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A B S T R A C T   

Molecular docking, a key process in drug discovery, is often used in the discovery of new bioactive compounds. 
In this technique, small molecules are systematically placed at a protein binding site to identify the ligands with 
the highest binding affinity. Here we have developed a new graph-theoretical algorithm called K-CliqueWeight. 
This algorithm efficiently identifies the top N highest weight k-cliques in different types of vertex-weighted 
graphs and can serve as a building block for various algorithms addressing different problems, including mo
lecular docking. K-CliqueWeight and its variant K-CliqueDynWeight are extensions of our established and widely 
used maximum clique algorithm. Our new algorithm uses a novel approach to approximate graph coloring and 
provides efficient upper bounds on the size and weight of a k-clique within the branch-and-bound algorithm. It 
outperforms alternative methods and often shows a speedup of several orders of magnitude. Rigorous tests with 
general random graphs and those specifically designed for docking confirm its exceptional performance. K-Cli
queWeight has been integrated into the existing ProBiS-Dock algorithm for molecular docking. The algorithm is 
freely available to the academic community at http://insilab.org/kcliqueweight.   

1. Introduction 

The k-clique problem is a problem of identifying completely con
nected subgraphs or cliques within a graph, each consisting of exactly k 
vertices. The highest weight k-clique problem extends the concept to 
vertex-weighted graphs and its goal is to find the k-clique with the 
highest sum of vertex weights within the graph. 

Another challenging problem is the N highest weight k-cliques 
problem, where the goal is to find a set of up to N weighted cliques 
whose weights are among the highest of all k-cliques in a given graph. In 
cases where the graph contains less than N k-cliques, the algorithm 
returns all k-cliques within a graph. 

Several algorithms have been developed to find k-cliques in 

unweighted graphs and also to detect highest weight k-cliques in vertex- 
weighted graphs [1,2]. These algorithms have been used in a variety of 
important contexts, in both research and industry [3–6]. 

In this work, we introduce a new algorithm for identifying up to N 
highest-weight k-cliques in a vertex-weighted graph, where N is given as 
a parameter. To the best of our knowledge, this is the first algorithm of 
its kind. Our newly developed algorithm is a versatile graph-theoretical 
algorithm suitable for various types of vertex-weighted graphs and 
universal problem solving. 

We show its application in molecular docking [7–11], where our new 
algorithm, integrated with the ProBiS-Dock algorithm, is used to 
determine the conformation of the small molecule in the protein with 
the lowest binding energy (see Fig. 1). Interestingly, a similar strategy 
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using a maximum weight clique search on a quantum device has been 
explored by others [12]. 

ProBiS-Dock enables rapid docking of small molecules to proteins 
and has been successfully validated in silico using standard benchmarks 
as well as in vitro by the discovery of new inhibitors in cancer therapy 
[7]. Internally, it uses specially constructed vertex-weighted graphs, 
so-called docking graphs, in which a k-clique with the highest weight 
corresponds to the conformation with the lowest energy of a small 
molecule bound to the protein. 

We construct a comprehensive new test set of docking graphs. We 
then evaluate the performance of our new graph-theoretic algorithm on 
these graphs as well as on random weighted graphs. Our algorithm 
shows superior performance on both types of graphs compared to 

another competing algorithm in the field. The docking graphs con
structed in this work can also serve as a valuable, real world test set for 
other researchers to evaluate the effectiveness of their graph-theoretic 
algorithms operating on vertex-weighted graphs. 

2. Methods 

2.1. Generation of weighted graphs for testing 

2.1.1. Random weighted graphs 
The first test set consists of 88 random weighted graphs. We gener

ated the random weighted graphs with 100, 200, 300, 500, 700, 1000, 
5000 and 10,000 vertices. We also varied the edge density within each 
graph size category, where the edge density of a graph is the probability 
p of an edge between two graph vertices. These probabilities took 
discrete values of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and 0.99. 
For each graph of a given size, for each pair of vertices vi and vj, we have 
connected the vertices vi and vj by an edge if a uniform continuous 
distribution u(vi, vj) for random numbers in the range [0, 1) is less than 
the probability p with equal probability in the entire range. 

We have assigned a weight to each vertex v, which is a positive 
integer, by proceeding as follows For each vertex v, we have generated a 
real random number according to the normal random number distri
bution, which is defined as follows: f(x;μ,σ)=1/(σ⋅sqrt(2π))e^(− 1/2- 
((x− μ)/σ)^2), where μ is the mean and σ is the standard deviation; we set 
μ to 100.0 and σ to 20.0. We checked that the resulting random values 
were positive numbers. We then multiplied the real number by 10,000 
and rounded the resulting value to the nearest integer so that we ob
tained a positive integer random number that was used as the weight of 
vertex v. 

2.1.2. Docking protein-ligand weighted graphs 
The second test set consists of 447 weighted docking graph, which 

are based on actual protein-ligand structures. Docking protein-ligand 
graphs were generated using the procedure introduced and described 
in detail in Ref. [7] and are based on the Directory of Useful Decoys 
(DUD-E) benchmark set [13]. The DUD-E set contains 22,886 active 
compounds and their affinities against 102 protein targets, an average of 
224 ligands per protein target and was developed for benchmarking 
molecular docking programs. We used up to nine active compounds for 
each of the 93 protein targets we were able to prepare. For each target, 
only active compounds with different CHEMBL identifiers [14] and 
different fragment numbers were considered. This resulted in 447 
docking graphs. The following describes how a docking graph repre
senting a combination of an active compound and a protein target was 
constructed (see Fig. 2). 

