. In the coordinate 𝑧, we have that

𝜃(𝑧) = 𝑑(ℎ(𝑧𝑘)) = 𝑘ℎ′(𝑧𝑘)𝑧𝑘−1𝑑𝑧,

where ℎ ∶ Δ → ℂ is a holomorphic function with non-vanishing derivative. The 1-form

(𝑓0𝜃)(𝑧) = 𝑘ℎ′(𝑧𝑘)𝑦0𝑑𝑧

is holomorphic and non-vanishing on Δ. Since Δ is simply connected and condition (2.18) in
Lemma 2.3 trivially holds onΔ for 𝑣 = 0 and the group𝐺𝑥0

, 𝑓0𝜃 integrates to a flat𝐺𝑥0
-equivariant

conformal minimal immersion 𝐹0 ∶ Δ → Λ ⊂ ℝ𝑛. (Alternatively, we can observe that the con-
formal linear map 𝐹0 from the 𝑧-coordinate on Δ to the plane Λ is 𝐺𝑥0

-equivariant since the
generator of 𝐺𝑥0

acts as a rotation through the same angle on the domain and codomain, and
take 𝑓0 = 2𝜕𝐹0∕𝜃. This may differ from (3.1) by a multiplicative holomorphic factor.) We extend
𝑓0 and 𝐹0 by 𝐺-equivariance to the neighbourhood 𝐺 ⋅ Δ =

⋃
g∈𝐺 gΔ ⊂ 𝑋 of the orbit 𝐺𝑥0 ⊂ 𝑋.

Doing the same at every point of𝑋0 and choosing the neighbourhoods pairwise disjoint yields a𝐺-
equivariant holomorphic map 𝑓0 ∶ 𝑉 → 𝑌 from a 𝐺-invariant neighbourhood 𝑉 ⊂ 𝑋 of 𝑋0 such
that 𝑓0𝜃 is a nowhere vanishing holomorphic 1-form on 𝑉 with values in𝐀∗, and a 𝐺-equivariant
conformal minimal immersion 𝐹0 ∶ 𝑉 → ℝ𝑛 with 2𝜕𝐹0 = 𝑓0𝜃.
To prove Theorem 1.1, we shall find a𝐺-equivariant holomorphicmap 𝑓 ∶ 𝑋 → 𝑌 which agrees

with 𝑓0 ∶ 𝑉 → 𝑌 to a given finite order in every point of 𝑋0, it satisfies 𝑓(𝑋1) ⊂ 𝐀∗ (where 𝑋1 =

𝑋 ⧵ 𝑋0), and conditions (2.16) and (2.18) hold. By Lemma 2.3 (or Theorem 2.4), the map 𝐹 ∶ 𝑋 →

ℝ𝑛 given by (2.17) is then a 𝐺-equivariant conformal minimal immersion.
Let us first explain how to find a𝐺-equivariant holomorphicmap𝑓 ∶ 𝑋 → 𝑌which agreeswith

𝑓0 to a given finite order on𝑋0 and satisfies 𝑓(𝑋1) ⊂ 𝐀∗, ignoring the period vanishing conditions
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MINIMAL SURFACES WITH SYMMETRIES 15 of 32

(2.16) and (2.18) for the moment. This is a special case of [38, Theorem 4.1] due to Kutzschebauch,
Lárusson and Schwarz. For our purposes, some additional explanations are necessary. Consider
the action of 𝐺 on the product manifold 𝑋 × 𝑌 by

g(𝑥, 𝑦) = (g𝑥, g𝑦) for 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, g ∈ 𝐺. (3.2)

Since the projection 𝑋 × 𝑌 → 𝑋 is 𝐺-equivariant, it induces a projection

𝜌 ∶ 𝑍 = (𝑋 × 𝑌)∕𝐺 → 𝑋∕𝐺 (3.3)

onto the open Riemann surface 𝑋∕𝐺. Note that 𝑍 is a reduced complex space, the map 𝜌 is
holomorphic, it is branched over the closed discrete subset 𝑋0∕𝐺 of 𝑋∕𝐺, and the restriction

𝜌 ∶ 𝑍1 = 𝜌−1(𝑋1∕𝐺) → 𝑋1∕𝐺

is a holomorphic 𝐺-bundle with fibre 𝑌. Since the submanifold 𝑌0 ⊂ 𝑌 and its complement 𝑌 ⧵

𝑌0 = 𝐀∗ are both 𝐺-invariant, we have

𝑍1 = [(𝑋1 × 𝐀∗)∕𝐺] ∪ [(𝑋1 × 𝑌0)∕𝐺]

where the union is disjoint. The open subset

Ω = (𝑋1 × 𝐀∗)∕𝐺 ⊂ 𝑍 (3.4)

is without singularities, and its complement

𝑍′ = 𝑍 ⧵ Ω = [(𝑋0 × 𝑌)∕𝐺] ∪ [(𝑋1 × 𝑌0)∕𝐺]

is a closed complex subvariety of 𝑍 containing the branch locus of 𝜌. The restricted projection

𝜌 ∶ Ω → 𝑋1∕𝐺 (3.5)

is a holomorphic 𝐺-bundle with fibre 𝐀∗, the punctured null quadric. To describe the struc-
ture of this bundle, fix a point 𝑥1 ∈ 𝑋1 and let 𝑥̃1 = 𝜋(𝑥1) ∈ 𝑋1∕𝐺. A loop 𝛾 ∶ [0, 1] → 𝑋1∕𝐺

with 𝛾(0) = 𝛾(1) = 𝑥̃1 lifts with respect to the covering projection 𝜋 ∶ 𝑋1 → 𝑋1∕𝐺 to a unique
path 𝜆 ∶ [0, 1] → 𝑋1 with 𝜆(0) = 𝑥1. Since the fibres of 𝜋 are 𝐺-orbits of the free action of 𝐺
on 𝑋1, its terminal point satisfies 𝜆(1) = g𝑥1 for a unique g = g(𝛾) ∈ 𝐺, which only depends
on the homotopy class of 𝛾 in the fundamental group 𝜋1(𝑋1∕𝐺, 𝑥̃1). Conversely, every g ∈ 𝐺

equals g(𝛾) for some loop 𝛾 in 𝑋1∕𝐺 based at 𝑥̃1, and the identity 1 ∈ 𝐺 corresponds to loops in
the image of the injective homomorphism 𝜋∗ ∶ 𝜋1(𝑋1, 𝑥1) ↦ 𝜋1(𝑋1∕𝐺, 𝑥̃1) induced by the quo-
tient projection 𝜋 ∶ 𝑋1 → 𝑋1∕𝐺. In fact, the correspondence 𝛾 ↦ g(𝛾) realises an isomorphism
𝜋1(𝑋1∕𝐺, 𝑥̃1)∕𝜋∗(𝜋1(𝑋1, 𝑥1)) ≅ 𝐺. Themonodromy homomorphism of the bundle (3.5) along the
loop 𝛾 is then given by the action of g = g(𝛾) on the fibre 𝐀∗ of 𝜌 over the point 𝑥̃1. A point
𝑧1 ∈ Ω with 𝜌(𝑧1) = 𝑥̃1 is represented by a pair (𝑥̃1, 𝑦1) for some 𝑦1 ∈ 𝐀∗, and the monodromy
map determined by 𝛾 identifies it with the point (𝑥̃1, g𝑦1).

Lemma 3.1. There is a natural bijective correspondence between (continuous or holomorphic)
sections 𝑓 ∶ 𝑋∕𝐺 → 𝑍 of the map 𝜌 ∶ 𝑍 → 𝑋∕𝐺 (3.3), satisfying

𝑓(𝑋1∕𝐺) ⊂ Ω = (𝑋1 × 𝐀∗)∕𝐺 and 𝑓(𝑋0∕𝐺) ⊂ (𝑋0 × 𝑌0)∕𝐺,
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16 of 32 FORSTNERIČ

and (continuous or holomorphic) 𝐺-equivariant maps 𝑓 ∶ 𝑋 → 𝑌 satisfying

𝑓(𝑋1) ⊂ 𝐀∗ and 𝑓(𝑋0) ⊂ 𝑌0.

Proof. Let us first explain this correspondence over the domain 𝑋1 = 𝑋 ⧵ 𝑋0. Given a 𝐺-
equivariantmap𝑓 ∶ 𝑋1 → 𝐀∗, we define a section 𝑓 ∶ 𝑋1∕𝐺 → Ω of themap 𝜌 (3.5) by𝑓(𝜋(𝑥)) =
[(𝑥, 𝑓(𝑥))] ∈ Ω for 𝑥 ∈ 𝑋1, where [(𝑥, 𝑦)] ∈ Ω denotes the equivalence class of (𝑥, 𝑦) ∈ 𝑋1 × 𝐀∗

under the action (3.2). Given 𝑥′ ∈ 𝑋1 with 𝜋(𝑥′) = 𝜋(𝑥), we have 𝑥′ = g𝑥 for a unique g ∈ 𝐺.
From 𝑓(g𝑥) = g𝑓(𝑥), we obtain

[(𝑥′, 𝑓(𝑥′))] = [(g𝑥, 𝑓(g𝑥))] = [(g𝑥, g𝑓(𝑥))] = [g(𝑥, 𝑓(𝑥))] = [(𝑥, 𝑓(𝑥))],

so 𝑓 is well defined. Conversely, given a section 𝑓 ∶ 𝑋1∕𝐺 → Ω, we have for every 𝑥 ∈ 𝑋1 that
𝑓(𝜋(𝑥)) = [(𝑥, 𝑦)] ∈ Ω for a unique 𝑦 ∈ 𝐀∗, and we define 𝑓(𝑥) = 𝑦. If [(𝑥′, 𝑦′)] = [(𝑥, 𝑦)] ∈ Ω,
then (𝑥′, 𝑦′) = (g𝑥, g𝑦) for some g ∈ 𝐺, which shows 𝑓(g𝑥) = 𝑓(𝑥′) = 𝑦′ = g𝑦 = g𝑓(𝑥), so the
map 𝑓 is 𝐺-equivariant. The conclusion of the lemma now follows by continuity and Riemann’s
removable singularities theorem. □

Since the holomorphic map 𝑓0 ∶ 𝑉 → 𝑌 from a 𝐺-invariant neighbourhood 𝑉 ⊂ 𝑋 of 𝑋0,
defined above, is𝐺-equivariant and satisfies 𝑓0(𝑉 ⧵ 𝑋0) ⊂ 𝐀∗ and 𝑓0(𝑋0) ⊂ 𝑌0, Lemma 3.1 shows
that 𝑓0 determines a holomorphic section 𝑓0 ∶ 𝑉∕𝐺 → 𝑍 such that

𝑓0((𝑉 ⧵ 𝑋0)∕𝐺) ⊂ Ω and 𝑓0(𝑋0∕𝐺) ⊂ (𝑋0 × 𝑌0)∕𝐺. (3.6)

Conversely, we have the following lemma.

