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A B S T R A C T

A hybrid version of the strong form meshless Radial Basis Function-Finite Difference (RBF-FD) method is
introduced for solving thermo-mechanics. The thermal model is spatially discretised with RBF-FD, where
trial functions are polyharmonic splines augmented with polynomials. For time discretisation, the explicit
Euler method is employed. An extension of RBF-FD, the hybrid RBF-FD, is introduced for solving mechanical
problems. The model is one-way coupled, where temperature affects displacements. The thermo-elastoplastic
material response is considered where the stress field is generally non-smooth. The hybrid RBF-FD, where the
finite difference method is used to discretise the divergence operator from the balance equation, is shown to
be successful when dealing with such problems. The mechanical model is introduced in a plane strain and in a
generalised plane strain (GPS) assumption. For the first time, this work presents a strong form RBF-FD for GPS
problems subjected to integral form constraints. The proposed method is assessed regarding h-convergence
and accuracy on the benchmark with heating an elastoplastic square. It is proven to be successful at solving
one-way coupled thermo-elastoplastic problems. The proposed novel meshless approach is efficient, accurate,
and robust. Its use in an industrial situation is provided in Part 2 of this paper.
1. Introduction

Computational modelling of thermo-elasto-plasticity represents a
continuous field of research since the advent of computers. In contrast
to conventional mesh-based discretisation methods like the finite ele-
ment method (FEM) [1] and finite volume method (FVM) [2], which
rely on polygonisation to discretise the domain, meshless methods
(MMs) [3–5] eliminate the need for this process. Instead, the dis-
cretisation is employed as a cloud of nodes distributed throughout
the domain. This approach offers inherent advantages in terms of
straightforward geometric adaptivity and flexibility, especially when
dealing with intricate geometries and significant distortions [6]. Also,
multi-level techniques can simply be applied [7].

In previous works [8,9], weak-form MMs have been successfully
demonstrated to solve elasto-plastic problems where the polygonisation
of the domain is still needed. This study employs strong-form MM [3],
where PDEs are directly discretised in their differential form, and no
polygonisation is employed.

The solving of partial differential equations on the cloud of the
nodes is based on Local Radial Basis Function Collocation Method
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(LRBFCM) [10–12], recently also known as the Radial Basis Function
generated Finite Difference (RBF-FD) method [13]. This type of collo-
cation method employs a combination of radial basis functions (RBFs)
and monomials to approximate the solution field. The approximation is
performed on the overlapping local support stencils prescribed to each
node. For the discretisation of differential operators, finite-difference-
like weight coefficients are computed by inverting small full systems of
equations proportional to the number of nodes in the support domain.
In this study, polyharmonic splines (PHSs) are used as RBFs. Combined
with polynomials, they guarantee the positive definiteness of a local
interpolant. The polynomial order governs the ℎ-convergence, and the
accuracy is improved with the number of local support nodes [13].
The free parameters of PHSs are explicitly determined for each support
domain and do not require a heuristic search for them as in the case of
Gaussian or Multiquadric RBFs.

The RBF-FD method has been previously applied to various sci-
entific and industrial problems, e.g., convective–diffusive solid–liquid
phase change [14], natural convection [15], turbulent flow during the
process of continuous casting in 2D [16,17] and 3D [18], the influence
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of magnetic field on fluid flow [19,20], simulation of macrosegre-
gation in binary metallic casts [21], reaction–diffusion problems on
surfaces [22], phase field modelling of dendritic solidification [23]
with a space–time adaptive approach [24], micro combustion prob-
lems [25], fluid flow in porous media [26], flow of a non-Newtonian
fluid [27], compressible viscous flow in a tube [28], financial option
valuation [29] to mention a few. A similar type of strong form MM
called the localised radial Trefftz collocation method, where basis
functions are based on the analytical PDE solution, was successfully
applied in steady-state heat conduction (2D and 3D) in functionally
graded materials [30]. A comprehensive overview of local MMs can
be found in [31].

In terms of mechanics, the use of RBF-FD was successfully demon-
strated on linear elastic benchmarks [10,11,32], composite plates re-
sponse [33], natural frequencies of beams and plates [34], thermo-
elasticity benchmarks [35,36], stresses and strains in solidified part
during direct-chill casting of aluminium [37], and shape determination
in hot rolling of steel [38–41], where all studies were performed
in 2D with the use of multiquadric RBFs. The use of PHSs was in-
cluded in studies of elastic benchmarks [6], the elastic response of
thoracic diaphragm [42], the elasto-plastic benchmark [43], and the
mechanical slice model of continuous casting of steel [44]. In the
nonlinear mechanical studies [37,44], the Jacobian was determined
numerically, which resulted in slow convergence. In [43], only elastic
material parameters were used for composing Jacobian, resulting in
many nonlinear iterations. Similarly, in [41], where the ideal plastic
model was used, the direct iteration method was employed for solving
the system of equations.

This work solves the thermo-mechanical model as a one-way cou-
pled, where a temperature solution is applied to the mechanical model
as a thermal load. The heat diffusion is solved by the RBF-FD using
augmented PHSs. It was found in [45] that the classical RBF-FD can-
not cope successfully with the elasto-plastic cases since it produces
an oscillatory solution. Spatial discretisation is performed with a hy-
brid RBF-FD that combines the finite difference method (FDM) and
RBF-FD. Stresses and strains are discretised with RBF-FD on finite
difference stencils prescribed to each collocation node where basis
functions are augmented PHSs. Then, the divergence operator in the
balance equation is discretised with the FDM. This method sufficiently
overcomes the problem of differentiation of non-smooth field (stress).
To stabilise Neumann boundary conditions (BCs), a simple shift of
boundary nodes in the opposite direction of the outward-facing nor-
mal is performed when evaluating the gradient operators. A global
system of nonlinear equations is solved with a Newton–Raphson itera-
tion algorithm. The return mapping algorithm (RMA) is employed for
solving rate-independent thermo-elasto-plastic constitutive equations
and computation of consistent tangent operator (CTO). The method is
applied in two dimensions in plane strain (PS) and in generalised plane
strain (GPS) assumptions. In Part 2 of this paper, the method is further
extended and applied to a real-life industrial example.

The main originality of this work represents the derivation, imple-
mentation and validation of a hybrid RBF-FD for solving thermo-elasto-
plastic problems within a plane strain (PS) and a generalised plane
strain (GPS) assumptions. With the GPS, this study, for the first time,
employs RBF-FD that includes integral form constraints.

The present paper is structured in the following order. The gov-
erning equations of the thermal and mechanical models are given in
Section 2. Numerical methods needed for discrete solving of a thermal
model are presented in Section 3, and for a mechanical model in Sec-
tion 4. Validation of the introduced procedure is presented in Section 5,
and lastly, the conclusions are provided in Section 6.
59

𝛷

2. Physical model

2.1. Thermal model

Governing equation of the thermal model is expressed by the heat
diffusion
𝜕H
𝜕𝑡

= ∇𝑘 ⋅ ∇𝑇 + 𝑘∇2𝑇 , (1)

here H = 𝜌𝑐𝑝𝑇 is volume-specific enthalpy and 𝜌, 𝑐𝑝, 𝑇 , and 𝑘 stand
for density, specific heat at constant pressure, temperature, and ther-
mal conductivity, respectively. To obtain a unique solution, different
boundary conditions (BSc) are applied at the boundary 𝛤 = 𝛤𝐷 ∪ 𝛤𝑁

= �̂� on 𝛤𝐷,

⋅ 𝒏 = 𝑞𝑛 on 𝛤𝑁 ,
(2)

here on 𝛤𝐷 temperature is prescribed as �̂� and on 𝛤𝑁 heat flux 𝒒
n normal direction 𝒏 is prescribed as 𝑞𝑛. Heat flux is defined by the
ourier’s law 𝒒 = −𝑘∇𝑇 . When 𝑞𝑛 = 0, the boundary is considered to
e thermally insulated. Since the thermal problem is time-dependent,
n initial temperature must be imposed as 𝑇 (𝑡 = 0) = �̂�0.