First, each active compound to be docked was broken down into rigid 
fragments and rotatable bonds (Fig. 2a). The fragments are rigid sub
structures of the active compound, while the rotatable bonds correspond 
to the atoms between the rigid fragments, where the relative orientation 
of the fragments to each other can change, i.e. rotatable bonds allow a 
molecule to adopt different conformations. The number of possible ro
tations and conformations therefore increases exponentially with the 
number of rotatable bonds. The active compounds in our set consisted of 
one to thirteen fragments. 

Second, the resulting rigid fragments were each inserted individually 
into the protein binding site in different positions and orientations 
(Fig. 2b). Each fragment was moved across a grid within the binding site 
in steps of approximately 0.75 Å. At each position on the grid, a frag
ment was systematically rotated around its geometric center in all three 
dimensions. For each position and rotation of a fragment obtained, a 
docking score, the so-called ProBiS-score, was calculated [7]. This score 
corresponds approximately to the strength of the binding of the frag
ment to the protein. Several positions were determined for each frag
ment and the most favorable ones, i.e. those with a ProBiS score of less 
than zero, were selected for further analysis. All fragments of an active 

Fig. 1. Overview of molecular docking with the new N highest weight k-cli
ques algorithm. 
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compound were treated equally using the procedure described above, so 
that we obtained several possible positions and orientations within the 
binding site for each fragment. 

Third, the collection of fragment positions was considered as a set of 
vertices (Fig. 2c). The docking graph was constructed such that each of 
its vertices corresponds to a position of each rigidly docked fragment, i. 
e., its geometric center. The vertices thus represent different fragments 
and their different positions. The ProBiS-Score of the fragment is used as 
the weight of the vertex. Since docking scores are negative real numbers, 
we converted them to weights, which are positive integers, by multi
plying each docking score by − 10,000 and rounding the resulting value 
to the nearest integer. 

Fourth, the edges between the vertices were constructed (Fig. 2d). 
Two vertices, each representing a different fragment of the docked 
ligand, were connected by an edge if the corresponding docked frag
ments could be reconnected to the original small molecule ligand, where 
in most cases the docked small molecule is in a different conformation 
than the conformation used as input. For this purpose, a linker was 
inserted between each fragment pair, where a linker can be a chain of 
rotatable bonds or a combination of rotatable bonds and other rigid 
fragments. Whether two fragments can be linked together is determined 
by a) checking that the fragments do not collide with each other, and b) 
comparing the actual distance between a pair of docked fragments in the 
binding site with the maximum possible distance between these 

fragments in the docked small molecule. The latter distance is calculated 
as the length of the shortest path, measured in atom-atom bonds, be
tween the two fragments in a molecule. If the actual distance is less than 
the maximum possible distance, the two vertices have been connected 
by an edge. 

This procedure leads to a docking graph (Fig. 2e), a vertex-weighted 
graph in which a highest weight k-clique, where k is the number of 
fragments of the small molecule, corresponds to the lowest energy 
configuration of the k fragments representing the complete small 
molecule. Completeness is meant here in the sense that the k-clique 
contains all the constituent fragments of a small molecule. Linkers, 
which are inserted between the docked fragments later in the process, 
are still missing at this stage. The fragments that form a highest weight k- 
clique are at a relative distance from each other, which makes it possible 
to reconnect them by inserting linkers to form a complete active com
pound. After insertion of the linkers, a docked conformation of the given 
small molecule bound to the target protein is obtained (Fig. 2f). 

2.2. Molecular docking with the ProBiS-Dock algorithm enabled by the N 
highest weight k-cliques algorithm 

It is important to distinguish the search for highest weight k-cliques 
from the search for maximum weight cliques in the context of molecular 
docking. In the latter type of algorithms, the goal is to find the maximum 

Fig. 2. Construction of docking graphs used in the ProBiS-Dock molecular docking algorithm [7]. (a) The input small molecule is divided into rigid fragments 
separated by rotatable bonds and linkers (sets of atoms connected by rotatable bonds); (b) each fragment is docked separately to the protein binding site, resulting in 
multiple possible docking positions for each fragment; (c) graph vertices are determined as geometric centers of the fragments, each vertex is assigned a weight 
representing its docked score, and a distance d between each pair of vertices is calculated; (d) graph edges are determined so that if the distance between two vertices 
(each representing a different fragment) is less than the maximum possible distance, an edge is inserted between these two vertices; (e) a highest weight k-clique (k =
3 in this case, since there are three different fragments in the small molecule) in the constructed docking graph represents a possible energetically favorable 
configuration with the highest weight (minimum docking score) of the three fragments in the protein binding site; (f) for each highest weight k-clique, a docked small 
molecule is reconstructed from the three fragments forming the clique by inserting missing rotatable bonds and linkers between them. 

K. Rozman et al.                                                                                                                                                                                                                                



Journal of Molecular Structure 1304 (2024) 137639

4

weight clique, a clique with the highest sum of vertex weights. The 
number of vertices in this clique is not limited to k as is in the search for 
k-cliques. 