Lemma 3.2. Let𝑉 ⊂ 𝑋 be an open𝐺-invariant neighbourhood of𝑋0 whose connected components
are simply connected and each of them contains precisely one point of𝑋0, and letΩ be given by (3.4).
Assume 𝑓0 ∶ 𝑉∕𝐺 → 𝑍 is a holomorphic section of the map 𝜌 ∶ 𝑍 → 𝑋∕𝐺 (3.3) over𝑉∕𝐺 satisfying
(3.6), and let 𝑓0 ∶ 𝑉 → 𝑌 be the associated𝐺-equivariant holomorphicmap satisfying 𝑓0(𝑉 ⧵ 𝑋0) ⊂

𝐀∗ and𝑓0(𝑋0) ⊂ 𝑌0 (see Lemma 3.1). If the 1-form𝑓0𝜃 has no zeros or poles on𝑉, then𝑓0 determines
a 𝐺-equivariant conformal minimal immersion 𝐹0 ∶ 𝑉 → ℝ𝑛 with 2𝜕𝐹0 = 𝑓0𝜃.

Proof. Fix a point 𝑥0 ∈ 𝑋0. The connected component Δ of 𝑉 containing 𝑥0 is simply connected,
𝐺𝑥0

-invariant and the restrictedmap𝑓0 ∶ Δ → 𝑌 is𝐺𝑥0
-equivariant. Choose a vector 𝑣0 ∈ ℝ𝑛 such

that g𝑣0 = 𝑣0 for all g ∈ 𝐺𝑥0
(this holds, for example, for 𝑣0 = 0) and define a conformal minimal

immersion 𝐹0 ∶ Δ → ℝ𝑛 by 𝐹0(𝑥) = 𝑣0 + ∫ 𝑥
𝑥0
ℜ(𝑓0𝜃) for all 𝑥 ∈ Δ. The integral is well-defined

since Δ is simply connected, and 𝐹0 is 𝐺𝑥0
-equivariant by Lemma 2.3. (Indeed, condition (2.18)

trivially holds for all g ∈ 𝐺𝑥0
.) We extend 𝐹0 by the 𝐺-equivariance condition to the domain 𝐺 ⋅

Δ =
⋃

g∈𝐺 gΔ ⊂ 𝑋. The proof is completed by performing the same construction on the other
𝐺-orbits of the closed discrete set 𝑋0 ⊂ 𝑋. □

We have now arrived at the main point of our argument. The punctured null quadric 𝐀∗ is a
homogeneous manifold of the complex Lie group 𝑂(𝑛, ℂ) [5, p. 78], hence an Oka manifold by
a theorem of Grauert [25] (see also [18, Proposition 5.6.1]). It is even algebraically elliptic (see
[5, Proposition 1.15.3]). In particular, the map 𝜌 ∶ Ω → 𝑋1∕𝐺 in (3.5) is a holomorphic fibre bun-
dle with Oka fibre 𝐀∗. Let 𝑓0 ∶ 𝑉∕𝐺 → 𝑍 be a holomorphic section as in Lemma 3.2, satisfying
conditions (3.6). Recall that the branch locus of the holomorphic map 𝜌 ∶ 𝑍 → 𝑋∕𝐺 projects to
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MINIMAL SURFACES WITH SYMMETRIES 17 of 32

𝑋0∕𝐺. Since the section 𝑓0 is holomorphic on a neighbourhood of 𝑋0∕𝐺, the Oka principle for
sections of branched holomorphic maps (see [18, Theorem 6.14.6]) shows that every continuous
section 𝑓′

0
∶ 𝑋∕𝐺 → 𝑍 with 𝑓(𝑋1∕𝐺) ⊂ Ω, which agrees with 𝑓0 on a neighbourhood of 𝑋0∕𝐺,

is homotopic to a holomorphic section 𝑓 ∶ 𝑋∕𝐺 → 𝑍 through a homotopy of sections that are
holomorphic on a smaller neighbourhood of 𝑋0∕𝐺, they agree with 𝑓′

0
to any given finite order

at every point of 𝑋0, and they map 𝑋1∕𝐺 to Ω. (The cited result is an improved version of [17,
Theorem 2.1]. The main addition is that we can control the range of the resulting holomorphic
section 𝑓 ∶ 𝑋∕𝐺 → 𝑍, ensuring that 𝑓(𝑋1∕𝐺) ⊂ Ω.) The existence of a continuous extension 𝑓′

0
of

𝑓0with these properties follows from the observation that the homotopy type of the openRiemann
surface𝑋∕𝐺 is that of a bouquet of circles and the fibre𝐀∗ of the𝐺-bundle (3.5) is connected. (This
is a special case of [18, Corollary 5.14.2].)
To prove Theorem 1.1, we must explain how to find a holomorphic section 𝑓 ∶ 𝑋∕𝐺 → 𝑍 as

above such that the associated 𝐺-equivariant holomorphic map 𝑓 ∶ 𝑋 → 𝑌, given by Lemma 3.1,
integrates to a 𝐺-equivariant conformal minimal immersion 𝐹 ∶ 𝑋 → ℝ𝑛 as in (2.17). This
amounts to showing that 𝑓 can be chosen such that it satisfies the period conditions (2.16) and
(2.18). We shall follow [5, proof of Theorem 3.6.1] with appropriate modifications to ensure 𝐺-
equivariance. Themain lemma is given in the following section (see Lemma 4.5), and Theorem 1.1
is proved in Section 5 as a special case of Theorem 5.1.

4 THEMAIN LEMMA

The main result of this section is Lemma 4.5, which provides the key step in the proof of
Theorems 1.1 and 5.1. This lemma is a 𝐺-equivariant analogue of [5, Proposition 3.3.2].
We begin by adjusting the relevant technical tools from [5, Chapter 3] to𝐺-equivariantminimal

surfaces. Recall the following notion; see [5, Definition 1.12.9].

Definition 4.1. An admissible set in a Riemann surface𝑋 is a compact set of the form 𝑆 = 𝐾 ∪ 𝐸,
where𝐾 is a (possibly empty) finite union of pairwise disjoint compact domainswith piecewise𝒞1

boundaries in 𝑋 and 𝐸 = 𝑆 ⧵ 𝐾̊ is a union of finitely many pairwise disjoint, smoothly embedded
Jordan arcs and closed Jordan curves meeting 𝐾 only at their endpoints (if at all) and such that
their intersections with the boundary 𝑏𝐾 of 𝐾 are transverse.

Note that 𝑆̊ = 𝐾̊. Since an admissible set 𝑆 has at most finitely many holes in 𝑋, the Bishop–
Mergelyan theorem (see Bishop [11] and [16, Theorem 5]) shows that every function in the algebra
𝒜(𝑆) = 𝒞(𝑆) ∩ 𝒪(𝑆̊) is a uniform limit of meromorphic functions on 𝑋 with poles in 𝑋 ⧵ 𝑆, and
of holomorphic functions on 𝑋 if 𝑋 ⧵ 𝑆 has no holes (that is, 𝑋 is an open Riemann surface and 𝑆
is Runge in 𝑋). Furthermore, functions of class 𝒜𝑟(𝑆) for any 𝑟 ∈ ℕ can be approximated in the
𝒞𝑟(𝑆) topology by meromorphic or holomorphic functions on 𝑋, respectively (see [16, Theorem
16]).
We assume in the sequel that 𝑋 is an open Riemann surface, not necessarily connected, and 𝐺

is a finite group acting on 𝑋 and on ℝ𝑛 as in Theorem 1.1 such that the action of 𝐺 is transitive on
the set of connected components of 𝑋 and the stabiliser of any component 𝑋′ of 𝑋 acts effectively
on 𝑋′ (see Remarks 1.3 and 2.1). These conditions imply that the set 𝑋0 (2.3), which is the union
of fixed point sets of all elements of 𝐺, is a closed, discrete, 𝐺-invariant subset of 𝑋, which is the
branch locus of the holomorphic quotient projection
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18 of 32 FORSTNERIČ

𝜋 ∶ 𝑋 → 𝑋 ∶= 𝑋∕𝐺,

and the orbit space 𝑋 is a connected Riemann surface. Set 𝑋0 = 𝑋0∕𝐺. If 𝑆 is a 𝐺-
invariant admissible subset of 𝑋 such that 𝑋0 ∩ 𝑆 ⊂ 𝑆̊, then 𝑆 = 𝜋(𝑆) is an admissible subset
of 𝑋. Conversely, given an admissible subset 𝑆 ⊂ 𝑋 such that 𝑋0 ∩ 𝑆 is contained in the
interior of 𝑆, its preimage 𝑆 = 𝜋−1(𝑆) is a 𝐺-invariant admissible subset of 𝑋 such that
𝑋0 ∩ 𝑆 ⊂ 𝑆̊.

Lemma 4.2. Let 𝜋 ∶ 𝑋 → 𝑋 = 𝑋∕𝐺 be as above. A compact set 𝑆 ⊂ 𝑋 is Runge in 𝑋 if and only if
its preimage 𝑆 = 𝜋−1(𝑆) ⊂ 𝑋 is Runge in 𝑋.

Proof. Recall that a compact set 𝑆 in an open Riemann surface𝑋 is Runge if and only if it is𝒪(𝑋)-
convex. Assume that 𝑆 is Runge in 𝑋. Given a point 𝑝 ∈ 𝑋 ⧵ 𝑆, we have that 𝑝̃ = 𝜋(𝑝) ∈ 𝑋 ⧵ 𝑆,
and hence there is a holomorphic function ℎ̃ ∈ 𝒪(𝑋) satisfying ℎ̃(𝑝̃) = 1 > sup𝑥̃∈𝑆 |ℎ̃(𝑥̃)|. The
function ℎ = ℎ̃◦𝜋 ∈ 𝒪(𝑋) then satisfies ℎ(𝑝) = 1 > sup𝑥∈𝑆 |ℎ(𝑥)|, showing that 𝑆 is Runge in 𝑋.
Conversely, assume that 𝑆 is Runge in 𝑋. Pick a point 𝑝̃ ∈ 𝑋 ⧵ 𝑆 and let 𝜋−1(𝑝̃) = {𝑝1, … , 𝑝𝑚} ⊂

𝑋 ⧵ 𝑆, where the fibre points 𝑝𝑖 are listed according to their multiplicities. Since 𝑆 is Runge
in 𝑋, there exists ℎ0 ∈ 𝒪(𝑋) satisfying sup𝑥∈𝑆 |ℎ0(𝑥)| < 1 and ℎ0(𝑝𝑖) = 1 for 𝑖 = 1, … ,𝑚. The
function ℎ ∈ 𝒪(𝑋) defined by ℎ(𝑥) = 1

𝑚

∑
g∈𝐺 ℎ0(g𝑥) is then 𝐺-invariant and satisfies ℎ(𝑝𝑖) =

1 > sup𝑥∈𝑆 |ℎ(𝑥)| for 𝑖 = 1, … ,𝑚. It follows that ℎ = ℎ̃◦𝜋 where ℎ̃ ∈ 𝒪(𝑋) satisfies ℎ̃(𝑝̃) = 1 >

sup𝑥̃∈𝑆 |ℎ̃(𝑥̃)|. Hence, 𝑆 is Runge in 𝑋. □

The following is a version of [5, Definition 3.1.2], allowing the 1-form 𝜃 to have zeros.