.2. Mechanical model

Here the basics of isotropic small-strain von Mises plasticity are
horty revised. The mechanical equilibrium is posed by the balance law

⋅ 𝝈 = −𝒇 , (3)

here 𝝈 is the stress tensor and 𝒇 is the body force vector. The
train tensor is within a small strain approximation defined in terms
f displacement 𝒖 as

= 1∕2
(

∇𝒖 + ∇𝒖⊤
)

= ∇𝑠𝒖, (4)

where ∇𝑠 represents the symmetric gradient operator. Within the small
strain assumption, the total strain can be additively split into elastic,
plastic and thermal parts as 𝜺 = 𝜺𝑒 + 𝜺𝑝 + 𝜺𝑡ℎ. Thermal strain is defined
as 𝜺𝑡ℎ = 𝛼(𝑇 − 𝑇𝑟𝑒𝑓 )𝑰 , where 𝛼 stands for linear expansion coefficient,
𝑇𝑟𝑒𝑓 for the reference temperature and 𝑰 for the identity tensor. The
relationship between stresses and strains is defined by the Hooke’s law

𝝈 = 𝗗𝑒 ∶ (𝜺 − 𝜺𝑝 − 𝜺𝑡ℎ), (5)

where 𝗗𝑒 stands for the fourth-order elasticity tensor. It can be defined
in terms of only two independent material properties for isotropic mate-
rial, for example, with Lamé constants (𝐺, 𝜆) or with Young’s modulus
nd Poisson ratio (𝐸, 𝜈). If the response is totally recoverable, plastic
train equals zero, and the relation (5) is enough to determine stresses.
dditional conditions and evolution equations must be satisfied if the
lastic strain is nonzero. The first one is the yield criterion. It gives
he critical stress where the material starts yielding. The employed von
ises yield criterion states that the material yields when von Mises

tress 𝜎𝑣𝑚 =
√

3𝐽2(𝒔) exceeds the yield stress 𝜎𝑦 = 𝜎𝑦(𝑇 , �̄�𝑝) obtained
rom the uni-axial tensile test. Scalar 𝐽2 represents the second invariant
f the deviatoric part of the stress tensor 𝒔 = 𝝈 − 𝑰tr(𝝈)∕3. A simple
sotropic hardening is assumed where the evolution of yield stress is
overned only by temperature and accumulated plastic strain �̄�𝑝 =
2
3‖𝜺

𝑝
‖. The evolution is specified by a hardening curve which has

a typical form of 𝜎𝑦(𝑇 , �̄�𝑝) = 𝜎𝑦0(𝑇 ) + 𝜅(𝑇 , �̄�𝑝) where 𝜎𝑦0 stands for the
initial yield stress and 𝜅 for a generally nonlinear function. In this work,
the hardening curve is simplified as 𝜎𝑦(�̄�𝑝) = 𝜎𝑦0+𝐻�̄�𝑝, where 𝐻 stands
for the hardening modulus. Next, admissible stress states are compactly
given by a yield function 𝛷 that uses the von Mises yield criteria

(𝝈, 𝜎 ) =
√

3𝐽 (𝒔(𝝈)) − 𝜎 , (6)
𝑦 2 𝑦
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where 𝛷 < 0 in elastic regime and 𝛷 = 0 in plastic regime. The
evolution of plastic strain is given by the plastic flow rule

�̇�𝑝 = �̇� 𝜕𝛷
𝜕𝝈

= �̇�
√

3
2

𝒔
‖𝒔‖

, (7)

where 𝛾 represents the plastic multiplier. It provides the magnitude
of the plastic strain and connects the stress space with the strain
space. The evolution of accumulated plastic strain is equivalent to the
evolution of the plastic multiplier

̇̄𝜀𝑝 = �̇� . (8)

inally, a set of Kuhn–Tucker conditions specifies when the evolution
f plastic strain and internal variables may occur

(𝝈, 𝜅) ≤ 0, �̇� ≥ 0, 𝛷(𝝈, 𝜅)�̇� = 0. (9)

more in-depth explanation of the described equations can be found
n [1].

.2.1. Boundary conditions
To obtain a unique solution of the mechanical model in terms of

isplacements 𝒖(𝒑) where 𝒑 is the position vector, a set of boundary
onditions (BCs) is applied. Three different mechanical BC types are
ntroduced at the boundary 𝛤 = 𝛤𝑢 ∪ 𝛤𝑇 ∪ 𝛤𝐹

= �̂� on 𝛤𝑢,

⋅ 𝒏 = �̂� on 𝛤𝑇 ,
{

𝑢𝑛, 𝑇𝑡
}

= {0, 0} on 𝛤𝐹 ,

(10)

here on 𝛤𝑢 displacement �̂� is prescribed, on 𝛤𝑇 traction vector �̂� is
pecified and on the symmetry boundary part 𝛤𝐹 displacement in the
irection of the normal 𝑢𝑛 and traction in a tangential direction 𝑇𝑡 = 𝑻 ⋅𝒕
s set to zero.

.2.2. Generalised plane strain model
Within a generalised plane strain assumption, the strain component

erpendicular to the observed (here 𝑥-𝑦) plane is set to be of a linear
orm

𝑧𝑧(𝑥, 𝑦) = 𝑎𝑥 + 𝑏𝑦 + 𝑐. (11)

ith this definition, three new unknowns are introduced (𝑎, 𝑏, 𝑐), solved
rom the three additional equations

𝑧 = ∫𝛺
𝜎𝑧𝑧 𝑑𝛺,

𝑥 = ∫𝛺
𝜎𝑧𝑧 𝑦 𝑑𝛺,

𝑦 = ∫𝛺
𝜎𝑧𝑧 𝑥 𝑑𝛺,

(12)

here 𝑁𝑧 represents the force in the longitudinal direction, 𝑀𝑥 momen-
um around the 𝑥-axis, 𝑀𝑦 momentum around the 𝑦-axis, and 𝛺 the do-
ain of observation. All values in (12) are set to zero

{

�̂�𝑧, �̂�𝑥, �̂�𝑦
}

=
0, 0, 0}.

. Numerical solution procedure of the thermal model

.1. Temporal discretisation

Time marching of the heat diffusion equation is performed using
he explicit Euler scheme that is first-order accurate in time step 𝛥𝑡.
he time derivative at 𝑡0 is discretised as

𝜕H
𝜕𝑡

|

|

|𝑡0
= H 𝑡0+𝛥𝑡 − H 𝑡0

𝛥𝑡
. (13)

A sufficiently small time step should be employed for the scheme to be
stable. In finite difference method for a 2D heat diffusion problem its
maximum time step is 𝛥𝑡𝑚𝑎𝑥 < ℎ2∕4𝐷, where ℎ and 𝐷 define a space
between nodes on regular node arrangement and 𝐷 = 𝑘∕𝜌𝑐𝑝 thermal
diffusivity, respectively. In this work, the stable time step is defined as
𝛥𝑡 = 𝛼 𝛥𝑡 , where 𝛼 is the time stability parameter.
60

𝛥𝑡 𝑚𝑎𝑥 𝛥𝑡
Fig. 1. Regular (left) and scattered (right) node arrangement on the unit square.

Fig. 2. Scheme of a generic domain 𝛺 with boundary 𝛤 . The solid circles and squares
represent interior and boundary nodes, respectively. The empty circle represent the
centre node 𝑙𝒑 of the subdomain 𝑙𝛺 where the minimum distance between nodes is
denoted with ℎ.