Assuming that a small molecule to be docked consists of k fragments, 
where k can be different for different small molecules (see Fig. 2, where 
k = 3), then a weighted clique represents a configuration of fragments in 
three-dimensional binding site space so they are at distances relative to 
each other which allow them to be bonded back into the original small 
molecule. The vertex weights here indicate the fragment docking scores. 
There can be multiple fragment configurations that fulfil these criteria. 
A maximum weight clique algorithm or a highest weight k-clique al
gorithm can be used to identify a configuration with the highest docking 
score. However, a maximum weight clique search could lead to a solu
tion with less than k vertices, which as such does not represent the entire 
molecule. In constrast, the highest weight k-clique represents the 
configuration that includes all k fragments and thus represents the most 
favorable docked conformation of the entire small molecule within a 
protein binding site. This is the desired result in molecular docking. The 
search for the k-clique with the highest weight is thus an important and 
still open problem to be solved for these types of calculations. 

2.3. Graph notations 

This paper introduces a new N highest weight k-cliques algorithm 
and its variant. The algorithm builds on and extends the MaxClique 
maximum clique algorithm developed earlier [15]. The new algorithm, 
K-CliqueWeight (KCQW), and its variant K-CliqueDynWeight (KCQDW) 
both search for up to N highest weight k-cliques in a vertex-weighted 
graph. The KCQDW variant uses dynamically varying upper bounds as 
introduced in [15], which in general increase efficiency of the algo
rithm. Table 1 gives an overview of the developed algorithms, and 
Table 2 gives an overview of the variables used in the developed algo
rithms and their meaning. 

2.4. A maximum clique algorithm for unweighted undirected graphs – the 
core algorithm 

We outline the MaxClique (MCQ) algorithm for finding maximum 
cliques in an unweighted undirected graph, here referred to as the core 
algorithm, which was first described in [15]. In the present work, we 
have extended this core algorithm with the ability to find N highest 
weight k-cliques in a vertex-weighted graph, as described in Section 5. 

The core algorithm consists of two procedures, the Expand proced
ure, a recursive depth-first search procedure that uses the branch-and- 
bound technique to explore possible maximum cliques in a graph, and 
the ColorSort procedure, an improved approximate graph coloring al
gorithm that provides upper bounds on the size of the maximum clique 
that can be found at each step of the Expand procedure. In graph col
oring, each graph vertex is assigned a color using the smallest possible 
number of colors so that no two adjacent vertices have the same color. 
This is an NP-hard problem, and performing it exactly on a graph would 
take exponential time as the number of graph vertices increases. 
Therefore, we use an approximate coloring algorithm that determines a 
suboptimal number of colors. This approximate algorithm is fast and still 
provides reasonable upper bounds on the size of a clique in a graph. 

Input. The algorithm takes as input an unweighted graph G repre
sented by a set of vertices R and a set of adjacent vertices Γ(v) for each 
vertex v∈R. 

Output. The maximum clique that was found in the input graph 
represented by the set Qmax consisting of its vertices. The algorithm 
outputs one of possibly several alternative maximum cliques that are in 
the input graph. 

Initialization. The vertices in set R (see line 1 in Table 3) are 
initially sorted by their degrees in decreasing order, so that the first 
vertex has the highest degree of all vertices in R and the last one has the 
lowest degree. The initial upper bound (color) is then determined for 
each vertex v∈R, so that the first Δ(R) vertices in R have their colors set 
to 0, 1, 2, … Δ(R), respectively, and the remaining vertices have their 
colors set to Δ(R) (see line 2 in Table 3). This initialization of colors was 
found to be efficient in [15]. 

Table 1 
Overview of the developed maximum clique and highest weight k-cliques 
algorithms.  

Name* Definition Graph type Searches for 

MCQ [15] MaxClique unweighted graph maximum clique 
MCQD [15] MaxCliqueDyn unweighted graph maximum clique 

KCQW K-CliqueWeight weighted graph at most N k-cliques 
KCQDW K-CliqueDynWeight weighted graph at most N k-cliques 

* New and old algorithms are separated by horizontal line. 

Table 2 
Graph variables and definitions used in the clique algorithms.  

Name Definitions Algorithm* 

G An input graph G represented by a set of vertices R and a 
set of adjacent vertices Γ(v) for each vertex v∈R. 

All 

R A set of input graph vertices represented by numbers 0… 
n.  

Γ(v) A set of vertices adjacent (connected by an edge) to each 
vertex v∈R in the input graph G.  

|Γ(v)| Degree of vertex v, the number of adjacent vertices of 
vertex v∈R, i.e., connected by an edge to vertex v.  

Δ(R) Maximum degree of any vertex in R.  
C A set of color classes C[k], k = 1…|R| + 1, where each 

contains non-adjacent vertices only; k represents the color 
of all vertices in the k-th color class.  

Q A global variable, a set of graph vertices that represent a 
(weighted) clique being constructed.  

W A set of weights for graph vertices of the input graph (e.g., 
W[R[i]] denotes the weight of vertex with index i in R). 

KCQ(D)W 

k Number of vertices k in a k-clique.  
N The maximum number of highest weight k-cliques to be 

outputted by the algorithm.  
P A set of k-cliques and their weights, containing N or less 

highest weight k-cliques found in the input graph G.  

* »All« denotes that variables in this section (between horizontal lines) are used 
by all the developed algorithms (maximum clique and k-clique); KCQ(D)W: only 
by K-CliqueWeight and K-CliqueDynWeight. 

Table 3 
Initialization of graph vertices and the first call of the maximum (weight) clique 
algorithms.  

Line Pseudocode Description Algorithm* 

1. SortDecDeg (R) Sort vertices in R by decreasing 
degrees (from the highest to the 
lowest degree). 

MCQ 

2. InitializeColors (R) Determine initial upper bounds 
(colors).  

3. SortDecDegIncWeigh 
(R, W) 

Sort vertices in R by decreasing 
degrees, then sort vertices with 
equal degrees by increasing 
weights. 