Definition 4.3. Let 𝑆 = 𝐾 ∪ 𝐸 be an admissible set in a Riemann surface 𝑋 (see Defini-
tion 4.1), let 𝜃 be a holomorphic 1-form on a neighbourhood of 𝑆 in 𝑋 without zeros on
𝑏𝑆 and let 𝑌 be the manifold (2.8). A generalised conformal minimal immersion 𝑆 → ℝ𝑛 (𝑛 ⩾

3) of class 𝒞𝑟 (𝑟 ∈ ℕ) is a pair (𝐹, 𝑓𝜃), where 𝐹 ∶ 𝑆 → ℝ𝑛 is a 𝒞𝑟 map whose restriction
to 𝑆̊ is a conformal minimal immersion and the map 𝑓 ∈ 𝒜𝑟−1(𝑆, 𝑌) satisfies the following
conditions:

(a) 𝑓𝜃 = 2𝜕𝐹 holds on 𝐾 (in particular, the zeros of 𝜃 cancel the poles of 𝑓), and
(b) for any smooth path 𝛼 ∶ [0, 1] → 𝑋 parameterising a connected component of 𝐸 = 𝑆 ⧵ 𝐾,we

have thatℜ(𝛼∗(𝑓𝜃)) = 𝛼∗𝑑𝐹 = 𝑑(𝐹◦𝛼). (See Remark 4.4.)

Given an admissible set 𝑆 ⊂ 𝑋 and integers 𝑟 ⩾ 1, 𝑛 ⩾ 3, we denote byGCMI𝑟(𝑆, ℝ𝑛) the space
of all generalised conformal minimal immersions 𝑆 → ℝ𝑛 of class 𝒞𝑟. An element (𝐹, 𝑓𝜃) ∈
GCMI𝑟(𝑆, ℝ𝑛) is said to be non-flat if the image by 𝐹 of any connected component of 𝐾
and of 𝐸 is not contained in an affine 2-plane in ℝ𝑛. This holds if and only if the image
of any such component by 𝑓 is not contained in a ray of 𝐀, compactified with the point
at infinity. The identity principle shows that if 𝐹 is non-flat on a connected domain 𝐷 in
a Riemann surface 𝑋, then its restriction to every arc in 𝐷 is non-flat; conversely, if 𝐹 is
non-flat on a non-trivial arc then it is non-flat on every connected domain containing this
arc.
If 𝐺 is a finite group as in Theorem 1.1 and 𝑆 is 𝐺-invariant, then (𝐹, 𝑓𝜃) ∈ GCMI𝑟(𝑆, ℝ𝑛) is

said to be 𝐺-equivariant if 𝐹(g𝑥) = g𝐹(𝑥) holds for all 𝑥 ∈ 𝑆 and g ∈ 𝐺. In this case, the map
𝑓 ∶ 𝑆 → 𝑌 is also 𝐺-equivariant (see the proof of Proposition 2.2). We denote by
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MINIMAL SURFACES WITH SYMMETRIES 19 of 32

GCMI𝑟
𝐺
(𝑆, ℝ𝑛)

the space of 𝐺-equivariant generalised conformal minimal immersions 𝑆 → ℝ𝑛 of class𝒞𝑟.
Remark 4.4. Let 𝑆 = 𝐾 ∪ 𝐸 be an admissible set and (𝐹, 𝑓𝜃) ∈ GCMI𝑟(𝑆, ℝ𝑛). Since 𝐹 is a confor-
mal minimal immersion on 𝐾̊ = 𝑆̊, we have that 𝑑𝐹 = ℜ(2𝜕𝐹) on 𝐾, and hence condition (b) in
Definition 4.3 is compatible with condition (a) asking that 𝑓𝜃 = 2𝜕𝐹 hold on𝐾. Amap 𝑓 ∶ 𝑆 → 𝑌

of class𝒜𝑟−1(𝑆) determines a generalised conformalminimal immersion (𝐹, 𝑓𝜃) ∈ GCMI𝑟(𝑆, ℝ𝑛)

if and only if ℜ ∫𝜆 𝑓𝜃 = 0 on every closed piecewise 𝒞1 path 𝜆 ⊂ 𝑆, and it suffices to verify this
condition on a basis of the homology group 𝐻1(𝑆, ℤ). (This is a free abelian group of finite rank.
We refer to [5, Lemma 1.12.10] for the construction of a homology basis with suitable properties
that will be used in the sequel.) In particular, if 𝐹 ∶ 𝐾 → ℝ𝑛 is a conformal minimal immersion
satisfying condition (a) and 𝐸 is an oriented arc attached with both endpoints 𝑝, 𝑞 to 𝐾, then 𝑓|𝐸
must satisfy the conditionℜ ∫𝐸 𝑓𝜃 = 𝐹(𝑞) − 𝐹(𝑝).

The following lemma provides the key ingredient in the proof of Theorem 1.1.

Lemma 4.5. Let 𝑋 be an open Riemann surface, 𝐺 be a finite group as in Theorem 1.1 acting tran-
sitively on the set of connected components of 𝑋, 𝑋0 be the set (2.3), 𝜃 be a holomorphic 1-form on
𝑋 as in (2.7) with {𝜃 = 0} = 𝑋0, and let 𝜋 ∶ 𝑋 → 𝑋∕𝐺 = 𝑋 denote the quotient projection. Assume
that 𝑆 is 𝐺-invariant admissible set in 𝑋 such that 𝑋0 ⊂ 𝑆̊ and the admissible set 𝑆 = 𝜋(𝑆) ⊂ 𝑋 is
a strong deformation retract of 𝑋. Then, every non-flat 𝐺-equivariant generalised conformal mini-
mal immersion (𝐹0, 𝑓0𝜃) ∈ GCMI𝑟

𝐺
(𝑆, ℝ𝑛) (𝑟 ∈ ℕ) can be approximated in the𝒞𝑟 topology on 𝑆 by

non-flat𝐺-equivariant conformal minimal immersions 𝐹 ∶ 𝑋 → ℝ𝑛. Furthermore, 𝐹 can be chosen
to agree with 𝐹0 in any given finite set of points𝐴 ⊂ 𝐾, and to agree with 𝐹0 to any given finite order
in the points of 𝐴 ∩ 𝐾̊.

Proof. We shall follow the construction in [5, sections 3.2–3.3], adjusting it to the 𝐺-equivariant
case by using the approach described in Section 3.
Write 𝑆 = 𝐾 ∪ 𝐸 as in Definition 4.1. Since 𝑆 is 𝐺-invariant, both 𝐾 and 𝐸 are 𝐺-invariant. The

conditions imply that the set 𝑋0 is finite and the orbit space 𝑋 = 𝑋∕𝐺 is connected. Since the
admissible set 𝑆 = 𝜋(𝑆) ⊂ 𝑋 is a strong deformation retract of𝑋, it is connected as well. Note that
𝑆 contains the finite set 𝑋0 = 𝑋0∕𝐺 in its interior. Since 𝜋 ∶ 𝑋 ⧵ 𝑋0 → 𝑋 ⧵ 𝑋0 is an unramified
covering projection, it follows that 𝑆 is a strong deformation retract of𝑋. We enlarge the set𝐴 ⊂ 𝑆

in the lemma so that it contains 𝑋0 and the endpoints of all connected components of 𝐸, and set
𝐴 = 𝜋(𝐴) ⊂ 𝑆. By [5, Lemma 1.12.10] (or [20, Lemma 3.1]) and [5, proof of Proposition 3.3.2, p. 142],
there is a finite collection of smooth embedded compact arcs𝒞 = {𝐶1, … , 𝐶𝑙} in 𝑆 (diffeomorphic
images of [0, 1] ⊂ ℝ) with the following properties.

(i) The intersection of any two distinct arcs in𝒞 is either empty or a common endpoint of both
arcs.

(ii) Every point of 𝐴 is an endpoint of an arc in𝒞.
(iii) Every point 𝑥̃0 ∈ 𝑋0 is an endpoint of a single arc 𝐶𝑖 ∈ 𝒞, and the other endpoint of 𝐶𝑖 does

not belong to 𝑋0.
(iv) The compact set 𝐶 =

⋃𝑙
𝑖=1 𝐶𝑖 is a strong deformation retract of 𝑆 (and hence of 𝑋). In

particular, 𝐶 is connected and contains a homology basis of 𝑆 (and hence of 𝑋).

Note that (i) and (ii) imply that no point of 𝐴 is an interior point of an arc in 𝒞. We now enlarge
the finite sets 𝐴 and 𝐴 if necessary to also arrange the following:
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(v) The set of all endpoints of the arcs in𝒞 equals 𝐴, and 𝐴 = 𝜋−1(𝐴).

For each 𝑖 = 1, … , 𝑙, the preimage 𝐶𝑖 = 𝜋−1(𝐶𝑖) ⊂ 𝑆 is the union of arcs 𝐶𝑖,1, … , 𝐶𝑖,𝑚, where 𝑚 =

|𝐺| is the degree of the projection 𝜋 ∶ 𝑋 → 𝑋. If an arc 𝐶𝑖 ∈ 𝒞 does not contain any point of 𝑋0,
then 𝜋 is a trivial covering projection over 𝐶𝑖 , and hence the arcs 𝐶𝑖,𝑗 for 𝑗 = 1,… ,𝑚 are pairwise
disjoint. In the opposite case, one of the endpoints 𝑥̃0 of 𝐶𝑖 belongs to 𝑋0, and then several arcs
𝐶𝑖,𝑗 ⊂ 𝐶𝑖 share an endpoint but are otherwise disjoint. In fact, if 𝑘 = |𝐺𝑥0

| > 1 is the order of the
stabiliser group of 𝑥0 ∈ 𝑋0 and 𝑥̃0 = 𝜋(𝑥0), then 𝑥0 is the common endpoint of precisely 𝑘 arcs
𝐶𝑖,𝑗 ⊂ 𝐶𝑖 . The set

𝐶 = 𝜋−1(𝐶) =

𝑙⋃
𝑖=1

𝐶𝑖 (4.1)

is 𝐺-invariant, Runge in 𝑋 by Lemma 4.2 and it contains the set 𝑋0 of branch points
of 𝜋. Since 𝐶 is a strong deformation retract of 𝑋, 𝑋0 ⊂ 𝐶 and 𝜋 is unbranched over
𝑋 ⧵ 𝑋0, it follows that 𝐶 is a strong deformation retract of 𝑋. Our assumptions imply
that none of the arcs 𝑓0(𝐶𝑖,𝑗) is contained in a compactified ray of the null quadric
𝐀∗. Hence, [5, Lemma 3.2.1] yields for every 𝑖 = 1, … , 𝑙 a 𝒞𝑟−1 map ℎ𝑖 ∶ 𝐶𝑖,1 × 𝐵 → 𝑌 =

𝐀∗ ∪ 𝑌0 (see (2.8)), where 𝐵 ⊂ ℂ𝑛 is a ball centred at the origin, with the following
properties.