.2. Spatial discretisation

In this work, the RBF-FD method is employed for spatial discreti-
ation. The method generalises the traditional finite difference (FD)
ethod. It estimates the spatial differential operator (DO) at a collo-

ation node (CN) as a weighted sum of field values. While the standard
D method only works with regular node arrangements (RNAs), RBF-FD
an easily handle scattered node arrangements (SNAs). This allows for
olutions to problems with complex geometries but comes at the cost of
alculating separate weights for each discretisation node. Fig. 1 illus-
rates an example of both RNA and SNA on the unit square. The corner
odes are left out to prevent the possible boundary condition mismatch
roblem. The procedure of scattered node positioning used here is
ased on the node repelling algorithm, initially presented in [46] and
laborated in [37].

.2.1. Local interpolation problem
The generic domain 𝛺 with boundary 𝛤 , which is discretised into
nodes, is shown in Fig. 2. To construct a local interpolant, the local

ubdomain 𝑙𝛺 centred at the node 𝑙𝒑 (𝑙 = 1,… , 𝑁) must be defined.
The use of the previously described node-repelling algorithm leads to
a homogeneously isotropic node discretisation, so the selection of 𝑙𝛺
simply includes the centre node 𝑙𝒑 and 𝑙𝑁 − 1 nearest neighbours.

The RBF-FD method uses radial basis functions (RBFs) for trial
functions at each of the subdomains. In this work, a special type of RBFs
are used — polyharmonic splines (PHSs) [13]. Compared to other RBFs,
such as Gaussian or Multiquadrics, those do not require a complicated
and time-consuming optimal shape parameter determination, making
them attractive to work with. PHS function defined on 𝑙𝛺 and centred
at the 𝑙𝒑𝑖, where 𝑖 = 1,… 𝑙𝑁 , has a dimensionless form of

𝑙𝛷𝑖(𝒑) =
(

‖𝒑 − 𝑙𝒑𝑖‖

𝑙ℎ

)𝑚
, 𝑚 = 1, 3, 5,… (14)

where 𝑚 represents the order of PHS and 𝑙ℎ the average distance from
the central node, defined as

𝑙ℎ =

√

√

√

√

𝑙𝑁
∑

‖𝑙𝒑 − 𝑙𝒑𝑖‖2 . (15)

𝑖=2 𝑙𝑁 − 1
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It holds for all types of RBFs that the stagnation error does not decrease
under refinement. In [13], it was demonstrated that augmenting the
PHS interpolant with polynomials results in a decrease in the stagnation
error. It was also shown that the order of augmentation 𝑝 also governs
the order of ℎ−convergence [13]. To obtain 𝑝th order of convergence,
it should hold that 𝑚 < 𝑝 and 𝑙𝑁 ≳ 2𝑀 , where 𝑀 =

(𝑝+𝑛𝑑
𝑝

)

.
An augmented RBF interpolant inside 𝑙𝛺 of a general function 𝑙𝑦𝜉 (𝒑)

where 𝜉 = 1,… , 𝑛𝑑 runs over 𝑛𝑑 space dimensions can be written as

𝑙𝑦𝜉 (𝒑) ≈
𝑙𝑁
∑

𝑖=1
𝑙𝛼𝑖,𝜉 𝑙𝛷𝑖(𝒑) +

𝑀
∑

𝑖=1
𝑙𝛼(𝑙𝑁+𝑖),𝜉 𝑝𝑖(𝒑) =

𝑙𝑁+𝑀
∑

𝑖=1
𝑙𝛼𝑖,𝜉 𝑙𝛹𝑖(𝒑). (16)

here 𝑙𝛼𝑖,𝜉 , 𝑖 = 1,… , 𝑙𝑁 + 𝑀 are the interpolation coefficients, 𝑝𝑖(𝒑),
= 1,… ,𝑀 represents monomials and 𝛹𝑖(𝒑) the complete set of basis

unctions, either RBFs (𝑖 ≤ 𝑙𝑁) or monomials (𝑖 > 𝑙𝑁). This local
nterpolation problem can be written as a linear system of 𝑛𝑑 (𝑙𝑁 +𝑀)
quations
𝑛𝑑
∑

𝜒=1

𝑙𝑁+𝑀
∑

𝑖=1
𝑙𝐴𝑗𝑖,𝜉𝜒 𝑙𝛼𝑖,𝜒 = 𝑙𝛾𝑗,𝜉 , (17)

here the interpolation matrix is defined as

𝐴𝑗𝑖,𝜉𝜒 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛹𝑖(𝑙𝒑𝑗 )𝛿𝜉𝜒 if 𝑙𝒑𝑗 ∈ 𝛺

𝜉𝜒 (𝑙𝒑𝑗 )𝛹𝑖(𝑙𝒑𝑗 ) if 𝑙𝒑𝑗 ∈ 𝛤

𝑝𝑗−𝑙𝑁 (𝑙𝒑𝑖)𝛿𝜉𝜒 if 𝑗 > 𝑙𝑁 and 𝑖 ≤ 𝑙𝑁
0 otherwise

, (18)

nd the vector of known values as

𝛾𝑗,𝜉 =

⎧

⎪

⎨

⎪

⎩

𝑦𝜉 (𝑙𝒑𝑗 ) if 𝑙𝒑𝑗 ∈ 𝛺

𝑏𝜉 (𝑙𝒑𝑗 ) if 𝑙𝒑𝑗 ∈ 𝛤
0 otherwise.

, (19)

here for the points on the 𝛤 , the linear boundary condition is imposed
𝜉 𝜒𝜉 (𝑙𝒑𝑗 )𝑦𝜉 (𝑙𝒑𝑗 ) = 𝑏𝜒 (𝑙𝒑𝑗 ), where  and 𝑏 are the linear boundary

perator and the boundary value, respectively.

.2.2. Discretisation of differential operators
Applying a differential operator  on the interpolant results in

𝑙𝒚(𝒑)𝜉 =
𝑛𝑑
∑

𝜒=1
𝜉𝜒 𝑙𝑦𝜒 (𝒑) ≈

𝑛𝑑
∑

𝜒=1

𝑙𝑁+𝑀
∑

𝑖=1
𝑙𝛼𝑖,𝜒 𝜉𝜒 𝑙𝛹𝑖(𝒑), (20)

here one can see that the operator is acting only on the basis func-
ions. Expressing the interpolation coefficients from Eqs. (17)–(19), it
an be written in the following form

𝑙𝒚(𝒑)𝜉 ≈
𝑛𝑑
∑

𝜁=1

𝑙𝑁+𝑀
∑

𝑗=1
𝑙𝛾𝑗,𝜁

𝑛𝑑
∑

𝜒=1

𝑙𝑁+𝑀
∑

𝑖=1
𝑙𝐴

−1
𝑖𝑗,𝜒𝜁 𝜉𝜒 𝑙𝛹𝑖(𝒑)

≈
𝑛𝑑
∑

𝜁=1

𝑙𝑁+𝑀
∑

𝑗=1
𝑙𝛾𝑗,𝜁 𝑙W𝑗,𝜉𝜁 (𝒑).

(21)

here the operator’s action on a function is now expressed as a
eighted sum of known values 𝑙𝛾𝑗,𝜁 and operator coefficients 𝑙W𝑗,𝜉𝜁 (𝒑).
he similarity with the FD method is evident here, where the operator
oefficients are pre-determined. In RBF-FD, these coefficients have to be
alculated for each node initially, but they remain constant throughout
he simulation.

The introduced procedure is utilised to discretise the gradient and
aplace operator of scalar fields present in the governing equation (1).

. Numerical solution procedure of the mechanical model

.1. Incremental solution

Since the mechanical problem is history-dependent, it is solved in-
rementally. This means that the external load is applied in increments.
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u

Fig. 3. Flowchart of the mechanical model.