KCQ(D)W 

4. ColorSortKWeight (R) Set initial colors and wcolors of 
the input vertices in set R. These 
are the upper bounds to the size 
and the weight of a highest 
weight k-clique, respectively.  

5. Expand (R) Start the recursive branch-and- 
bound tree search for (weight) 
cliques. 

All 

* »All« denotes that pseudocode in this section (between horizontal lines) is used 
by all the developed algorithms (weighted and unweighted); MCQ: only by 
unweighted MaxClique and MaxCliqueDyn algorithms; KCQ(D)W: only by K- 
CliqueWeight and K-CliqueDynWeight. 
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ColorSort procedure: determination of upper bounds to clique 
size. ColorSort efficiently colors the input graph’s vertices, where the 
number of colors represents the upper bound for the size of the 
maximum clique that can be found in the graph (Table 4). The procedure 
also sorts (reorders) the vertices. It takes the candidate set of graph 
vertices, R, as input, and partitions it into color classes represented by 
the set C, where each color class C[k] contains vertices with color k in set 
R. In a loop over vertices in R, each vertex p∈R is assigned a color (a 
positive number k) based on its connectivity with other vertices, so that 
no two adjacent vertices have the same color. Therefore, each two 
adjacent vertices p, r∈R are always assigned into two different color 
classes C[k1] and C[k2] where k1 ∕= k2. The algorithm continues until all 
vertices in R are colored. 

In comparison to the original maximum clique algorithm [16], on 
which we based our maximum clique algorithm [15], we introduced an 
improvement in the ColorSort algorithm. This improvement is based on 
the observation that a vertex v in the candidate set of graph vertices, R, 
with its color denoted as color(v) will never be added to the current 
growing clique Q if color(v) < |Qmax| − |Q| + 1. Such vertices can be 
kept in their initial non-increasing degrees ordering, which is favorable 
as input to the coloring algorithm at the next level of the recursion of the 
Expand procedure, as it enables the graph to be colored with fewer 
colors and since the number of colors is the upper bound to the size of a 
maximum clique, this results in tighter upper bounds [17]. Thus, at the 
start of the algorithm (line 3, Table 4), we calculate a minimum color 
min_k = |Qmax|–|Q| + 1. Vertices with colors below min_k are kept in 
the initial order, whereas vertices with color of min_k and above are 
reordered based on their colors. Overall, our improved approximate 
coloring algorithm developed in [15] provides an efficient and effective 
way to color the vertices of an unweighted graph, providing efficient 
upper bounds to the size of a maximum clique, and enabling an efficient 
search for a maximum clique in the input graph. 

Expand procedure: finding a maximum clique. After the upper 
bounds of vertices in R are set, the Expand procedure is called. This call 
is done once during the Initialization phase (see line 5 in Table 3) and at 

each step during the recursive branch-and bound tree search (line 15 in 
Table 5). The Expand procedure explores the search tree of possible 
cliques, starting with the initially empty set Q representing a set of 
vertices of the currently growing weighted clique. At each step, Expand 
selects the last vertex p∈R with the highest color, which is the upper 
bound to the size of the maximum clique (line 3 in Table 5), and removes 
this vertex p from the set R. If the size of Q plus the color of vertex p is 
greater than the size of Qmax (line 4 in Table 5), then vertex p is added 
to Q (line 6 in Table 5). 

The subset of vertices Rp⊂R, in which each vertex is adjacent to p, is 
determined (line 7 in Table 5), and if this set Rp is not empty, the Col
orSort procedure is called with Rp as an argument. This sets the upper 
bounds (colors) for vertices in set Rp. The Expand procedure is then 
called recursively with Rp as argument. The recursive calls continue 
until Rp is empty. If Rp is empty, and the size of Q is greater than the size 
of Qmax (line 16 in Table 5), Qmax is updated to be Q. In any case, if the 
size of the candidate clique Q is greater than the size of the Qmax or not, 
Expand backtracks removing the added vertex from Q and allowing the 
search along a different branch of the search tree. The result of the 
Expand procedure is a set Qmax containing vertices of a maximum cli
que that was found in the input graph. 

Dynamically varying bounds for greater efficiency. In [15], we 
introduce the concept of varying the tightness of upper bounds 
dynamically during the maximum clique search resulting in the Max
CliqueDyn algorithm. Varying bounds enables to reduce the number of 

Table 4 
Improved approximate coloring algorithm that colors an un
weighted undirected graph developed in [15], which serves as the 
core algorithm in this work for development of its weighted 
k-clique version. The set Q that contains the currently growing 
clique and the set Qmax which contains the largest clique 
currently found, are global variables. For definitions of all vari
ables see Table 2.  

Line Pseudocode 

1. procedure ColorSort (R) 
2. maxno = 1 
3. min_k = max 1, |Qmax| − |Q| + 1 
4. j = 0 
5. C[1] = ∅, C[2] = ∅ 
6. for i = 0 to |R| − 1 
7. p = R[i] 
8. k = 1 
9. while C[k] ∩ Γ(p) ∕= ∅ 
10. k = k + 1 
11. if k > maxno 
12. maxno = k 
13. C[maxno + 1] = ∅ 
14. C[k] = C[k] ∪ {p} 
15. if k < min_k 
16. R[j] = R[i] 
17. j = j + 1 
18. if j > 0 
19. color(R[j − 1]) = 0 
20. for k = min_k to maxno 
21. for i = 0 to |C[k]| - 1 
22. R[j] = C[k][i] 
23. color(R[j]) = k 
24. j = j + 1  

Table 5 
Expand procedure for the maximum clique algorithm developed in [15] and for 
the new N highest weight k-cliques algorithm developed in this work. The set Q 
that contains the currently growing clique, the set Qmax which contains the 
largest clique currently found, and the set P which contains up to N highest 
weight k-cliques currently found, as well as parameters K and N, are global 
variables. For definitions of all variables see Table 2.  