(a) ℎ𝑖(𝑥, 0) = 𝑓0(𝑥) for every 𝑥 ∈ 𝐶𝑖,1.
(b) There is a closed arc 𝐼𝑖 contained in the relative interior of 𝐶𝑖,1 such that ℎ𝑖(𝑥, 𝑡) = 𝑓0(𝑥) for

every 𝑥 ∈ 𝐶𝑖,1 ⧵ 𝐼𝑖 and 𝑡 ∈ 𝐵.
(c) ℎ𝑖(𝑥, 𝑡) ∈ 𝐀∗ for every 𝑥 ∈ 𝐶𝑖,1 ⧵ 𝑋0 and 𝑡 ∈ 𝐵.
(d) The map ℎ𝑖(𝑥, ⋅) ∶ 𝐵 → 𝑌 is holomorphic for every 𝑥 ∈ 𝐶𝑖,1.
(e) The following ℂ-linear map is an isomorphism:

𝜕

𝜕𝑡

|||||𝑡=0 ∫𝐶𝑖,1 ℎ𝑖(⋅, 𝑡)𝜃 ∶ ℂ𝑛 → ℂ𝑛. (4.2)

In the language of [5, Chapter 3], ℎ𝑖 is a period dominating spray of maps 𝐶𝑖,1 → 𝑌 with the core
𝑓0.We now extendℎ𝑖 by𝐺-equivariance to a spray𝐶𝑖 × 𝐵 → 𝑌 over𝐶𝑖 =

⋃𝑚
𝑗=1 𝐶𝑖,𝑗 . Recall that𝐶 is

given by (4.1). By condition (b) above, ℎ𝑖 extends to a spray ℎ𝑖 ∶ 𝐶 × 𝐵 → 𝑌 which is independent
of 𝑡 ∈ 𝐵 on𝐶 ⧵ 𝐶𝑖 , so it equals𝑓0 there. Let𝐵𝑙 denote theCartesian product of 𝑙 copies of𝐵. Finally,
we combine the sprays ℎ1, … , ℎ𝑙 into a single spray ℎ ∶ 𝐶 × 𝐵𝑙 → 𝑌, which is 𝐺-equivariant with
respect to the first variable 𝑥 ∈ 𝐶, such that, writing the parameter variable as 𝑡 = (𝑡1, … , 𝑡𝑙) ∈ 𝐵𝑙

with 𝑡𝑖 = (𝑡𝑖,1, … , 𝑡𝑖,𝑛) ∈ 𝐵, we have

ℎ(𝑥, 𝑡1, … , 𝑡𝑙) = ℎ𝑖(𝑥, 𝑡
𝑖) for all 𝑥 ∈ 𝐶𝑖 and 𝑖 = 1, … , 𝑙. (4.3)

To the collection of arcs 𝒞 = {𝐶𝑖,𝑗} defined above and to any continuous 𝐺-equivariant map
𝑓 ∶ 𝐶 → 𝑌 such that 𝑓𝜃 assumes values in the punctured null quadric𝐀∗ we associate the period
vector (𝑓) = (1(𝑓), … ,𝑙(𝑓)) ∈ (ℂ𝑛)𝑙 whose 𝑖-th component equals

𝑖(𝑓) = ∫𝐶𝑖,1 𝑓𝜃 ∈ ℂ𝑛 for 𝑖 = 1, … , 𝑙. (4.4)
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MINIMAL SURFACES WITH SYMMETRIES 21 of 32

Our construction clearly implies

𝜕

𝜕𝑡

|||||𝑡=0(ℎ(⋅, 𝑡)) ∶ (ℂ
𝑛)𝑙 → (ℂ𝑛)𝑙 is an isomorphism.

Indeed, the above linear map has a block structure whose 𝑖-th diagonal 𝑛 × 𝑛 block equals the
map in (4.2) while the off-diagonal blocks vanish.
In the next step, we approximate ℎ by a spray of maps 𝐻 ∶ 𝑆 × 𝐵𝑙 → 𝑌 of class 𝒜𝑟−1(𝑆 × 𝐵𝑙)

(where the ball 𝐵 ⊂ ℂ𝑛 is allowed to shrink a little) such that 𝐻(⋅, 0) = 𝑓0, 𝐻(⋅, 𝑡) agrees with 𝑓0
in every point of 𝐴 and to any given finite order in points of 𝐴 ∩ 𝐾̊ (in particular, in points of the
set 𝑋0 ⊂ 𝐾̊),𝐻 is 𝐺-equivariant in 𝑥 ∈ 𝑆 for any fixed 𝑡 ∈ 𝐵𝑙, and

𝜕

𝜕𝑡

|||||𝑡=0(𝐻(⋅, 𝑡)) ∶ (ℂ𝑛)𝑙 → (ℂ𝑛)𝑙 is an isomorphism. (4.5)

In other words, 𝐻 is a 𝐺-equivariant -period dominating spray on 𝑆 with values in 𝑌 and with
the core 𝑓0. To find such𝐻, we proceed as follows.
By the discussion in Section 3, we can view the spray ℎ in (4.3) as a spray of sections ℎ̃ ∶ 𝐶 ×

𝐵𝑙 → 𝑍 of the map 𝜌 ∶ 𝑍 = (𝑋 × 𝑌)∕𝐺 → 𝑋∕𝐺 = 𝑋 in (3.3), whose core ℎ̃(⋅, 0) ∶ 𝐶 → 𝑍 is the
section 𝑓0 restricted to 𝐶. Note that ℎ̃ is holomorphic in the parameter 𝑡 ∈ 𝐵𝑙, and ℎ̃(𝑥̃, 𝑡) = 𝑓0(𝑥̃)

holds for all 𝑡 ∈ 𝐵𝑙 when 𝑥̃ ∈ 𝐶 is sufficiently near 𝐴 = 𝜋(𝐴).
By [49, Theorem 3.1] (see also [16, Theorem 32 and Corollary 7]), the image of the section 𝑓0 ∶

𝑆 → 𝑍 has an open Stein neighbourhood 𝑍0 ⊂ 𝑍. (Poletsky’s result is stated for sections of holo-
morphic submersions, but in the case at hand, the branch points of 𝜌 ∶ 𝑍 → 𝑋 lie in the interior
of 𝑆 and a minor modification of his proof applies. For Stein subvarieties without boundaries, the
existence of open Stein neighbourhoods was proved by Siu [51].) By [17, Proposition 2.2] the pro-
jection 𝜌 ∶ 𝑍 → 𝑋∕𝐺 = 𝑋 admits a holomorphic fibre-spray over the Stein domain 𝑍0 ⊂ 𝑍, which
is fibre dominating outside the branch locus of 𝜌, that is, on𝑍0 ⧵ 𝜌−1(𝑋0), andwhich is trivial over
𝜌−1(𝑋0). By restricting this spray to𝑓0(𝑆) ⊂ 𝑍0, we obtain a fibre-spray of sections 𝑠 ∶ 𝑆 ×𝑊 → 𝑍,
where 0 ∈ 𝑊 ⊂ ℂ𝑘 is a neighbourhood of the origin in some complex Euclidean space, such that
𝑠(⋅, 0) = 𝑓0, 𝜌(𝑠(𝑥̃, 𝜁)) = 𝑥̃ for all 𝑥̃ ∈ 𝑆 and 𝜁 ∈ 𝑊, and 𝑠 is fibre dominating over 𝑆 ⧵ 𝑋0. The fibre
domination property of 𝑠 and the implicit function theorem imply that we can factor the spray ℎ̃,
constructed above, through the spray 𝑠. Explicitly, shrinking the ball 𝐵 ⊂ ℂ𝑛 in the domain of ℎ̃ if
necessary, there is a map 𝜁 ∶ 𝐶 × 𝐵𝑙 → 𝑊 of class𝒜𝑟−1 such that

ℎ̃(𝑥̃, 𝑡) = 𝑠
(
𝑥̃, 𝜁(𝑥̃, 𝑡)

)
and 𝜁(𝑥̃, 0) = 0 hold for all 𝑥̃ ∈ 𝐶 and 𝑡 ∈ 𝐵𝑙.

Note that 𝜁 can be chosen such that 𝜁(𝑥̃, 𝑡) vanishes when the point 𝑥̃ ∈ 𝑆 is sufficiently close to
a point of 𝐴 = 𝜋(𝐴). This is because the spray ℎ̃ is supported (that is, not identically equal to its
core 𝑓0) on a union of closed arcs in𝐶 disjoint from𝐴, and over this set we can find a (necessarily)
trivial complex vector sub-bundle of𝐶 × ℂ𝑘 which ismapped by the differential 𝑑𝑠 isomorphically
onto the vertical (with respect to the map 𝜌 ∶ 𝑍 → 𝑋) tangent bundle of 𝑍, that is, the kernel of
𝑑𝜌. Furthermore, by the construction we have that ℎ̃(𝑥̃, 𝑡) = 𝑓0(𝑥̃) for every point 𝑥̃ ∈ 𝑆 that is
sufficiently close to a point of 𝐴 and for every 𝑡 ∈ 𝐵𝑙.
Consider the Taylor series expansion of 𝜁 in the 𝑡-variable:

𝜁(𝑥̃, 𝑡) =
∑

𝑡𝑖,𝑗𝜁𝑖,𝑗(𝑥̃) + 𝑂(|𝑡|2),
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22 of 32 FORSTNERIČ

where the summation is over 𝑖 = 1, … , 𝑙 and 𝑗 = 1,… , 𝑛 and the coefficient functions 𝜁𝑖,𝑗 are of
class𝒞𝑟−1(𝐶). Since𝐶 is a piecewise smooth curve which is Runge in𝑋, Mergelyan’s theorem [16,
Theorem 16] allows us to approximate the functions 𝜁𝑖,𝑗 in the𝒞𝑟−1(𝐶) topology by holomorphic
functions 𝜁𝑖,𝑗 on 𝑋 that vanish to any given finite order in the points of 𝐴. Consider the map
𝐻̃ ∶ 𝑆 × 𝐵𝑙 → 𝑍 of class𝒜𝑟−1 defined by

𝐻̃(𝑥̃, 𝑡) = 𝑠
(
𝑥̃,

∑
𝑡𝑖,𝑗𝜁𝑖,𝑗(𝑥̃)

)
for 𝑥̃ ∈ 𝑆 and 𝑡 ∈ 𝐵𝑙. (4.6)

Note that 𝐻̃(⋅, 0) = 𝑓0, and the partial differential 𝜕𝑡𝐻̃|𝑡=0 is close to 𝜕𝑡ℎ̃|𝑡=0 on 𝐶. Assuming that
the approximation is close enough, the map𝐻 ∶ 𝑆 × 𝐵𝑙 → 𝑌 determined by 𝐻̃ (see Lemma 3.1) is
a 𝐺-equivariant spray of class𝒜𝑟−1 with the core 𝑓0 which is -period dominating, that is, (4.5)
holds. Indeed, the period domination condition only depends on the 𝑡-derivative of the spray at
𝑡 = 0 and is stable under deformations.
We can now complete the proof of Lemma 4.5. Recall that𝑋1 = 𝑋 ⧵ 𝑋0, see (2.4). LetΩ = (𝑋1 ×