For a (𝑛+ 1)th load increment, the governing Eq. (3) can be written as
𝑖𝑛𝑡
|𝑛+1 − 𝒇 𝑒𝑥

|𝑛+1 = 𝒓(𝒖𝑛+1) = 0, where 𝒇 𝑖𝑛𝑡 represents internal force
defined as 𝒇 𝑖𝑛𝑡 = ∇ ⋅ 𝝈(∇𝑠𝒖), 𝒇 𝑒𝑥 external load and 𝒓 the residual that
should be zero. Due to a nonlinear relationship between stresses and
strains, the residual is linearised as

∇ ⋅ (𝗗∇𝑠) ||
|

𝑖−1

𝑛+1
𝛿𝒖 = −𝒓|𝑖−1𝑛+1, (22)

where 𝑲𝑇 = ∇ ⋅ (𝗗∇𝑠) represents stiffness matrix with 𝗗 = 𝜕𝝈∕𝜕𝜺.
q. (22) is iteratively (index 𝑖) solved for 𝛿𝒖. Then, the displacement
ncrement is updated as 𝛥𝒖𝑖 = 𝛥𝒖𝑖−1 + 𝛿𝒖, and strain increment 𝛥𝜺𝑖
s determined by Eq. (4). This is then inserted into the integration
odel, where all other state variables are computed by solving Eqs.

5)–(9). For the integration of the constitutive relations, the Return
apping Algorithm (RMA) is used here, where integration is performed

mplicitly [1]. From the result of stress, the internal force and the
esidual is calculated. If the condition ‖𝒓|𝑖𝑛+1‖∕‖𝒇

𝑒𝑥𝑡
|𝑛+1‖ ≤ 𝑒𝑁𝑅

𝑡𝑜𝑙 , where
𝑁𝑅
𝑡𝑜𝑙 represents equilibrium convergence tolerance, is satisfied, the
isplacement is updated as 𝒖𝑛+1 = 𝒖𝑛+𝛥𝒖𝑖 (and similarly all other state

variables.)
Since only thermal load is applied here, the external force is

defined in terms of a temperature difference as 𝒇 𝑒𝑥
𝑛+1 = ∇ ⋅ ((3𝜆 +

2𝐺)𝜺𝑡ℎ)|𝑛+1 = ∇ ⋅ ((3𝜆 + 2𝐺)𝛼𝛥𝑇 𝑰)|𝑛+1, where 𝛥𝑇 = 𝑇𝑛+1 − 𝑇𝑛. The
flowchart of the described procedure is shown in Fig. 3.

4.2. Spatial discretisation

Governing equation (22) is discretised with a hybrid RBF-FD
method. Here the term (𝗗∇𝑠) is not evaluated in CN but on a regular
inite difference stencil prescribed to each CN. 2nd order FD stencils

sed here are shown in Fig. 4 (crosses). The divergence operator in
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Fig. 4. Discretisation of the domain 𝛺 section used for the mechanical model.

N is then expressed with the FDM. As shown in the figure, the
istance between CN and a node on the FD stencil is defined as the
roduct of an FD stencil size parameter 𝛼𝐷 and inter-nodal spacing ℎ.
he discretisation of the divergence operator in 𝒇 𝑒𝑥 is also performed
ia the FDM. Due to that, the temperature difference field, which
s calculated in the CNs, must be interpolated on the FD stencils.
ompared to the classical RBF-FD, the downside of the hybrid RBF-FD

s that material iteration, where stresses are computed, is executed in
times more nodes, i.e. in each FD node on an FD stencil assigned to

ach CN.
As opposed to the thermal model where BCs are included inside the

ocal interpolation (Eqs. (18), and (19)), it was found that the intro-
uced mechanical model performs better when BCs are not included
nside local interpolation but as a part of the global system of equations.
ll nodes are treated as inner nodes when computing the coefficients.
or the boundary conditions to be stabilised, a simple stabilisation
echnique is employed where coefficients are not evaluated in boundary
Ns but on virtually shifted nodes inside the domain, shown in Fig. 4
ith empty squares. These nodes are positioned in the opposite side of

he outward-facing normal vectors for a distance of 𝛼𝑆 ℎ, where 𝛼𝑆 is
alled the boundary stabilisation parameter.

The integrals, in additional equations for GPS, are discretised simi-
arly as in a midpoint rule, where ∫ 𝑦(𝒑)𝑑𝐴 ≈

∑𝑁
𝑖=1 𝑦(𝒑𝑖)𝛥𝐴𝑖. Given the

omain area �̂�, an area error index is computed as 𝛼𝐴 = �̂�∕
∑𝑁

𝑖=1 𝛥�̃�𝑖
here an approximation for the differential area is 𝛥�̃�𝑖 = ℎ𝑖∕𝜃 on inner
odes and 𝛥�̃�𝑖 = ℎ𝑖∕(2𝜃) on boundary nodes. Then 𝛥𝐴𝑖 ≈ 𝛼𝐴𝛥�̃�𝑖, for

∈ [1, 𝑁]. The geometric factor 𝜃 = 1 for RNA and 𝜃 =
√

2∕
√

3 for
NA. Domain area �̂� is computed as the area of the polygon defined by
ll boundary nodes. The discrete values of 𝑦(𝒑𝑖) are evaluated in CNs.

. Numerical results

.1. Problem definition

The proposed method is tested with a simple square benchmark with
side length of 𝐿, shown in Fig. 5. On the left and bottom sides of

he square, the symmetry BCs are imposed, specifying zero heat fluxes
nd free-slip BCs. On the other two boundaries, constant heat flux is
osed with material free to move — zero traction vector. At time zero,
onstant temperature is prescribed over the region, and no stresses or
trains are present.

The problem is first solved in terms of temperature up to time
𝑒𝑛𝑑 . Then, the solution is applied as a load on the mechanical model
here plane strain and generalised plane strain descriptions with linear
ardening are assumed. The parameters used are listed in Table 1.
62
Fig. 5. Scheme of the thermo-mechanical benchmark with geometry and initial and
boundary conditions.

Fig. 6. SNA results of a temperature over line 𝑦 = 0.25 m (a) with corresponding
bsolute errors (b).

Table 1
Benchmark parameters.
Computational domain Unit Value
Size of the domain (𝐿) m 1

Thermal problem
Density (𝜌) kg/m3 1
Specific heat (𝑐𝑝) J/kg K 1
Thermal conductivity (𝑘) W/m K 1
Initial temperature (�̂�0) ◦C 0
Prescribed heat flux (𝑞) W/m2 −1
Observed time (𝑡𝑒𝑛𝑑 ) s 0.5

Mechanical problem
Young’s modulus (𝐸) Pa 1
Poisson’s ratio (𝜈) / 0.3
Linear expansion coefficient (𝛼) K−1 0.5
Initial yield stress (𝜎𝑦0) Pa 0.1
Hardening modulus (𝐻) Pa 0.1
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Fig. 7. Convergence of the thermal model. (a): ℎ-convergence for RNA and SNA with fixed time step defined for reference case with ℎ5. (b): convergence in 𝛼𝛥𝑡. The solution is
obtained using ℎ3.
(
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Fig. 8. SNA results of 𝑢𝑥 over line 𝑦 = 0.25 m (a) with corresponding absolute errors
(b) for a plane strain case.

5.2. Simulation procedure

The problem is investigated on RNAs and SNAs. Different node
arrangement densities are applied with node spacings of ℎ𝑖 = 0.1∕2𝑖−1

m, 𝑖 ∈ {1,… , 5}, where the example with ℎ2 can be seen in Fig. 1.
Numerical parameters specific to the thermal and mechanical model
are listed in Table 2. To avoid problems with the evaluation of the 2nd

order derivatives in the thermal model (Laplacian operator in Eq. (1)),
the order of PHS is 𝑚 = 5. In the mechanical model, only 1st order
63

n

Fig. 9. SNA results of 𝜎𝑧𝑧 over line 𝑦 = 0.25 m (a) with corresponding absolute errors
b) for a plane strain case.

erivatives are discretised, so 𝑚 = 3 is chosen. Generally speaking, it
as proven in [13] that the order of PHS has practically no effect on
ccuracy and stability. We observed that the maximum value of the
ime stability parameter 𝛼𝛥𝑡 should be 0.5 for the Euler scheme to be
table. The temperature difference applied as an external load on the
echanical model is 𝛥𝑇𝑡+𝛥𝑡𝑚𝑒𝑐ℎ = 𝑇𝑡+𝛥𝑡𝑚𝑒𝑐ℎ − 𝑇𝑡, where 𝛥𝑡𝑚𝑒𝑐ℎ = 𝑡𝑒𝑛𝑑∕100.