Line Pseudocode Algorithm* 

1. procedure Expand (R) All 
2. while R ∕= ∅  
3. p = last vertex in R # choose vertex with highest color and/ 

or cumulative weight  

4. if |Q| + color(p) > |Qmax| MCQ(D) 

5. if |Q| + color(p)≥ K and weight(Q) + wcolor(p) >
lowest_weight(P) 

KCQ(D)W 

6. Q = Q ∪ {p} All 
7. Rp = R ∩ Γ(p)  

8. if Rp ∕= ∅ MCQ(D) 

9. if |Q| < K and Rp ∕= ∅ KCQ(D)W 

10. if T[level] < Tlimit MCQD, 
KCQDW 

11. SortDecDeg (Rp) MCQD 

12. SortDecDegIncWeigh (Rp, W) KCQDW 

13. ColorSort (Rp) MCQ(D) 

14. ColorSortKWeight (Rp) KCQ(D)W 

15. Expand (Rp) All 

16. else if |Q| > |Qmax| MCQ(D) 

17. else if |Q| = K and weight(Q) > lowest_weight(P) KCQ(D)W 
18. if |P| = N  
19. P = P \ {Qlowest_weight_in_P}  
20. P = P ∪ {Q}  

21. Q = Q \ {p} All 
22. else return  
23. R = R \ {p}  

* »All« denotes that pseudocode in this section (between horizontal lines) is used 
by all the developed algorithms (weighted and unweighted); MCQ(D): only by 
unweighted MaxClique and MaxCliqueDyn algorithms; KCQ(D)W: only by K- 
CliqueWeight and K-CliqueDynWeight. 
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steps required to find the maximum clique and improve the run time of 
the algorithm by as much as an order of magnitude on dense graphs, 
while preserving its performance on sparse graphs. 

Until now, in the MaxClique algorithm the calculation of the degrees 
and sorting of vertices was performed only once with the initial set of 
vertices R (see line 1 in Table 3). In [15], we developed a new algorithm 
MaxCliqueDyn that recalculates at certain steps of the Expand proced
ure, determined heuristically as explained below, the degrees of vertices 
in Rp in the graph induced by these vertices, i.e., G(Rp); these vertices 
are then sorted in a decreasing order with respect to their degrees in G 
(Rp). The ColorSort algorithm thus considers vertices in Rp sorted by 
their degrees in the induced graph G(Rp) rather than in G. The upper 
bounds given by this coloring algorithm are tighter with this approach 
for the steps of the Expand procedure where the degrees are recalcu
lated, than for the steps where the degrees are not recalculated. How
ever, the calculation of degrees is computationally expensive (O(|Rp|2), 
therefore we need to determine at which steps this should be performed 
to decrease the overall running time of the maximum clique search. 

The heuristic by which we determine the steps where the recalcu
lation of degrees in G(Rp) and resorting of vertices is performed assumes 
that the calculation time is improved only when the candidate set Rp is 
large. Obviously, set Rp is larger on initial (close to root) levels of the 
recursion of the Expand procedure than on the higher levels (close to 
leafs). With the recursion level we denote the number of recursive calls 
of the Expand procedure from the first call to the current branch. For 
large candidate sets the computational expense related to the compu
tation of tighter bound is much smaller than the cost of investigating 
false solutions, which arise when applying less tight bounds. 

Therefore, we count the number of steps up to and including each 
level of the recursion in the Expand procedure and also the number of all 
steps completed so far. Using these two values, we calculate T[level], 
which is the fraction of steps up to the current level among all the steps 
completed so far (see line 10 in Table 5). With a new heuristic param
eter, which we call Tlimit, we can then limit the use of tighter bounds 
(recalculation of degrees) to levels close to the root. While T[level] is 
less than Tlimit, we perform the calculations of the degrees and sorting, 
so that in the ColorSort algorithm (see line 13 in Table 5) we consider 
vertices in Rp sorted by their degrees in the induced graph G(Rp). The 
Tlimit parameter is set to 0.025 by default, which limits the calculation 
of degrees to the lower levels of the recursion where Rp is the largest. We 
found this value of the Tlimit parameter optimal for random as well as 
for DIMACS graphs [15,18,19]. 

In the following subsection, a new algorithm is presented for finding 
up to N highest weight k-cliques in weighted undirected graphs. This 
algorithm is used for molecular docking in our developed ProBiS-Dock 
algorithm [7], but it can, due to its generality, also be applied in other 
bioinformatics and drug discovery settings, as well as in other research 
fields and industry. 

2.5. A new algorithm to find N highest weight k-cliques in a weighted 
undirected graph 

We introduce a new algorithm K-CliqueWeight, which is an exten
sion of the MaxClique maximum clique algorithm (the core algorithm) 
developed in [15], and which we have described in the previous section. 
The new algorithm finds up to N highest weight k-cliques in an undi
rected vertex-weighted graph. A k-clique is defined as a clique with 
exactly k vertices, where k can take values between one and the size of a 
maximum clique in the current graph. The new algorithm is shown in 
Tables 5 and 6. 