𝐀∗)∕𝐺 ⊂ 𝑍 be the domain in (3.4). Its complement 𝑍′ = 𝑍 ⧵ Ω is a closed complex subvariety of
𝑍 containing the branch locus of 𝜌, and the restricted projection 𝜌 ∶ Ω → 𝑋1 ∶= 𝑋1∕𝐺 = 𝑋 ⧵ 𝑋0

is a holomorphic 𝐺-bundle whose fibre 𝐀∗ is an Oka manifold. Note that the range of the spray
𝐻̃ in (4.6) lies in Ω except over the points 𝑥̃ ∈ 𝑋0, and these points are contained in the interior
of 𝑆. Hence, shrinking the ball 𝐵 ⊂ ℂ𝑛 slightly, we can apply the Oka principle for sections of
branched holomorphic maps [17, Theorem 2.1] (see also the improved version in [18, Theorem
6.14.6] which exactly fits our situation) to approximate 𝐻̃ on 𝑆 × 𝐵𝑙 by a holomorphic spray of
sections Θ̃ ∶ 𝑋 × 𝐵𝑙 → 𝑍 which agrees with 𝐻̃ to a given finite order in the points 𝑥̃ ∈ 𝐴 and
maps 𝑋1 × 𝐵𝑙 to Ω. (Recall that 𝑋1 = 𝑋 ⧵ 𝑋0. Although [18, Theorem 6.14.6] is stated for a single
section, its proof applies to sprays of sections. Alternatively, one can treat the parameter variable
𝑡 as a space variable, suitably adjusting the spaces under consideration.)
Let Θ ∶ 𝑋 × 𝐵𝑙 → 𝑌 be the 𝐺-equivariant holomorphic spray associated to Θ̃ by Lemma 3.1.

Assuming that the approximation of 𝐻̃ by Θ̃ is close enough, the period domination property of
𝐻 and the implicit function theorem yield a parameter value 𝑡0 ∈ 𝐵𝑙 close to the origin such that
the 𝐺-equivariant map 𝑓 = Θ(⋅, 𝑡0) ∶ 𝑋 → 𝑌 approximates 𝑓0 on 𝑆 and satisfies (𝑓) = (𝑓0);
see (4.4). From the last condition and 𝐺-equivariance, it follows that 𝑓 has the same periods as
𝑓0 on the arcs 𝐶𝑖,𝑗 ⊂ 𝐶 for 𝑖 = 1, … , 𝑙 and 𝑗 = 1,… ,𝑚. Furthermore, the construction implies that
𝑓𝜃 is a holomorphic 1-form on 𝑋 with values in 𝐀∗.
Since the 𝐺-equivariant set 𝐶 is a strong deformation retract of 𝑋, it contains a homology basis

of 𝑋 and also curves which can be used to verify conditions (2.18) in Lemma 2.3. More precisely,
each of these curves can be chosen to be a union of arcs in the family𝒞 = {𝐶𝑖,𝑗}. Since the periods
of 𝑓𝜃 and 𝑓0𝜃 agree on every arc 𝐶𝑖,𝑗 ∈ 𝒞 and 𝑓0 comes from a generalized 𝐺-equivariant con-
formal minimal immersion (𝐹0, 𝑓0𝜃), it follows that 𝑓𝜃 integrates to a 𝐺-equivariant conformal
minimal immersion 𝐹 ∶ 𝑋 → ℝ𝑛 satisfying Lemma 4.5. If 𝑋 is disconnected and the conditions
in Remark 1.3 hold, we apply integration on a connected component of 𝑋 and extend it to all of 𝑋
by 𝐺-equivariance. □

In the proof of Theorem 1.1, we shall also need the following lemma on approximating flat
𝐺-equivariant conformal minimal immersions by non-flat ones.

Lemma 4.6. Let 𝐺 = ⟨g⟩ be a cyclic group of order 𝑘 whose generator g acts on ℂ by the rotation
g𝑧 = e𝚤2𝜋∕𝑘𝑧, and it acts onℝ𝑛 (𝑛 ⩾ 3) by an orthogonal transformation. Let𝑈 ⊂ ℂ be a disc centred
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MINIMAL SURFACES WITH SYMMETRIES 23 of 32

at the origin. Given a flat𝐺-equivariant conformalminimal immersion𝐹0 ∶ 𝑈 → ℝ𝑛 and an integer
𝑟 ∈ ℕ, there is a non-flat 𝐺-equivariant conformal minimal immersion 𝐹 ∶ ℂ → ℝ𝑛 which agrees
with 𝐹0 to order 𝑟 in 𝑧 = 0 and it approximates 𝐹0 as closely as desired on a given compact subset of
𝑈.

Proof. Assume that 𝐹0 is defined on an open disc𝑈 ⊂ ℂ centred at the origin and containing the
closed unit disc Δ = {𝑧 ∈ ℂ ∶ |𝑧| ⩽ 1}. Set 𝜃 = 𝑧𝑘−1𝑑𝑧 and write 2𝜕𝐹0 = ℎ0𝜃, where ℎ0 ∶ 𝑈 → 𝑌

is a 𝐺-equivariant holomorphic map such that ℎ0(𝑈 ⧵ {0}) ⊂ ℂ∗𝑦0 for some 𝑦0 ∈ 𝐀∗. Let 𝜋 ∶ ℂ →

ℂ∕𝐺 = ℂ denote the quotient projection 𝜋(𝑧) = 𝑧𝑘. Then, 𝑈 = 𝜋(𝑈) is a disc in ℂ containing
Δ. By Lemma 3.1, ℎ0 determines a holomorphic section ℎ̃0 ∶ 𝑈 → 𝑍 of the holomorphic map
𝜌 ∶ 𝑍 = (ℂ × 𝑌)∕𝐺 → ℂ (see (3.3)) over𝑈. Note that 𝜌 is branched only over the origin.We attach
toΔ the segment𝐶 = [1, 2𝑘] ⊂ ℝ ⊂ ℂ. Note that 𝑆 = Δ ∪ 𝐶 is an admissible set. The preimage𝐶 =

𝜋−1(𝐶) =
⋃𝑘

𝑖=1 𝐶𝑖 is a union of 𝑘 pairwise disjoint arcs 𝐶𝑖 attached to Δ. One of these arcs, say 𝐶1,
is the segment [1, 2] ⊂ ℝ and the other arcs are obtained by rotating 𝐶1 through integer multiples
of the angle 2𝜋∕𝑘. We define a smooth𝐺-equivariant map 𝑓0 ∶ 𝑆 = Δ ∪ 𝐶 → 𝑌 such that 𝑓0 = ℎ0
onΔ, 𝑓0(𝐶) ⊂ 𝐀∗ and 𝑓0(2) ∈ 𝐀∗ ⧵ ℂ𝑦0. Let 𝑓0 ∶ 𝑆 = Δ ∪ 𝐶 → 𝑍 denote the section of 𝜌 ∶ 𝑍 → ℂ

over 𝑆 associated to 𝑓0 by Lemma 3.1. By [18, Theorem 6.14.6] there is a holomorphic section 𝑓 ∶

ℂ → 𝑍 which approximates 𝑓0 on 𝑆, it agrees with 𝑓0 to a given finite order in the origin 0 ∈ ℂ,
it agrees with 𝑓0 in the point 2𝑘, and it satisfies 𝑓(ℂ∗) ⊂ (ℂ∗ × 𝐀∗)∕𝐺. The section 𝑓 defines a
𝐺-equivariant holomorphic map 𝑓 ∶ ℂ → 𝑌 satisfying 𝑓(ℂ∗) ⊂ 𝐀∗ which agrees with ℎ0 to the
given order 𝑟 in the origin and satisfies 𝑓(2) = 𝑓0(2) ∈ 𝐀 ⧵ ℂ𝑦0. Hence, 𝑓 is non-flat on the arc
𝐶1, and therefore on ℂ. By integrating 𝑓𝜃 we obtain a non-flat 𝐺-equivariant conformal minimal
immersion 𝐹 ∶ ℂ → ℝ𝑛 which agrees with 𝐹0 to order 𝑟 in 𝑧 = 0 and approximates 𝐹0 on Δ. □

5 PROOF OF THEOREM 1.1

In this section, we prove the following result.

Theorem 5.1. Assume that 𝐺 is a finite group acting effectively on a connected open Riemann sur-
face𝑋 by holomorphic automorphisms and acting onℝ𝑛 (𝑛 ⩾ 3) by orthogonal transformations. Let
𝜋 ∶ 𝑋 → 𝑋∕𝐺 be the quotient projection and 𝑋0 ⊂ 𝑋 be the set (2.3) of its branch points. Assume
𝑆 ⊂ 𝑋 is a 𝐺-invariant admissible subset (see Definition 4.1) which is Runge in 𝑋, 𝐴 ⊂ 𝑋 ⧵ 𝑏𝑆 is a
closed 𝐺-invariant discrete set containing 𝑋0, 𝑉 ⊂ 𝑋 ⧵ 𝑆 is an open 𝐺-invariant neighbourhood of
𝐴 ⧵ 𝑆 and 𝐹0 ∶ 𝑆 ∪ 𝑉 → ℝ𝑛 is such that 𝐹0|𝑆 ∈ GCMI𝑟

𝐺
(𝑆) (𝑟 ⩾ 1) is a non-flat 𝐺-equivariant gen-

eralised conformalminimal immersion, and𝐹0|𝑉 is a𝐺-equivariant conformalminimal immersion.
Then, 𝐹0 can be approximated as closely as desired in the𝒞𝑟 topology on 𝑆 by 𝐺-equivariant confor-
mal minimal immersions 𝐹 ∶ 𝑋 → ℝ𝑛 which agree with 𝐹0 to a given finite order 𝑘(𝑎) ∈ ℕ in every
point 𝑎 ∈ 𝐴.

By Remarks 1.3 and 2.1, Theorem 5.1 also holds if 𝑋 is not necessarily connected and the
stabiliser 𝐺𝑋′ ⊂ 𝐺 of each connected component 𝑋′ of 𝑋 acts effectively on 𝑋′.
We have seen in Section 3 that the hypotheses of Theorem 1.1 imply the existence of a 𝐺-

equivariant conformal minimal immersion 𝐹0 ∶ 𝑉 → ℝ𝑛 from a 𝐺-invariant neighbourhood 𝑉 ⊂

𝑋 of the closed discrete set𝑋0 (2.3), so Theorem 5.1 implies Theorem 1.1. To obtain non-degenerate
conformal minimal immersions𝑋 → ℝ𝑛 (that is, not lying in any affine hyperplane), it suffices to
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24 of 32 FORSTNERIČ

suitably choose their values on finitely many 𝐺-orbits in 𝑋 and apply the interpolation statement
on the set 𝐴 ⊂ 𝑋 in Theorem 5.1.