The reference solution (RS) was obtained with a finite element
ode [47]. Linear quadrilateral elements were used with 4 integration
odes within each element. The size of the element edge ℎ was
𝐹𝐸𝑀



Engineering Analysis with Boundary Elements 159 (2024) 58–67G. Vuga et al.
Fig. 10. Accumulated plastic strain solution for PS. (a): SNA with ℎ5. (b): reference solution obtained with FEM. (c): Absolute difference between solutions.
Fig. 11. Von Misses stress solution for PS. (a): SNA with ℎ5. (b): reference solution obtained with FEM. (c): Absolute difference between solutions.
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Table 2
Numerical parameters.
Thermal problem
PHS power (𝑚) 5
augmentation order(𝑝) 2
number of nodes in the support domain (𝑙𝑁) 13
time stability parameter (𝛼𝛥𝑡) 0.5

Mechanical problem
PHS power (𝑚) 3
augmentation order(𝑝) 2
number of nodes in the support domain (𝑙𝑁) 13
FD stencil size parameter (𝛼𝐷) 0.5
boundary stabilisation parameter (𝛼𝑆 ) 0.1
N–R convergence tolerance (𝑒𝑁𝑅

𝑡𝑜𝑙 ) 10−7

max number of N–R iterations (NRI𝑚𝑎𝑥) 50

specified as ℎ𝐹𝐸𝑀 = ℎ5, where ℎ5 represents the finest node spacing.
The same geometry (Fig. 4), material parameters (Table 1), time step-
ping (𝛼𝛥𝑡 = 0.5) and load stepping (𝛥𝑡𝑚𝑒𝑐ℎ = 𝑡𝑒𝑛𝑑∕100) were used as in
our solution on RNA with ℎ5.

The simulation procedure is numerically implemented in the For-
tran 2018 programming language and compiled with Intel Fortran
Compilers Classic 2021.1.1. Computation was carried out on a per-
sonal computer equipped with an Intel(R) Core(TM) i7-8750H CPU
containing six cores with a maximum clock speed of 4.10 GHz.

5.3. Thermal response

In Fig. 6, the SNA solution of a temperature along the 𝑥-axis at
𝑦 = 0.25 m is shown. For a better distinction, an absolute error 𝑒𝑎𝑏𝑠(𝑥) =
|

|

|

𝑇𝐹𝐸𝑀 (𝑥)−𝑇 (ℎ𝑖, 𝑥)
|

|

|

is added. It can be seen that the solution converges
with the decrease in ℎ.

To test the convergence of the method, we employ a relative 𝐿2
norm 𝑒2 as

𝑒2 =

√

√

√

√

∑𝑁
𝑖=1(𝑇𝑖 − �̂�𝑖)2
∑𝑁 ̂ 2

(23)
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𝑖=1 𝑇𝑖 i
here �̂� represents the exact solution and index 𝑖 runs over all nodes
.
For the ℎ-convergence study, we assume �̂� = 𝑇 (ℎ5) where all other

olutions 𝑇 (ℎ𝑖), 𝑖 ∈ {1,… 4} are computed with a fixed time step as
efined for 𝑇 (ℎ5). In Fig. 7 (a), the relative error is plotted as a function
f node spacing ℎ. One can see that the second-order convergence is
btained as expected when the second-order polynomial augmentation
s used. A slight difference can be observed between SNA and RNA.

The convergence regarding the time step is investigated in a case
ith ℎ3. Values of the time stability parameter are chosen as 𝛼𝛥𝑡,𝑖 =
.5∕2𝑖−1 where 𝑖 ∈ {1,… 5}. The exact solution is assumed to be �̂� =
(𝛼𝛥𝑡,5). In Fig. 7 (b), a relative error is plotted as a function of the time

tability parameter. No noticeable change in error between RNA and
NA is observed. As expected, the first-order convergence is obtained.

.4. Mechanical solution

.4.1. Plane strain solution
The results of displacement in 𝑥 direction 𝑢𝑥 are shown in Fig. 8, and

tress in the direction perpendicular to the 𝑥-𝑦 plane 𝜎𝑧𝑧 in Fig. 9. Sim-
larly, as in the previous section, an absolute error 𝑒𝑎𝑏𝑠(𝑥) =

|

|

|

𝑦𝐹𝐸𝑀 (𝑥)−

(ℎ𝑖, 𝑥)
|

|

|

, where 𝑦 is 𝑢𝑥 or 𝜎𝑧𝑧, is added, and the results on ℎ1 are omitted.
It is evident from the results that the solution is converging to the

S. The error in 𝑢𝑥 has zero value at 𝑥 = 0 m since the Dirichlet
ondition is exactly satisfied and then smoothly increases with 𝑥. One
rder larger difference is observed in 𝜎𝑧𝑧. It is mostly constant, and
scillations increase near 𝑥 = 1 m. These oscillations result from
he discontinuous 𝛥𝑇 (𝒑) used in the mechanical model. Values are
iscontinuous because the actual solution from the thermal model of
(𝒑)||

|𝛤
is applied on shifted boundary nodes in the mechanical model.

Figs. 10 and 11 show accumulated plastic strain and von Mises stress
ver the field, respectively. Solutions are plotted for a hybrid RBF-FD
ase with SNA and ℎ5, and an RS case with ℎ𝐹𝐸𝑀 = ℎ5. The absolute
alue of the difference between the solutions is additionally shown. It
an be seen that, in terms of �̄�𝑝, the maximum difference is ∼ 2% and
n terms of 𝜎 it is ∼ 0.2%.
𝑣𝑚
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Fig. 12. ℎ-convergence in 𝑢𝑥 and 𝜎𝑧𝑧 with RNA and SNA for plane strain case.

The convergence behaviour is studied similarly to the thermal
odel, where the relative error is defined with Eq. (23). Again, the

xact solution is assumed to be obtained with ℎ5. The temperature
alues in Eq. (23) are replaced with 𝑢𝑥 and 𝜎𝑧𝑧. In [45] it was found
hat if 𝛼𝑆 ≳ 0.25, the maximum first order of convergence is expected
o be obtained. Since the 2𝑛𝑑 order of augmentation is used, the second
rder of convergence is expected to be observed if 𝛼𝑆 = 0. In Fig. 12, it
an be seen that since 𝛼𝑆 > 0, the order of convergence is not the same
s the order of augmentation, but it is also not one order less because
𝑆 < 0.25 is used. The convergence order is similar in 𝑢𝑥 and 𝜎𝑧𝑧. No
ignificant change can be seen between RNA and SNA solutions.

.4.2. Generalised plane strain solution
As in the previous case, the solutions computed on SNAs are shown

ver the line 𝑦 = 0.25 m for 𝑢𝑥 in Fig. 13 and for 𝜎𝑧𝑧 in Fig. 14. Similar
ehaviour can be seen in terms of 𝑢𝑥. The shape of 𝜎𝑧𝑧 is now different
here also tensile stresses are present in the longitudinal direction.
imilar oscillatory behaviour in the error of 𝜎𝑧𝑧 near 𝑥 = 1 m can be
een. As opposed to the PS case, the error in stress stays in the same
ange as the error in displacement. Since the material is now free to
ove in the longitudinal direction, lower values of displacement and

tress are obtained, as in the PS case.
A smaller amount of accumulated plastic strain is also induced

here most of the area stays in the elastic region, as shown in Fig. 15.
lso, smaller values of von Mises stress are obtained, as shown in
ig. 16. It can be seen that in terms of �̄�𝑝 the maximum difference is
0.19% and in terms of 𝜎𝑣𝑚 it is ∼ 0.12%.
In Fig. 17, the ℎ-convergence is presented. For the case of RNAs,

he convergence behaviour is similar to the PS case. For SNAs, the
recision in 𝑢𝑥 is a bit lower than for RNA. The difference between
NAs and SNAs is clearly seen in terms of stress. With SNAs, the order
f convergence is reduced and gets close to the first order. This might
esult from lower accuracy when computing the integral equations
here area differentials are not computed as accurately as in the RNA.