The algorithm works by recursively exploring the search tree of the 
possible weighted k-cliques using a branch-and-bound technique to 
efficiently prune parts of the search space that cannot contain a 
weighted k-clique that is among the N highest weight k-cliques. The 
algorithm consists of the Expand procedure (see Table 5), the recursive 
procedure that performs the branch-and-bound search, and the new 

ColorSortKWeight function (see Table 6) that provides the upper bounds 
to the weight and size of the k-clique that can be found at each step of the 
search tree. 

Input. The algorithm takes as input a weighted graph G represented 
by a set of vertices R, a set of adjacent vertices Γ(v) for each vertex v∈R, 
and a set of weights W, where each vertex v∈ R has assigned a weight w, 
which is a positive number (w>0). In addition, it takes as input 
parameter K, which is the number of vertices in a k-clique that we wish 
to be found, and parameter N, which is the maximum number of highest 
weight k-cliques that we wish to be found. 

Output. The set P containing up to N highest weight k-cliques found 
in the input vertex-weighted graph sorted by their decreasing weights. If 
N is not specified or if there are less than N k-cliques in a graph, the 
algorithm returns all k-cliques in a graph. 

Initialization. Vertices in the set R (see Table 3) are sorted by their 
decreasing degrees, then vertices with equal degrees are sorted by their 
increasing weights. This order of vertices produces the tightest upper 
bounds to the size of a maximum weight clique in our experiments. This 
is different from the maximum clique algorithm (see Section 4), where 
vertices are sorted by their decreasing degrees. The ColorSortKWeight 
procedure is called once on the input vertices in the set R (line 4 in 
Table 3). This procedure efficiently determines the initial upper bounds 
to the size (color) of a clique for each vertex v∈R, as well as for the 
weight (wcolor) of a clique if vertex v is selected to be part of the 
growing clique. Both these upper bounds are used in the prunning 

Table 6 
A new approximate coloring algorithm ColorSortKWeight for vertex-weighted 
undirected graphs that is used in the new N highest weight k-cliques algo
rithm. The set Q that contains the currently growing clique, the set Qmax that 
contains the largest clique currently found, and the set P that contains up to N 
highest weight k-clique currently found, as well as the parameter K, are global 
variables. For definitions of all variables see Table 2.  

Line Pseudocode 

1. procedure ColorSortKWeight (R) 
2. maxno = 1 
3. for i = 0 to |R| - 1 
4. p = R[i] 
5. k = 1 
6. C[1] = ∅, C[2] = ∅ 
7. weight(C[1]) = -inf, weight(C[2]) = -inf 
8. while C[k] ∩ Γ(p) ∕= ∅ 
9. k = k + 1 
10. if k > maxno 
11. maxno = k 
12. C[maxno + 1] = ∅ 
13. weight(C[maxno + 1]) = -inf 
14. weight(C[k]) = max W[p], weight(C[k]) 
15. C[k] = C[k] ∪ {p} 
16. color(p) = k 
17. min_k_w = 1 
18. while min_k_w < maxno and Σk=1..min_k_w(weight(C[k])) ≤ lowest_weight(P) 

– weight(Q) 
19. min_k_w = min_k_w + 1 
20. min_k_s = max 1, K - |Q| 
21. min_k = max min_k_w, min_k_s 
22. j = 0 
23. for i = 0 to |R| - 1 
24. if color(R[i]) < min_k 
25. R[j] = R[i] 
26. j = j + 1 
27. if j > 0 
28. color(R[j]) = 0 
29. for k = min_k to maxno 
30. Ck = {weight(C[1]), weight(C[2]), …, weight(C[k])} 
31. Ch = {weight(C[i]) | weight(C[i]) is among the min_k_s highest weights in Ck} 
32. for i = 0 to |C[k]| - 1 
33. wcolor(R[j]) = Σw∈Ch(w) 
34. color(R[j]) = k 
35. R[j] = C[k][i] 
36. j = j + 1  
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conditions in the Expand procedure. 
ColorSortKWeight procedure: determination of clique weight 

and size upper bounds. The ColorSortKWeight procedure takes a set of 
vertices R as input and partitions these vertices into color classes C, 
where vertices in the same color class C[k] are not connected by an edge 
as shown in Table 6. Here, k represents the color of all vertices in color 
class C[k]. For each vertex p∈R, the procedure determines the lowest 
color k such that no vertex in the k-th color class C[k] is adjacent to p 
(see line 8 in Table 6). If k is greater than the maximum number of colors 
seen so far represented by the variable maxno (line 10 in Table 6), a new 
color class is created. Vertex p is then inserted into this color class k and 
its color k is assigned to it, i.e., color(p) = k. In contrast to unweighted 
ColorSort (see Table 4), at each step, the weight of color class C[k], 
initially set to negative infinity, is updated to the weight of the vertex p 
that was inserted into C[k] if the weight of p is larger than the weight of 
C[k] (line 14 in Table 6). This results in each color class C[k] being 
assigned the maximum weight of any of its vertices. Thus, any current 
clique Q consisting of vertices in the set R that is found will have at most 
k vertices and its weight will be less or equal the sum of the maximum 
weights of the color classes 1 through k, i.e., weight(Q) ≤ Σn=1..k(weight 
(C[n])). This condition holds after line 16 in Table 6. 