Proof of Theorem 5.1. By Lemmas 4.5 and 4.6 wemay assume, after shrinking𝑉 around the closed
discrete set 𝐴 ⧵ 𝑆 if necessary, that 𝐹0 is a non-flat 𝐺-equivariant conformal minimal immersion
𝐹0 ∶ 𝑈 ∪ 𝑉 → ℝ𝑛, where𝑈 ⊂ 𝑋 is a 𝐺-invariant open neighbourhood of 𝑆 such that𝐴 ∩ 𝑆 = 𝐴 ∩

𝑈 and 𝑈 ∩ 𝑉 = ∅. Set

𝑋 = 𝑋∕𝐺, 𝑋0 = 𝜋(𝑋0), 𝐴 = 𝜋(𝐴), 𝑈 = 𝜋(𝑈), 𝑉 = 𝜋(𝑉).

Let 𝜃 be a 𝐺-invariant holomorphic 1-form (2.6) with {𝜃 = 0} = 𝑋0, and let 𝑌 be the manifold
(2.8). By Proposition 2.2, the map 𝑓0 = 2𝜕𝐹0∕𝜃 ∶ 𝑈 ∪ 𝑉 → 𝑌 is holomorphic and 𝐺-equivariant.
Let 𝑓0 be the associated section of the map 𝜌 ∶ 𝑍 = (𝑋 × 𝑌)∕𝐺 → 𝑋∕𝐺 = 𝑋 (3.3) over𝑈 ∪ 𝑉 (see
Lemma 3.1). Since 𝑆 is a 𝐺-invariant admissible Runge set in 𝑋, the image 𝑆 = 𝜋(𝑆) ⊂ 𝑋 is an
admissible set which is Runge in 𝑋 by Lemma 4.2. Hence, there is a smooth strongly subhar-
monicMorse exhaustion function 𝜓 ∶ 𝑋 → ℝ+ and an increasing sequence 0 < 𝑐0 < 𝑐1 < ⋯with
lim𝑖→∞ 𝑐𝑖 = +∞ such that, setting𝐷𝑖 = {𝜓 ⩽ 𝑐𝑖}, we have that 𝑆 ⊂ 𝐷̊0 ⊂ 𝐷0 ⊂ 𝑈 and the following
conditions hold for every 𝑖 ∈ ℤ+.

∙ The number 𝑐𝑖 is a regular value of 𝜓.
∙ {𝜓 = 𝑐𝑖} ∩ 𝐴 = ∅.
∙ The domain Γ𝑖+1 = 𝐷̊𝑖+1 ⧵ 𝐷𝑖 contains at most one critical point of 𝜓 or at most one point of 𝐴,
but not both.

For every 𝑖 ∈ ℤ+ we set

𝐵𝑖 = 𝜋−1(𝐷𝑖) = {𝜓◦𝜋 ⩽ 𝑐𝑖} ⊂ 𝑋. (5.1)

Note that the smoothly bounded compact sets 𝐵𝑖 are 𝐺-invariant and they form a normal
exhaustion of 𝑋.
To prove the theorem, we shall inductively construct a sequence (𝐹𝑖, 𝑓𝑖𝜃) ∈ GCMI𝑟

𝐺
(𝐵𝑖, ℝ

𝑛) of
non-flat, 𝐺-equivariant generalised conformal minimal immersions satisfying the following two
conditions for every 𝑖 ∈ ℤ+:

(a) 𝐹𝑖+1 approximates 𝐹𝑖 in the𝒞𝑟 topology as closely as desired on 𝐵𝑖 , and
(b) 𝐹𝑖+1 agrees with 𝐹0 to the given order 𝑘(𝑎) in every point 𝑎 ∈ 𝐴 ∩ 𝐵𝑖+1.

Assuming that the approximation conditions are appropriately chosen, the sequence 𝐹𝑖 con-
verges to a 𝐺-equivariant conformal minimal immersion 𝐹 = lim𝑖→∞ 𝐹𝑖 ∶ 𝑋 → ℝ𝑛 satisfying
Theorem 5.1. We refer to [5, proof of Theorem 3.6.1] for the details.
The initial step is provided by the restriction of (𝐹0, 𝑓0𝜃) to 𝐵0. Assuming inductively that we

have found (𝐹𝑖, 𝑓𝑖𝜃) ∈ GCMI𝑟
𝐺
(𝐵𝑖, ℝ

𝑛) for some 𝑖 ∈ ℤ+, we shall explain how to find the next
map (𝐹𝑖+1, 𝑓𝑖+1𝜃) ∈ GCMI𝑟

𝐺
(𝐵𝑖+1, ℝ

𝑛) with the desired properties. Recall that Γ𝑖+1 = 𝐷̊𝑖+1 ⧵ 𝐷𝑖

for 𝑖 ∈ ℤ+, so 𝐷𝑖+1 = 𝐷𝑖 ∪ Γ𝑖+1. We consider cases.
Case 1: Γ𝑖+1 does not contain any critical point of 𝜓 or a point of 𝐴. In this case, 𝐷𝑖 is a strong

deformation retract of 𝐷𝑖+1 and a generalised conformal minimal immersion (𝐹𝑖+1, 𝑓𝑖+1𝜃) ∈

GCMI𝑟
𝐺
(𝐵𝑖+1, ℝ

𝑛) with the desired properties is furnished by Lemma 4.5.
Case 2: Γ𝑖+1 contains a critical point 𝑥̃ of 𝜓. We can attach to 𝐷𝑖 a smooth embedded

arc 𝐸 ⊂ 𝐷̊𝑖+1 ⧵ 𝐷̊𝑖 , intersecting 𝐷𝑖 only at its endpoints 𝑝̃ and 𝑞, such that 𝑆𝑖 = 𝐷𝑖 ∪ 𝐸 is an
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MINIMAL SURFACES WITH SYMMETRIES 25 of 32

admissible set (see Definition 4.1) which is a strong deformation retract of 𝐷𝑖+1. (One can dis-
tinguish several topologically different subcases as in [5, proof of Theorem 3.6.1], but this will not
affect our discussion.) Since Γ𝑖+1 ∩ 𝑋0 = ∅, the map 𝜋 is unbranched over Γ𝑖+1 and hence the
preimage 𝐸 = 𝜋−1(𝐸) =

⋃𝑚
𝑗=1 𝐸𝑗 ⊂ 𝑋 is a disjoint union of𝑚 = |𝐺| smooth arcs. Let 𝑝𝑗, 𝑞𝑗 ∈ 𝑏𝐵𝑖

denote the endpoints of 𝐸𝑗 with 𝜋(𝑝𝑗) = 𝑝̃𝑗 and 𝜋(𝑞𝑗) = 𝑞𝑗 for 𝑗 = 1,… ,𝑚. By [5, Lemma 3.5.4]
we can extend the givenmap 𝑓𝑖 ∶ 𝐵𝑖 → 𝑌 from the induction step to a non-flat𝐺-equivariantmap
𝑓′
𝑖
∶ 𝑆𝑖 = 𝐵𝑖 ∪ 𝐸 → 𝑌 of class𝒜𝑟−1 such that 𝑓′

𝑖
(𝐸) ⊂ 𝐀∗ and

ℜ∫𝐸𝑗 𝑓
′
𝑖
𝜃 = 𝐹𝑖(𝑞𝑗) − 𝐹𝑖(𝑝𝑗) holds for 𝑗 = 1,… ,𝑚, (5.2)

where the arc 𝐸𝑗 is oriented from 𝑝𝑗 to 𝑞𝑗 . (It suffices to ensure the condition (5.2)
on the arc 𝐸1, as it then extends by 𝐺-equivariance to the remaining arcs 𝐸2, … , 𝐸𝑚.
See [5, proof of Theorem 3.6.1, p. 158] for the details of this argument.) By Remark 4.4,
the map 𝑓′

𝑖
determines an extension 𝐹′

𝑖
of 𝐹𝑖 to the 𝐺-invariant admissible set 𝑆𝑖 =

𝐵𝑖 ∪ 𝐸 = 𝜋−1(𝑆𝑖) such that (𝐹′
𝑖
, 𝑓′

𝑖
𝜃) ∈ GCMI𝐺(𝑆𝑖). By Lemma 4.5 we can approximate

(𝐹′
𝑖
, 𝑓′

𝑖
𝜃) in the 𝒞𝑟−1(𝑆𝑖) topology by (𝐹𝑖+1, 𝑓𝑖+1𝜃) ∈ GCMI𝑟

𝐺
(𝐵𝑖+1, ℝ

𝑛) having the desired
properties.
Case 3: Γ𝑖+1 contains a point 𝑎̃ ∈ 𝐴. Let Δ̃ ⊂ Γ𝑖+1 ∩ 𝑉 be a small closed disc around 𝑎̃. The

initial map 𝐹0 is then a conformal 𝐺-equivariant minimal immersion on Δ = 𝜋−1(Δ̃) ⊂ 𝑉. Note
that 𝐵𝑖 ∩ Δ = ∅. We extend (𝐹𝑖, 𝑓𝑖𝜃) to 𝐵𝑖 ∪ Δ by setting 𝐹𝑖 = 𝐹0 and 𝑓𝑖 = 𝑓0 on Δ. Choose a
point 𝑞 ∈ 𝑏Δ̃ and attach to 𝐷𝑖 a smooth embedded arc 𝐸 ⊂ 𝐷̊𝑖+1 ⧵ (𝐷̊𝑖 ∪

̊̃Δ), having an endpoint
𝑝̃ ∈ 𝑏𝐷𝑖 and the other endpoint 𝑞 ∈ 𝑏Δ̃, such that 𝑆𝑖 ∶= 𝐷𝑖 ∪ Δ̃ ∪ 𝐸 is an admissible set in 𝑋.
Note that 𝑆𝑖 is a strong deformation retract of 𝐷𝑖+1. Set 𝑆𝑖 = 𝜋−1(𝑆𝑖) ⊂ 𝑋. We now proceed as in
Case 2, first extending (𝐹𝑖, 𝑓𝑖𝜃) from 𝐵𝑖 ∪ Δ to (𝐹′

𝑖
, 𝑓′

𝑖
𝜃) ∈ GCMI𝑟

𝐺
(𝑆𝑖) such that conditions (5.2)

hold and then applying Lemma 4.5 to obtain (𝐹𝑖+1, 𝑓𝑖+1𝜃) ∈ GCMI𝑟
𝐺
(𝐵𝑖+1, ℝ

𝑛) with the desired
properties.
This completes the induction step, and hence of the proof of Theorem 5.1. □

Remark 5.2 (Controlling the flux). In the proof of Theorem 5.1, one can also control the
flux of 𝐺-equivariant conformal minimal immersions, provided that the flux homomorphism
is 𝐺-equivariant. Explicitly, in the proof of Cases 2 and 3 above, we can use [5, Lemma
3.5.4] to extend the map 𝑓𝑖 ∶ 𝐵𝑖 → 𝑌 to a non-flat 𝐺-equivariant map 𝑓′

𝑖
∶ 𝑆𝑖 = 𝐵𝑖 ∪ 𝐸 → 𝑌 of

class 𝒜𝑟−1 such that 𝑓′
𝑖
(𝐸) ⊂ 𝐀∗, condition (5.2) holds, and in addition the imaginary parts

ℑ ∫𝐸𝑗 𝑓′𝑖 𝜃 for 𝑗 = 1,… ,𝑚 assume any given set of 𝐺-equivariant values in ℝ𝑛. In particular,
we can obtain the following analogue of Theorem 1.1 for 𝐺-equivariant immersed holomor-
phic null curves 𝐻 = (𝐻1,… ,𝐻𝑛) ∶ 𝑋 → ℂ𝑛, that is, 𝐺-equivariant holomorphic immersions
satisfying

∑𝑛
𝑖=1(𝑑𝐻𝑖)

2 = 0. (See [5, Theorem 3.6.1] for the basic case when 𝐺 is the trivial
group.)