. Conclusions

This work presents the RBF-FD and the modified hybrid RBF-FD
ethods for solving one-way coupled thermo-mechanics for the first

ime. The hybrid RBF-FD method is modified to be capable of solving
hermo-elasto-plastic models. The generalised plane strain state is for
65
Fig. 13. SNA results of 𝑢𝑥 over line 𝑦 = 0.25 m (a) with corresponding absolute errors
b) for a generalised plane strain case.

Fig. 14. SNA results of 𝜎𝑧𝑧 over line 𝑦 = 0.25 m (a) with corresponding absolute errors
(b) for a generalised plane strain case.

the first time implemented within the hybrid RBF-FD method, where
integral form constraints are included within RBF-FD for the first time.

The introduced solver is successfully validated on a simple bench-
mark where a reference solution was prepared with commercial FEM
software.

The thermal solver was found to perform with the same accuracy
on RNAs and SNAs where, as expected from previous studies [13],
the ℎ-convergence is governed by the augmentation order. No special
treatment of the Neumann boundary conditions is needed. In [23],
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Fig. 15. Accumulated plastic strain solution for GPS. (a): SNA with ℎ5. (b): reference solution obtained with FEM. (c): Absolute difference between solutions.
Fig. 16. Von Misses stress solution for GPS. (a): SNA with ℎ5. (b): reference solution obtained with FEM. (c): Absolute difference between solutions.
Fig. 17. ℎ-convergence in 𝑢𝑥 and 𝜎𝑧𝑧 with RNA and SNA for the generalised plane
strain case.

the heat diffusion equation was solved in a decoupled way with the
nonlinear phase-field parabolic partial differential equation, where it
was found that for the Euler scheme to be stable 𝛼𝛥𝑡 ⩽ 0.3. In this work,
the same RBF-FD method was employed, and it was found that for only
the heat diffusion equation, the time stability parameter can be larger
𝛼𝛥𝑡 ⩽ 0.5, where convergence in the time step is of the first order.

The mechanical solver was found to reproduce the reference so-
lution successfully. At Neumann BCs, the non-smoothness in stress
values is observed. This happens because temperature boundary values,
66

computed in collocation nodes in the thermal model, are enforced on
shifted boundary nodes (empty squares in Fig. 4) in the mechanical
model. This procedure enables evaluation of the exact temperature
solution on the boundary but results in the non-smooth solution. If
temperature values would be interpolated on shifted boundary nodes,
then no jump in solution should be expected, but also, not the actual
boundary values would be applied. The challenge of applying accurate
boundary values while maintaining stability for Neumann BCs remains
an open research question. The introduced non-smoothness decreases
with increasing node arrangement density (and vanishes if no stabili-
sation is present). For the investigated cases, a stabilisation parameter
𝛼𝑆 = 0.25 was enough for the method to be stable. This also affected
the ℎ-convergence, where, except for the GPS cases with SNAs, it was
found to be between the first and second orders. In GPS cases with
SNAs, the convergence order is slightly reduced but not below the first
order. The reason is that the area differentials needed in discretised
integral equations are approximated with lower accuracy in the SNAs
than in the RNAs, where they are exact.

As demonstrated, the one-way coupled thermo-elasto-plasticity can
be successfully modelled using the proposed novel method. An example
of its industrial application is provided in Part 2 of this publication for
simulating the cooling of steel bars on a cooling bed in metallurgical
processing.

Declaration of competing interest

The authors have no conflicts of interest to declare that are relevant
to the content of this paper.

Data availability

Data will be made available on request.

Acknowledgements

This research was funded by the Slovenian Grant Agency by grant
numbers P2-0162, L2-3173, and Z2-2640. The first author was sup-
ported by the Young Researcher’s grant.



Engineering Analysis with Boundary Elements 159 (2024) 58–67G. Vuga et al.
References

[1] de Souza Neto EA, Peric D, Owen DR. Computational methods for plasticity:
Theory and applications. Chichester, West Sussex, UK: John Wiley & Sons; 2011.

[2] Cardiff P, Demirdžić I. Thirty years of the finite volume method for solid
mechanics. Arch Comput Methods Eng 2021;28(5):3721–80. http://dx.doi.org/
10.1007/s11831-020-09523-0.

[3] Liu GR. Meshfree methods: Moving beyond the finite element method, Second
Edition. Baton Rouge, Louisiana, USA: Taylor & Francis Group; 2009.

[4] Šarler B, Atluri SN. Recent studies in meshless and other novel computational
methods. Duluth, Minnesota, USA: Tech Science Press; 2010.

[5] Pepper D, Kassab A, Divo E. Introduction to finite element, boundary element,
and meshless methods: With applications to heat transfer and fluid flow. New
York, USA: ASME Press; 2014, http://dx.doi.org/10.1115/1.860335.

[6] Slak J. Adaptive RBF-FD method (Ph.D. thesis), Ljubljana, Slovenia: University
of Ljubljana; 2020.

[7] Zamolo R, Nobile E, Sarler B. Novel multilevel techniques for convergence
acceleration in the solution of systems of equations arising from RBF-FD meshless
discretizations. J Comput Phys 2019;392:311–34. http://dx.doi.org/10.1016/j.
jcp.2019.04.064.

[8] Kargarnovin M, Ekhteraei Toussi H, Fariborz S. Elasto-plastic element-free
Galerkin method. Comput Mech 2004;33(3):206–14. http://dx.doi.org/10.1007/
s00466-003-0521-5.

[9] Ji-fa Z, Wen-pu Z, Zheng Y. Meshfree method and its applications to elasto-
plastic problems. J Zhejiang Univ - Sci A: Appl Phys Eng 2005;6(2):148–54.
http://dx.doi.org/10.1007/BF02847979.

[10] Zhang X, Song KZ, Lu MW, Liu X. Meshless methods based on collocation with
radial basis functions. Comput Mech 2000;26(4):333–43. http://dx.doi.org/10.
1007/s004660000181.

[11] Tolstykh A, Shirobokov D. On using radial basis functions in a ‘‘finite difference
mode’’ with applications to elasticity problems. Comput Mech 2003;33(1):68–79.
http://dx.doi.org/10.1007/s00466-003-0501-9.

[12] Šarler B, Vertnik R. Meshfree explicit local radial basis function collocation
method for diffusion problems. In: Radial Basis Functions and Related Multivari-
ate Meshfree Approximation Methods: Theory and Applications, Comput Math
Appl In: Radial Basis Functions and Related Multivariate Meshfree Approximation
Methods: Theory and Applications, 2006;51(8):1269–82.http://dx.doi.org/10.
1016/j.camwa.2006.04.013,

[13] Flyer N, Fornberg B, Bayona V, Barnett GA. On the role of polynomials
in RBF-FD approximations: I. Interpolation and accuracy. J Comput Phys
2016;321(1):21–38. http://dx.doi.org/10.1016/j.jcp.2016.05.026.

[14] Vertnik R, Šarler B. Meshless local radial basis function collocation method
for convective-diffusive solid-liquid phase change problems. Internat J Nu-
mer Methods Heat Fluid Flow 2006;16(5):617–40. http://dx.doi.org/10.1108/
09615530610669148.

[15] Kosec G, Šarler B. Solution of a low Prandtl number natural convection
benchmark by a local meshless method. Internat J Numer Methods Heat Fluid
Flow 2013;23(1):22. http://dx.doi.org/10.1108/09615531311289187.