In the next step, the ColorSortKWeight procedure determines the 
minimum color class (min_k). Vertices with colors less than min_k do not 
satisfy either of the size or weight conditions and cannot be used to 
extend the currently growing clique Q. Such vertices are kept in their 
initial ordering in the resulting set R (see line 25 in Table 6), which was 
found an efficient strategy [15]. The color class min_k is determined as 
the maximum of two auxiliary minimum color classes, min_k_s and 
min_k_w (see line 21 in Table 6), of which min_k_s is the minimum color 
class below which vertices cannot be used to extend the growing clique 
because such a clique would not satisfy the size condition (it would al
ways have less than K vertices), and min_k_w is the minimum color class 
below which vertices cannot be used since such a clique containing such 
vertices would not satisfy the weight condition (such cliques would have 
lower weight than the weight of the currently lowest weight clique in set 
P). 

The value of min_k_w is determined iteratively by starting with 
min_k_w = 1 (see line 17 in Table 6) and increasing it to maxno; the 
search is stopped when the sum of the weights of the k smallest color 
classes is greater than the difference between the weight of the lowest 
weight k-clique in set P found so far and the weight of the currently 
growing clique Q. If vertices from color classes below min_k_w were 
selected to extend the currently growing clique Q, each such clique 
would be of lower weight than the lowest weight clique out of the 
highest weight k-cliques currently in the set P as returned by lowest_
weight(P). The size of set P is at most N, so that it can contain at most N 
k-cliques. However, if there are less than N k-cliques in P (e.g., this 
occurs at the beginning of the search), then lowest_weight(P) returns 
negative infinity. This ensures that each k-clique is accepted into set P 
even if it has a lower weight than those k-cliques already in the set P, 
until the set P is full. 

The second minimum color class min_k_s is calculated as the differ
ence between parameter K and the size of the current clique Q (line 20 in 
Table 6). It is used to identify vertices that do not satisfy the clique size 
condition. If a vertex is selected from a color class below min_k_s, each 
weighted clique containing such a vertex would have less than K 
vertices. Therefore, such vertices are discarded and not used further in 
construction of k-cliques. 

Vertices in color classes with k greater or equal to the determined 
min_k can form k-cliques with at least k vertices and with higher weights 
than the weight of the lowest weight k-clique in the set P. These vertices 
are copied from their respective color classes C, starting from C[min_k] 
and ending with C[maxno], back to the set R in the order in which they 
appear in each color class (see line 35 in Table 6). Each such vertex with 
color of k is assigned a weight upper bound (wcolor), which is the sum of 
min_k_s highest color class weights (see lines 30–31 in Table 6). On each 

step of the loop on lines 29–36 in Table 6, a set Ch is constructed (line 31 
in Table 6), which is comprised of min_k_s highest color class weights 
selected from the set Ck which contains weights for color classes 1 to k. A 
cumulative weight (wcolor) of each vertex in the set R that is going to be 
used to extend future cliques is then determined as the sum of color class 
weights in Ch. This results in tight weight upper bounds of these 
vertices, since min_k_s is always less or equal to K (see line 20 in Table 6), 
and therefore, the sum of weights in set Ch, which is used as the upper 
bound, is always less than the sum of weights in Ck. 

In addition, clique size upper bounds (colors) are assigned to each 
vertex with k greater or equal to determined min_k (see line 34 in 
Table 6). As in the maximum clique algorithm described in Section 4, 
these upper bounds are used to prune the branches that would give k- 
cliques with less than K vertices in the Expand procedure, which is 
described next. 

Expand procedure: finding up to N highest weight k-cliques. On 
each step, the recursive Expand procedure selects the last vertex p from 
set R (see line 3 in Table 5), which is a set of remaining graph vertices yet 
to be explored. On line 5 in Table 5, the size upper bound (color) and the 
weight upper bound (wcolor) of vertex p are used to check if adding p to 
the growing clique Q would increase the size of Q to be greater than or 
equal to K, and if it would result in a higher weight clique than the 
lowest weight k-clique in set P. If both of these conditions are true, 
vertex p is added to Q (line 6 in Table 5). 

The subset of vertices Rp⊂R, in which each vertex is adjacent to p, is 
determined (line 7 in Table 5), and if this set Rp is not empty, the Col
orSortKWeight procedure is called with Rp as an argument. This sets the 
size and weight upper bounds, i.e., colors and wcolors, respectively, for 
vertices in set Rp. The Expand procedure is then called recursively with 
Rp as argument. The recursive calls continue until Rp is empty. 

If Rp is empty (see line 17 in Table 5), and if both the size of the 
growing clique Q equals to K and the weight of Q is greater than the 
weight of the lowest weight k-clique in set P (if P has not yet reached its 
final size N, then lowest_weight(P) returns negative infinity), the clique 
Q is inserted into set P by replacing the lowest weight k-clique in P if size 
of P is N or by adding a new k-clique to set P is not full yet (see lines 
17–20 in Table 5). Once there are no more branches to explore, the 
resulting set P holds up to N highest weight k-cliques that were found in 
the input vertex-weighted graph. The set P is the output of the 
algorithm. 

3. Results and discussion 

To evaluate the developed N highest weight k-cliques algorithm K- 
CliqueWeight and its dynamic variant K-CliqueDynWeight we have 
tested them on the test set of random weighted graphs as well as on the 
test set of real-world docking graphs. We have compared our algorithms 
to the Cliquer algorithm [20,21] for finding a maximum weight clique, 
which is widely used and well established in the research community. 