Theorem 5.3 (𝐺-equivariant null holomorphic curves). Let 𝐺 be a finite group acting effectively
on a connected open Riemann surface 𝑋 by holomorphic automorphisms, and acting on ℂ𝑛 (𝑛 ⩾

3) by complex orthogonal transformations in 𝑂(𝑛, ℂ). Assume that for every non-trivial stabiliser
𝐺𝑥 (𝑥 ∈ 𝑋) there is a 𝐺𝑥-invariant null complex line 𝐿𝑥 ⊂ 𝐀 ⊂ ℂ𝑛 on which a generator of 𝐺𝑥 acts
by 𝑧 ↦ e𝚤𝜙𝑧 with 𝜙 = 2𝜋∕|𝐺𝑥|. Then there exists a non-degenerate 𝐺-equivariant holomorphic null
immersion𝐻 ∶ 𝑋 → ℂ𝑛.
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26 of 32 FORSTNERIČ

6 SYMMETRICMINIMAL SURFACESWITH ENDS OF FINITE
TOTAL CURVATURE

Let 𝑋 be an open Riemann surface. An immersed minimal surface 𝐹 ∶ 𝑋 → ℝ𝑛 has non-positive
Gaussian curvature function  ∶ 𝑋 → (−∞, 0]. The surface is said to have finite total curvature
if

∫𝑋 𝑑𝜎 > −∞.

Here, 𝑑𝜎 denotes the surface area in the induced Riemannian metric 𝐹∗𝑑𝑠2 on 𝑋, where
𝑑𝑠2 is the Euclidean metric on ℝ𝑛. If in addition 𝐹 is complete, meaning that the pull-
back 𝐹∗𝑑𝑠2 of the Euclidean metric is a complete metric on 𝑋, then by Huber [33] the
surface 𝑋 is biholomorphic to Σ ⧵ 𝑃 where Σ is a compact Riemann surface and 𝑃 is a
non-empty finite subset of Σ. Furthermore, by the Chern–Osserman theorem [12], 𝜕𝐹 is a
meromorphic 𝐀-valued 1-form on 𝑋 with an effective pole in every point of 𝑃, and the
map 𝐹 ∶ 𝑋 → ℝ𝑛 is proper. Many classical minimal surfaces are of this kind. Complete min-
imal surfaces of finite total curvature have been of major interest in the theory since the
early works of Osserman in the 1960s; see [5, 10, 12, 36, 47, 55] for background on this
subject.
Tomotivate our next result (see Theorem 6.3), we first recall the following Runge-type theorem

for complete minimal surfaces with finite total curvature, due to Alarcón and López [9, Theorem
1.2]. A proof can also be found in [5, Theorem 4.5.1], and a different proof has been given recently
by Alarcón and Lárusson [6, Corollary 5.3].

Theorem 6.1. Let Σ be a compact Riemann surface, 𝑃 be a non-empty finite subset of
Σ, 𝐾 be a smoothly bounded compact Runge domain in the open Riemann surface 𝑋 = Σ ⧵

𝑃 and let 𝐴 and Λ be disjoint finite subsets of 𝐾̊. If 𝐹0 ∶ 𝐾 ⧵ 𝐴 → ℝ𝑛 (𝑛 ⩾ 3) is a com-
plete conformal minimal immersion with finite total curvature, then for any 𝜖 > 0 and inte-
ger 𝑘 ⩾ 0 there is a conformal minimal immersion 𝐹 ∶ 𝑋 ⧵ 𝐴 → ℝ𝑛 satisfying the following
conditions.

(i) 𝐹 − 𝐹0 extends to a harmonic map on 𝐾̊ and satisfies |𝐹 − 𝐹0| < 𝜖 on 𝐾.
(ii) 𝐹 − 𝐹0 vanishes at least to order 𝑘 in every point of 𝐴 ∪ Λ.
(iii) 𝐹 is complete and has finite total curvature.

The conditions in Theorem6.1 imply that 𝜕𝐹0 has an effective pole in every point of𝐴, and𝐹 has
a complete end with finite total curvature in every point of 𝐴 ∪ 𝑃. Clearly, the result is equivalent
to the special case when 𝑃 = {𝑝} is a singleton. We emphasise that one cannot prescribe the pole
of 𝜕𝐹 at 𝑝 in an arbitrary way.
One may wonder whether an analogue of Theorem 6.1 holds in the 𝐺-equivariant case. Explic-

itly, assume that Σ is a compact Riemann surface, 𝐺 ⊂ Aut(Σ) is a finite group of automorphisms,
and 𝑃 is a finite𝐺-invariant subset of Σ. Then,𝐺 also acts on the open Riemann surface𝑋 = Σ ⧵ 𝑃,
and the set 𝑋0 = {𝑥 ∈ 𝑋 ∶ 𝐺𝑥 ≠ {1}} (2.3) is finite. Let 𝐾 ⊂ 𝑋 be a smoothly bounded Runge com-
pact set containing 𝑋0 in the interior, and let 𝐴 and Λ be disjoint finite 𝐺-invariant subsets of
𝐾̊. Assume that 𝐺 also acts on ℝ𝑛 by orthogonal maps. Under these assumptions, we pose the
following problem.
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MINIMAL SURFACES WITH SYMMETRIES 27 of 32

Problem 6.2. Given a 𝐺-equivariant complete conformal minimal immersion 𝐹0 ∶ 𝐾 ⧵ 𝐴 → ℝ𝑛

with finite total curvature, is there a 𝐺-equivariant complete conformal minimal immersion 𝐹 ∶

𝑋 ⧵ 𝐴 → ℝ𝑛 with finite total curvature satisfying Theorem 6.1?

We do not know the answer to this question, except for the results of [54] pertaining to planar
domains (that is, minimal surfaces of genus zero, see Example 1.8). However, the methods used
in the proof of Theorem 5.1 give the following result in this direction.

Theorem 6.3. Assume 𝑋0 ⊂ 𝑋 and 𝐺 are as in Theorem 5.1, satisfying the condition on stabilisers
of points 𝑥 ∈ 𝑋0. Let 𝐾 be a smoothly bounded, 𝐺-invariant, Runge compact domain in 𝑋 such that
𝑋0 ∩ 𝑏𝐾 = ∅, and let 𝐴 ⊂ 𝐾̊ ⧵ 𝑋0 and Λ ⊂ 𝐾̊ be disjoint 𝐺-invariant finite sets. Given a complete
𝐺-equivariant conformal minimal immersion 𝐹0 ∶ 𝐾 ⧵ 𝐴 → ℝ𝑛 (𝑛 ⩾ 3) of finite total curvature,
there exists for any 𝜖 > 0 and integer 𝑘 ⩾ 0 a non-degenerate 𝐺-equivariant conformal minimal
immersion 𝐹 ∶ 𝑋 ⧵ 𝐴 → ℝ𝑛 satisfying the following conditions.

(a) 𝐹 − 𝐹0 extends to a harmonic map on 𝐾̊ and |𝐹 − 𝐹0| < 𝜖 on 𝐾.
(b) 𝐹 − 𝐹0 vanishes at least to order 𝑘 in every point of 𝐴 ∪ Λ.
(c) For any compact, smoothly bounded, 𝐺-invariant set 𝐿 with 𝐾 ⊂ 𝐿 ⊂ 𝑋, the 𝐺-equivariant

conformal minimal immersion 𝐹 ∶ 𝐿 ⧵ 𝐴 → ℝ𝑛 is complete and has finite total curvature.

Note that condition (c) follows from (a) and (b). The resulting minimal surface 𝐹(𝑋 ⧵ 𝐴) ⊂ ℝ𝑛

is 𝐺-invariant and has a complete end with finite total curvature in every point of 𝐴.

Proof. Let 𝜃 be a 𝐺-invariant holomorphic 1-form (2.6) on 𝑋 with {𝜃 = 0} = 𝑋0, and let 𝑌 be
the manifold (2.8). By Proposition 2.2 the map 𝑓0 = 2𝜕𝐹0∕𝜃 ∶ 𝐾 → 𝑌 is holomorphic and 𝐺-
equivariant, and it maps the finite set 𝐴 ∪ (𝐾 ∩ 𝑋0) to 𝑌0 (2.9). (That is, the restricted map
𝑓0 ∶ 𝐾 ⧵ (𝐴 ∪ 𝑋0) → 𝐀∗ is holomorphic and has an effective pole in every point of𝐴 ∪ (𝐾 ∩ 𝑋0).)
Let 𝑓0 be the associated holomorphic section of the map

𝜌 ∶ 𝑍 = (𝑋 × 𝑌)∕𝐺 → 𝑋∕𝐺

(see (3.3)) over 𝐾. An inspection of the proof of Theorem 5.1 shows that it applies without any
changes in this situation, and the resulting 𝐺-equivariant conformal minimal immersion 𝐹 ∶ 𝑋 ⧵

𝐴 → ℝ𝑛 can be chosen such that it satisfies the conclusion of the theorem. Further details in the
non-equivariant situation can be found in [9, proof of Theorem 1.3]. □

Remark 6.4.

(A) Theorem 6.3 shows that, in the setting of Problem 6.2, we can find a 𝐺-equivariant confor-
mal minimal immersion 𝐹 ∶ 𝑋 = Σ ⧵ 𝑃 → ℝ𝑛 with a complete end of finite total curvature
in every point of 𝑃 ⧵ 𝑃0, where 𝑃0 ⊂ 𝑃 is an orbit of 𝐺.

(B) An inductive application of Theorem 6.3 gives a Mittag–Leffler–type theorem for 𝐺-
equivariant minimal surfaces having a complete finite total curvature end in every point of a
given closed discrete 𝐺-invariant subset 𝐴 of 𝑋 with 𝐴 ∩ 𝑋0 = ∅, provided that the prescrip-
tion of the map in the ends (that is, in the points of𝐴) is 𝐺-equivariant. The analogous result
without group equivariance is due to Alarcón and López [9, Theorem 1.3].