[16] Vertnik R, Šarler B. Local collocation approach for solving turbulent combined
forced and natural convection problems. Adv Appl Math Mech 2011;3:259–79.
http://dx.doi.org/10.4208/aamm.10-10s2-01.

[17] Mramor K, Vertnik R, Šarler B. Meshless approach to the large-eddy simulation
of the continuous casting process. Eng Anal Bound Elem 2022;138:319–38.
http://dx.doi.org/10.1016/j.enganabound.2022.03.001.

[18] Mramor K, Vertnik R, Sarler B. Development of Three-Dimensional LES Based
Meshless Model of Continuous Casting of Steel. Metals 2022;12:1750. http:
//dx.doi.org/10.3390/met12101750.

[19] Mramor K, Vertnik R, Šarler B. Simulation of continuous casting of steel under
the influence of magnetic field using the local-radial basis-function collocation
method. Mater Technol 2014;48:281–8.

[20] Mramor K, Vertnik R, Šarler B. Application of the local RBF collocation method to
natural convection in a 3D cavity influenced by a magnetic field. Eng Anal Bound
Elem 2020;116(17–18):1–13. http://dx.doi.org/10.1016/j.enganabound.2020.03.
025.

[21] Kosec G, Šarler B. Simulation of macrosegregation with mesosegregates in binary
metallic casts by a meshless method. Eng Anal Bound Elem 2014;45:36–44.
http://dx.doi.org/10.1016/j.enganabound.2014.01.016.

[22] Lehto E, Shankar V, Wright G. A radial basis function (RBF) compact finite
difference (FD) scheme for reaction-diffusion equations on surfaces. SIAM J Sci
Comput 2017;39(5):A2129–51. http://dx.doi.org/10.1137/16M1095457.

[23] Dobravec T, Mavrič B, Šarler B. Reduction of discretisation-induced anisotropy
in the phase-field modelling of dendritic growth by meshless approach. Com-
put Mater Sci 2020;172(1):109166. http://dx.doi.org/10.1016/j.commatsci.2019.
109166.

[24] Dobravec T, Mavrič B, Sarler B. Phase field modelling of dendritic solidification
by using an adaptive meshless solution procedure. IOP Conf Ser: Mater Sci Eng
2020;861:012060. http://dx.doi.org/10.1088/1757-899X/861/1/012060.

[25] Bayona V, Sanchez-Sanz M, Fernández-Tarrazo E, Kindelan M. Micro-combustion
modelling with RBF-FD: A high-order meshfree method for reactive flows in
complex geometries. Appl Math Model 2021;94(2–3):635–55. http://dx.doi.org/
10.1016/j.apm.2021.01.032.
67
[26] Hatić V, Rek Z, Mramor K, Mavrič B, Sarler B. A meshless solution of a of
lid-driven cavity containing a heterogeneous porous medium. In: IOP conference
series: Materials science and engineering. vol. 861, Jönköping, Sweden; 2020,
012028. http://dx.doi.org/10.1088/1757-899X/861/1/012028.

[27] Hatić V, Mavrič B, Sarler B. Meshless simulation of a lid-driven cavity problem
with a non-Newtonian fluid. Eng Anal Bound Elem 2021;131:86–99. http://dx.
doi.org/10.1016/j.enganabound.2021.06.015.

[28] Rana K, Mavrič B, Zahoor R, Sarler B. A meshless solution of the compressible
viscous flow in axisymmetric tubes with varying cross-sections. Eng Anal Bound
Elem 2022;143:340–52. http://dx.doi.org/10.1016/j.enganabound.2022.06.029.

[29] Thakoor N, Tangman Y, Bhuruth M. RBF-FD schemes for option valuation under
models with price-dependent and stochastic volatility. Eng Anal Bound Elem
2017;92. http://dx.doi.org/10.1016/j.enganabound.2017.11.003.

[30] Xu W-Z, Fu Z-J, Xi Q. A novel localized collocation solver based on a
radial Trefftz basis for thermal conduction analysis in FGMs with exponen-
tial variations. Comput Math Appl 2022;117:24–38. http://dx.doi.org/10.1016/
j.camwa.2022.04.007, URL https://www.sciencedirect.com/science/article/pii/
S0898122122001560.

[31] Fu Z, Tang Z, Xi Q, Liu Q, Gu Y, Wang F. Localized collocation schemes and
their applications. Acta Mech Sin 2022;38(7):422167. http://dx.doi.org/10.1007/
s10409-022-22167-x, URL https://doi.org/10.1007/s10409-022-22167-x.

[32] Stevens D, Power H, Cliffe K. A solution to linear elasticity using locally
supported RBF collocation in a generalised finite-difference mode. Eng Anal
Bound Elem 2013;37(1):32–41. http://dx.doi.org/10.1016/j.enganabound.2012.
08.005.

[33] Ferreira AJM, Roque CMC, Martins PALS. Analysis of composite plates using
higher-order shear deformation theory and a finite point formulation based on
the multiquadric radial basis function method. Composites B 2003;34(7):627–36.
http://dx.doi.org/10.1016/S1359-8368(03)00083-0.

[34] Ferreira AJM, Fasshauer GE. Computation of natural frequencies of shear de-
formable beams and plates by an RBF-pseudospectral method. Comput Methods
Appl Mech Engrg 2006;196(1):134–46. http://dx.doi.org/10.1016/j.cma.2006.
02.009.

[35] Gerace S, Divo E, Kassab A. A localized radial-basis-function meshless method
approach to axisymmetric thermo-elasticity. San Francisco, California, USA;
2006, http://dx.doi.org/10.2514/6.2006-3788.

[36] Mavrič B, Šarler B. A collocation meshless method for linear thermoelasticity
in 2D. In: 3rd international conference on computational methods for thermal
problems, thermacomp 2014. Bled, Slovenia; 2014, p. 279–82.

[37] Mavrič B. Meshless modeling of thermo-mechanics of low-frequency electromag-
netic direct chill casting (Ph.D. thesis), Nova Gorica, Slovenia: University of Nova
Gorica; 2017.

[38] Hanoglu U, Islam S-u-I, Šarler B. Thermo-mechanical analysis of hot shape
rolling of steel by a meshless method. Procedia Eng 2011;10:3181–6. http:
//dx.doi.org/10.1016/j.proeng.2011.04.524.

[39] Hanoglu U, Šarler B. Simulation of hot shape rolling of steel in continuous rolling
mill by local radial basis function collocation method. CMES Comput Model Eng
Sci 2015;109–110(5):447–79. http://dx.doi.org/10.3970/cmes.2015.109.447.

[40] Hanoglu U, Šarler B. Multi-pass hot-rolling simulation using a meshless method.
Comput Struct 2018;194:1–14. http://dx.doi.org/10.1016/j.compstruc.2017.08.
012.

[41] Hanoglu U, Šarler B. Hot rolling simulation system for steel based on ad-
vanced meshless solution. Metals 2019;9(7):788. http://dx.doi.org/10.3390/
met9070788.

[42] Cacciani N, Larsson E, Lauro A, Meggiolaro M, Scatto A, Tominec I, Villard P-F. A
First Meshless Approach to Simulation of the Elastic Behaviour of the Diaphragm.
In: Sherwin SJ, Moxey D, Peiró J, Vincent PE, Schwab C, editors. Spectral and
high order methods for partial differential equations ICOSAHOM 2018. Lecture
notes in computational science and engineering, Cham, Switzerland: Springer
International Publishing; 2020, p. 501–12. http://dx.doi.org/10.1007/978-3-
030-39647-3_40.

[43] Strniša F, Jančič M, Kosec G. A meshless solution of a small-strain plasticity
problem. In: 2022 45th Jubilee international convention on information, commu-
nication and electronic technology (MIPRO). Opatija, Croatia; 2022, p. 257–62.
http://dx.doi.org/10.23919/MIPRO55190.2022.9803585.