3.1. Test set of random weighted graphs 

The results for random weighted graphs are in Fig. 3. The total 
calculation time over all graphs for K-CliqueWeight with the parameter 
N set to 100 and parameter K set individually to the size of a maximum 
clique in each of the test graphs, the total calculation time is 8820 s, for 
K-CliqueDynWeight it is 6612 s, while for Cliquer it is 1362,774 s, 
resulting in 155x speedup for the K-CliqueWeight and 206x speedup for 
its dynamic variant K-CliqueDynWeight. These are lower estimates for 
speedups since we stopped the Cliquer algorithm after 5 days, when it 
was still calculating three heavy random weighted graph instances, 
namely the 200/0.95, 200/0.99 and 300/0.99, where each graph name 
indicates the number of verticies vertices and edge density of a graph. 
All these graphs are characterized by their high edge densities, where 
our algorithms performed excellently. 
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Fig. 4. Calculation times for the K-CliqueWeight algorithm and K-CliqueDynWeight variant compared to the state-of-the-art Cliquer algorithm on docking weighted 
graphs. The N = 100 indicates that each calculation was requested to return ≤100 highest weight k-cliques; K was set to the size of the maximum clique (unweighted) 
in each graph separately. For brevity, every 15th graph label (num.vertices/density) is shown below the x-axis. Graph labels are valid for the KCQW algorithm, and 
each curve represents calculation times sorted from smallest to largest separately for each algorithm. Each calculation was repeated 10-times with randomly shuffled 
vertices, so that each reported value of the calculation time is an average over 10 calculations. Calculation times that were <1 ms were set to 1 ms. 

Fig. 3. Calculation times for the K-CliqueWeight algorithm and K-CliqueDynWeight variant compared to the state-of-the-art Cliquer algorithm on random weighted 
graphs. The N = 100 indicates that each calculation returned 100 or less highest weight k-cliques; K was set for each graph separately to the size of the maximum 
clique in that graph. For the sake of clarity, alternating graph labels, valid for the KCQW algorithm, and indicating number of vertices and edge densites are shown 
beneath the x-axis. Each curve on the graph illustrates calculation times, arranged from smallest to largest, for each algorithm individually. To ensure accuracy, every 
calculation was iterated 10 times, with graph vertices randomly shuffled before each iteration. The reported calculation time for each data point represents an 
average across these 10 calculations. This method effectively mitigates the impact of the initial vertex order within the input graph, which could potentially cause 
variations in clique-finding speed. Calculations completing in under 1 ms were recorded as 1 ms, while those exceeding 5 days were stopped and assigned a fixed 
calculation time of 5 days. 

K. Rozman et al.                                                                                                                                                                                                                                



Journal of Molecular Structure 1304 (2024) 137639

9

3.2. Real docking graphs 

Next, we tested the developed N highest weight k-cliques algorithm 
and its variant on docking graphs. These graphs are used in drug dis
covery for molecular docking and are implemented in the ProBiS-Dock 
algorithm that enables screening of libraries of millions of small mole
cules against thousands of proteins [7]. The developed set of docking 
graphs represent a diverse set of possible drug discovery scenarios (see 
Methods section for details on how the graphs were generated). There
fore, the results presented are meaningful estimates of real-world per
formance of our algorithm. 

The results for finding N highest weight k-cliques, where the 
parameter N is set to 100, in docking graphs are in Fig. 4. The K-Cli
queWeight algorithm’s total calculation time for docking graphs was 
5171 s, while K-CliqueDynWeight it was 8838 s, which represents a 25x 
and 14.8x speedup, respectively, compared to the Cliquer algorithm that 
achieved a total calculation time of 131,219 s. These results clearly show 
that our developed algorithm and its variant outperform the reference 
algorithm by a large margin on docking graphs, confirming their role in 
drug discovery. 

A result of docking a small molecule inhibitor to a protein histone 
deacetylase 2 (PDB ID: 3max) using the ProBiS-Dock algorithm [7] is 
shown in Fig. 5. It can be seen that the predicted docked pose of the 
inhibitor corresponds well to the co-crystallized pose of the same ligand 
in this case. This result confirms that using K-CliqueWeight algorithm to 
detect N highest weight k-cliques in docking graphs can be a successful 
strategy to predict accurate protein-ligand complexes. 

A limitation of our test approach is that our algorithm produces so
lutions that differ slightly from those of the compared maximum weight 
clique algorithm. While our algorithm identifies N highest weight k- 
cliques, the compared algorithm returns a single maximum weight cli
que per input graph. To address this issue, for each test graph, we set the 
parameter k to match the size of the maximum clique in that particular 
graph. This ensures the comparability of the results. 

4. Conclusions 

We present a novel algorithm, K-CliqueWeight, designed for efficient 
identification of the N highest weight k-cliques in vertex-weighted 
graphs, together with its variant, K-CliqueDynWeight. Our algorithm 
is general and can find use in various research areas such as molecular 
docking and beyond. To demonstrate its effectiveness, we have per
formed tests on both randomly weighted graphs and real docking graphs 
used in the ProBiS-Dock molecular docking algorithm. Our results show 
a 155-fold speedup of the K-CliqueWeight algorithm on random 
weighted graphs and a 25-fold speedup on docking graphs, while for K- 
CliqueDynWeight variant the relevant speedups are 206-fold and 15- 
fold compared to the widely used maximum weight clique detection 
algorithm. The developed algorithm has the potential to significantly 
accelerate the drug discovery process. 
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