We do not know whether Theorem 6.3 still holds if the sets 𝐴 and 𝑋0 are not disjoint, for in this
case a problem appears in the proof of Lemma 4.5.
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The following immediate corollary to Theorem 6.3 shows that any type of complete ends with
finite total curvature can be realised by a 𝐺-equivariant conformal minimal immersion.

Corollary 6.5. Assume 𝑋0 ⊂ 𝑋 and 𝐺 are as in Theorem 1.1. Let 𝑥1, … , 𝑥𝑚 ∈ 𝑋 ⧵ 𝑋0 be points in
distinct 𝐺-orbits, and for each 𝑖 = 1, … ,𝑚 let 𝐹𝑖 ∶ 𝑈𝑖 ⧵ {𝑥𝑖} → ℝ𝑛 be a conformal minimal immer-
sion of finite total curvature defined on a punctured neighbourhood of 𝑥𝑖 . Set 𝐴 =

⋃𝑚
𝑖=1 𝐺𝑥𝑖 . Then

there exists a non-degenerate 𝐺-equivariant conformal minimal immersion 𝐹 ∶ 𝑋 ⧵ 𝐴 → ℝ𝑛 which
agrees with 𝐹𝑖 to any given finite order in 𝑥𝑖 for 𝑖 = 1, … ,𝑚.

7 MINIMAL SURFACESWITH INFINITE DISCRETE GROUPS OF
SYMMETRIES

Let 𝑋 be an open Riemann surface, and let 𝐺 be an infinite discrete group acting on 𝑋 by
holomorphic automorphisms such that the action is properly discontinuous, meaning that every
pair of points 𝑝, 𝑞 ∈ 𝑋 admits open neighbourhoods 𝑝 ∈ 𝑈 ⊂ 𝑋, 𝑞 ∈ 𝑉 ⊂ 𝑋 such that the set
{g ∈ 𝐺 ∶ g𝑈 ∩ 𝑉 ≠ ∅} is finite. (Equivalently, for every compact subset 𝐾 ⊂ 𝑋 the set {g ∈ 𝐺 ∶

g𝐾 ∩ 𝐾 ≠ ∅} is finite.) Then, 𝐺 is countable, every orbit 𝐺𝑥 (𝑥 ∈ 𝑋) is an infinite closed discrete
subset of 𝑋, the set 𝑋0 = {𝑥 ∈ 𝑋 ∶ 𝐺𝑥 ≠ {1}} (2.3) is closed and discrete in 𝑋, every non-trivial
stabiliser 𝐺𝑥 (𝑥 ∈ 𝑋0) is a finite cyclic group, the quotient space 𝑋∕𝐺 has the structure of a Rie-
mann surface, and the quotient projection 𝜋 ∶ 𝑋 → 𝑋∕𝐺 is holomorphic. (See [45, p. 83] and [53,
Chapter 1, section 3] for these facts.)
Assume that 𝐺 also acts on ℝ𝑛 by rigid transformations, that is, compositions of orthogonal

maps, translations and dilations. We have the following generalisation of Theorem 1.1.

Theorem 7.1. Let 𝐺 be a countable discrete group acting properly discontinuously on an open Rie-
mann surface 𝑋 by holomorphic automorphisms such that the Riemann surface 𝑋∕𝐺 is open, and
acting on ℝ𝑛 (𝑛 ⩾ 3) by rigid transformations. If for every point 𝑥 ∈ 𝑋 with non-trivial stabiliser 𝐺𝑥

there is a 𝐺𝑥-invariant affine 2-plane Λ ⊂ ℝ𝑛 on which 𝐺𝑥 acts effectively by rotations, then there
exists a non-degenerate 𝐺-equivariant conformal minimal immersion 𝑋 → ℝ𝑛.

Sketch of proof. It suffices to inspect the proof of Theorem 5.1, taking into account the information
given above. We point out the relevant facts and the necessary modifications.
We obtain a 𝐺-invariant holomorphic 1-form on 𝑋 as before by taking 𝜃 = 𝑑(ℎ̃◦𝜋) (2.6), where

ℎ̃ ∶ 𝑋∕𝐺 → ℂ is a holomorphic immersion. Note that the property (2.7) of 𝜃 still holds.
By the hypothesis, every g ∈ 𝐺 acts on ℝ𝑛 by a map of the form

g𝐱 = 𝑟𝑂𝐱 + 𝑏, 𝐱 ∈ ℝ𝑛 (7.1)

for some 𝑟 > 0, 𝑂 ∈ 𝑂(𝑛, ℝ) and 𝑏 ∈ ℝ𝑛. Its differential 𝑑g = 𝑟𝑂 also acts on ℂ𝑛, ℂℙ𝑛, the null
quadric 𝐀 and the manifold 𝑌 = 𝐀∗ ∪ 𝑌0 (2.8). The formulae (2.13)–(2.15) must be adjusted by
replacing g acting on the derivative 𝜕𝐹 and on the map 𝑓 = 2𝜕𝐹∕𝜃 ∶ 𝑋 → 𝑌 by its differential
𝑑g = 𝑟𝑂, so the correct analogue of the Equations (2.14)–(2.15) is

𝜕𝐹g𝑥◦𝑑g𝑥 = 𝑑g◦𝜕𝐹𝑥, 𝑓(g𝑥) = 𝑑g ⋅ 𝑓(𝑥) = 𝑟𝑂 ⋅ 𝑓(𝑥). (7.2)

Everything said in the sequel assumes this notion of 𝐺-equivariance of the map 𝑓. Remark 1.2
applies verbatim and shows that the condition on stabilisers in Theorem 7.1 is necessary. (Note
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that for g ∈ 𝐺𝑥 the differential 𝑑g of its action on ℝ𝑛 (7.1) cannot contain a dilation by a factor
0 < 𝑟 ≠ 1 since the group 𝐺𝑥 is finite.) Proposition 2.2 still holds, except that the second part of
condition (c) (that 𝐹(𝑥0) is orthogonal to Λ) need not hold since g0 can be conjugate to a rotation
by a translation. Lemma 2.3 and Theorem 2.4 remain unchanged. The action (3.2) of the group 𝐺
on 𝑋 × 𝑌 is now replaced by

g(𝑥, 𝑦) = (g𝑥, 𝑑g ⋅ 𝑦), 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, g ∈ 𝐺.

This action is properly discontinuous (since it is such on 𝑋), so the quotient 𝑍 = (𝑋 × 𝑌)∕𝐺 is a
reduced complex space and the projection 𝜌 ∶ 𝑍 = (𝑋 × 𝑌)∕𝐺 → 𝑋∕𝐺 = 𝑋 (3.3) is a holomorphic
map which is ramified (only) over 𝜋(𝑋0) = 𝑋0, and 𝜌 ∶ 𝑍 ⧵ 𝜌−1(𝑋0) → 𝑋 ⧵ 𝑋0 is a holomorphic
𝐺-bundle with fibre𝑌 as before. The correspondence between𝐺-equivariant maps 𝑓 ∶ 𝑋 → 𝑌 (in
the sense of (7.2)) and sections 𝑓 ∶ 𝑋 → 𝑍 of 𝜌, given by Lemma 3.1, remains valid. Lemma 3.2
holds without changes.
In Lemma 4.5, the 𝐺-invariant admissible set 𝑆 is no longer compact, but its projection 𝑆 =

𝜋(𝑆) ⊂ 𝑋 is compact, which is all that matters in the proof. In fact, we see from (4.2) that the
period domination property of the spray ℎ𝑖 on the arcs 𝐶𝑖,𝑗 in 𝐶𝑖 = 𝜋−1(𝐶𝑖) =

⋃
𝑗 𝐶𝑖,𝑗 ⊂ 𝑆 must

only be arranged on one the arcs, 𝐶𝑖,1, as it extends by 𝐺-equivariance to a spray 𝐶𝑖 × 𝐵 → 𝑌.
(Here, 𝑗 ∈ ℕ is the index corresponding to the elements of 𝐺.) Lemma 4.6 is of local nature and
holds without changes.
The proof of Theorem 5.1 (see Section 5) is carried outwith respect to a normal exhaustion of the

open Riemann surface𝑋 = 𝑋∕𝐺 by an increasing sequence of compact Runge subsets𝐷𝑖 . In light
of the previous discussion, it is seen by inspection that all steps hold, so we obtain Theorem 7.1.
Note that locally uniform convergence of the resulting sequence of holomorphic sections 𝑓𝑖 ∶
𝐷𝑖 → 𝑍 implies uniform convergence of the corresponding sequence 𝐹𝑖 ∶ 𝐵𝑖 = 𝜋−1(𝐷𝑖) → ℝ𝑛 of
𝐺-equivariant conformal minimal immersions on compacts in 𝑋. However, when the group 𝐺

is infinite, there are no non-empty compact 𝐺-invariant sets in 𝑋. Hence, an exact analogue of
Theorem 5.1 (with uniform approximation on a 𝐺-invariant set) is not possible if dilations are
involved in the action of 𝐺 on ℝ𝑛. □

Theorem 7.1 implies the following analogue of Corollary 1.4.

Corollary 7.2. If 𝐺 is an infinite discrete group acting freely and properly discontinuously on an
open Riemann surface 𝑋 by holomorphic automorphisms such that the Riemann surface 𝑋∕𝐺 is
open, then for every action of 𝐺 onℝ𝑛 (𝑛 ⩾ 3) by rigid transformations there exists a non-degenerate
𝐺-equivariant conformal minimal immersion 𝑋 → ℝ𝑛, which can be chosen to be the real part of a
𝐺-equivariant null holomorphic immersion 𝑋 → ℂ𝑛.

The analogue of Corollary 1.6 also holds for an infinite discrete group of rigid transformations
on ℝ𝑛 whose induced action on an oriented embedded surface 𝑋 ⊂ ℝ𝑛 is properly discontinuous
and the orbit space 𝑋∕𝐺 is non-compact. The statement of Theorem 6.3 can also be adjusted to
infinite discrete groups acting on 𝑋 as in Theorem 7.1.
Asmentioned in the introduction, every group of automorphisms of aRiemann surface of genus

⩾ 2 is finite. Hence, Theorem 7.1 and its corollaries are relevant only when𝑋 is an open domain in
ℂ or in a complex torus. Natural examples of such actions are by groups of translations on 𝑋 = ℂ

and on ℝ𝑛, and there are several classical examples of translation-invariant minimal surfaces (for
example, the helicoid, Scherk’s surfaces, Schwarz’s surfaces, to name a few of the best known
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ones). Also, every Riemann’s minimal surface in ℝ3 is translation invariant and parameterised by
a domain in ℂ on which the group ℤ acts properly discontinuously; see the survey by Meeks and
Perez [43] and [5, subsection 2.8.5]. Another natural case is when 𝑋 is the unit disc 𝔻 = {|𝑧| < 1}

(or, equivalently, the upper halfplane ℍ), since its group of holomorphic automorphisms contains
many infinite discrete subgroups acting properly discontinuously (and even freely).
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