[44] Mavrič B, Dobravec T, Vertnik R, Šarler B. A meshless thermomechanical
travelling-slice model of continuous casting of steel. In: IOP conference series:
materials science and engineering. 012018, vol. 861, Jönköping, Sweden; 2020,
http://dx.doi.org/10.1088/1757-899X/861/1/012018.

[45] Vuga G, Mavrič B, Šarler B. An improved local radial basis function method
for solving small-strain elasto-plasticity. Comput Methods Appl Mech Engrg
2024;418:116501. http://dx.doi.org/10.1016/j.cma.2023.116501, URL https://
www.sciencedirect.com/science/article/pii/S0045782523006254.

[46] Fornberg B, Flyer N. Fast generation of 2-D node distributions for mesh-
free PDE discretizations. Comput Math Appl 2015;69(7):531–44. http://
dx.doi.org/10.1016/j.camwa.2015.01.009, URL https://www.sciencedirect.com/
science/article/pii/S0898122115000334.

[47] Smith M. Abaqus/Standard User’s Manual, Version 6.9. 2009.

http://refhub.elsevier.com/S0955-7997(23)00543-X/sb1
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb1
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb1
http://dx.doi.org/10.1007/s11831-020-09523-0
http://dx.doi.org/10.1007/s11831-020-09523-0
http://dx.doi.org/10.1007/s11831-020-09523-0
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb3
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb3
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb3
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb4
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb4
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb4
http://dx.doi.org/10.1115/1.860335
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb6
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb6
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb6
http://dx.doi.org/10.1016/j.jcp.2019.04.064
http://dx.doi.org/10.1016/j.jcp.2019.04.064
http://dx.doi.org/10.1016/j.jcp.2019.04.064
http://dx.doi.org/10.1007/s00466-003-0521-5
http://dx.doi.org/10.1007/s00466-003-0521-5
http://dx.doi.org/10.1007/s00466-003-0521-5
http://dx.doi.org/10.1007/BF02847979
http://dx.doi.org/10.1007/s004660000181
http://dx.doi.org/10.1007/s004660000181
http://dx.doi.org/10.1007/s004660000181
http://dx.doi.org/10.1007/s00466-003-0501-9
http://dx.doi.org/10.1016/j.camwa.2006.04.013
http://dx.doi.org/10.1016/j.camwa.2006.04.013
http://dx.doi.org/10.1016/j.camwa.2006.04.013
http://dx.doi.org/10.1016/j.jcp.2016.05.026
http://dx.doi.org/10.1108/09615530610669148
http://dx.doi.org/10.1108/09615530610669148
http://dx.doi.org/10.1108/09615530610669148
http://dx.doi.org/10.1108/09615531311289187
http://dx.doi.org/10.4208/aamm.10-10s2-01
http://dx.doi.org/10.1016/j.enganabound.2022.03.001
http://dx.doi.org/10.3390/met12101750
http://dx.doi.org/10.3390/met12101750
http://dx.doi.org/10.3390/met12101750
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb19
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb19
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb19
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb19
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb19
http://dx.doi.org/10.1016/j.enganabound.2020.03.025
http://dx.doi.org/10.1016/j.enganabound.2020.03.025
http://dx.doi.org/10.1016/j.enganabound.2020.03.025
http://dx.doi.org/10.1016/j.enganabound.2014.01.016
http://dx.doi.org/10.1137/16M1095457
http://dx.doi.org/10.1016/j.commatsci.2019.109166
http://dx.doi.org/10.1016/j.commatsci.2019.109166
http://dx.doi.org/10.1016/j.commatsci.2019.109166
http://dx.doi.org/10.1088/1757-899X/861/1/012060
http://dx.doi.org/10.1016/j.apm.2021.01.032
http://dx.doi.org/10.1016/j.apm.2021.01.032
http://dx.doi.org/10.1016/j.apm.2021.01.032
http://dx.doi.org/10.1088/1757-899X/861/1/012028
http://dx.doi.org/10.1016/j.enganabound.2021.06.015
http://dx.doi.org/10.1016/j.enganabound.2021.06.015
http://dx.doi.org/10.1016/j.enganabound.2021.06.015
http://dx.doi.org/10.1016/j.enganabound.2022.06.029
http://dx.doi.org/10.1016/j.enganabound.2017.11.003
http://dx.doi.org/10.1016/j.camwa.2022.04.007
http://dx.doi.org/10.1016/j.camwa.2022.04.007
http://dx.doi.org/10.1016/j.camwa.2022.04.007
https://www.sciencedirect.com/science/article/pii/S0898122122001560
https://www.sciencedirect.com/science/article/pii/S0898122122001560
https://www.sciencedirect.com/science/article/pii/S0898122122001560
http://dx.doi.org/10.1007/s10409-022-22167-x
http://dx.doi.org/10.1007/s10409-022-22167-x
http://dx.doi.org/10.1007/s10409-022-22167-x
https://doi.org/10.1007/s10409-022-22167-x
http://dx.doi.org/10.1016/j.enganabound.2012.08.005
http://dx.doi.org/10.1016/j.enganabound.2012.08.005
http://dx.doi.org/10.1016/j.enganabound.2012.08.005
http://dx.doi.org/10.1016/S1359-8368(03)00083-0
http://dx.doi.org/10.1016/j.cma.2006.02.009
http://dx.doi.org/10.1016/j.cma.2006.02.009
http://dx.doi.org/10.1016/j.cma.2006.02.009
http://dx.doi.org/10.2514/6.2006-3788
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb36
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb36
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb36
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb36
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb36
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb37
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb37
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb37
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb37
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb37
http://dx.doi.org/10.1016/j.proeng.2011.04.524
http://dx.doi.org/10.1016/j.proeng.2011.04.524
http://dx.doi.org/10.1016/j.proeng.2011.04.524
http://dx.doi.org/10.3970/cmes.2015.109.447
http://dx.doi.org/10.1016/j.compstruc.2017.08.012
http://dx.doi.org/10.1016/j.compstruc.2017.08.012
http://dx.doi.org/10.1016/j.compstruc.2017.08.012
http://dx.doi.org/10.3390/met9070788
http://dx.doi.org/10.3390/met9070788
http://dx.doi.org/10.3390/met9070788
http://dx.doi.org/10.1007/978-3-030-39647-3_40
http://dx.doi.org/10.1007/978-3-030-39647-3_40
http://dx.doi.org/10.1007/978-3-030-39647-3_40
http://dx.doi.org/10.23919/MIPRO55190.2022.9803585
http://dx.doi.org/10.1088/1757-899X/861/1/012018
http://dx.doi.org/10.1016/j.cma.2023.116501
https://www.sciencedirect.com/science/article/pii/S0045782523006254
https://www.sciencedirect.com/science/article/pii/S0045782523006254
https://www.sciencedirect.com/science/article/pii/S0045782523006254
http://dx.doi.org/10.1016/j.camwa.2015.01.009
http://dx.doi.org/10.1016/j.camwa.2015.01.009
http://dx.doi.org/10.1016/j.camwa.2015.01.009
https://www.sciencedirect.com/science/article/pii/S0898122115000334
https://www.sciencedirect.com/science/article/pii/S0898122115000334
https://www.sciencedirect.com/science/article/pii/S0898122115000334
http://refhub.elsevier.com/S0955-7997(23)00543-X/sb47

	A hybrid radial basis function-finite difference method for modelling two-dimensional thermo-elasto-plasticity, Part 1: Method formulation and testing
	Introduction
	Physical model
	Thermal model
	Mechanical model
	Boundary conditions
	Generalised plane strain model


	Numerical solution procedure of the thermal model
	Temporal discretisation
	Spatial discretisation
	Local interpolation problem
	Discretisation of differential operators


	Numerical solution procedure of the mechanical model
	Incremental solution
	Spatial discretisation

	Numerical results
	Problem definition
	Simulation procedure
	Thermal response
	Mechanical solution
	Plane strain solution
	Generalised plane strain solution


	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


