
Journal of Molecular Structure 1304 (2024) 137639

Available online 28 January 2024
0022-2860/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Enhanced molecular docking: Novel algorithm for identifying highest
weight k-cliques in weighted general and protein-ligand graphs

Kati Rozman a, An Ghysels b, Bogdan Zavalnij c, Tanja Kunej d, Urban Bren e,
Dušanka Janežič a,**, Janez Konc a,e,f,g,*

a University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška ulica 8, Koper SI-6000, Slovenia
b Ghent University, IBiTech – BioMMedA group, Corneel Heymanslaan 10, entrance 36, 9000 Gent, Belgium
c Rényi Institute of Mathematics, 1053 Budapest, Hungary
d University of Ljubljana, Department of Animal Science, Biotechnical Faculty, SI-1230 Domžale, Slovenia
e University of Maribor, Faculty of Chemistry and Chemical Technology, Smetanova 17, SI-2000 Maribor, Slovenia
f National Institute of Chemistry, Theory Department, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
g University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI-1000 Ljubljana, Slovenia

A R T I C L E I N F O

Keywords:
Highest weight k-cliques algorithm
Weighted graphs
Graph coloring
Graph theory
Molecular docking
ProBiS-Dock algorithm

A B S T R A C T

Molecular docking, a key process in drug discovery, is often used in the discovery of new bioactive compounds.
In this technique, small molecules are systematically placed at a protein binding site to identify the ligands with
the highest binding affinity. Here we have developed a new graph-theoretical algorithm called K-CliqueWeight.
This algorithm efficiently identifies the top N highest weight k-cliques in different types of vertex-weighted
graphs and can serve as a building block for various algorithms addressing different problems, including mo
lecular docking. K-CliqueWeight and its variant K-CliqueDynWeight are extensions of our established and widely
used maximum clique algorithm. Our new algorithm uses a novel approach to approximate graph coloring and
provides efficient upper bounds on the size and weight of a k-clique within the branch-and-bound algorithm. It
outperforms alternative methods and often shows a speedup of several orders of magnitude. Rigorous tests with
general random graphs and those specifically designed for docking confirm its exceptional performance. K-Cli
queWeight has been integrated into the existing ProBiS-Dock algorithm for molecular docking. The algorithm is
freely available to the academic community at http://insilab.org/kcliqueweight.

1. Introduction

The k-clique problem is a problem of identifying completely con
nected subgraphs or cliques within a graph, each consisting of exactly k
vertices. The highest weight k-clique problem extends the concept to
vertex-weighted graphs and its goal is to find the k-clique with the
highest sum of vertex weights within the graph.

Another challenging problem is the N highest weight k-cliques
problem, where the goal is to find a set of up to N weighted cliques
whose weights are among the highest of all k-cliques in a given graph. In
cases where the graph contains less than N k-cliques, the algorithm
returns all k-cliques within a graph.

Several algorithms have been developed to find k-cliques in

unweighted graphs and also to detect highest weight k-cliques in vertex-
weighted graphs [1,2]. These algorithms have been used in a variety of
important contexts, in both research and industry [3–6].

In this work, we introduce a new algorithm for identifying up to N
highest-weight k-cliques in a vertex-weighted graph, where N is given as
a parameter. To the best of our knowledge, this is the first algorithm of
its kind. Our newly developed algorithm is a versatile graph-theoretical
algorithm suitable for various types of vertex-weighted graphs and
universal problem solving.

We show its application in molecular docking [7–11], where our new
algorithm, integrated with the ProBiS-Dock algorithm, is used to
determine the conformation of the small molecule in the protein with
the lowest binding energy (see Fig. 1). Interestingly, a similar strategy

* Corresponding author at: National Institute of Chemistry, Theory Department, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
** Corresponding author at: University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška ulica 8, Koper SI-6000,

Slovenia.
E-mail addresses: dusanka.janezic@upr.si (D. Janežič), konc@cmm.ki.si (J. Konc).

Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstr

https://doi.org/10.1016/j.molstruc.2024.137639
Received 7 December 2023; Received in revised form 22 January 2024; Accepted 24 January 2024

http://insilab.org/kcliqueweight
mailto:dusanka.janezic@upr.si
mailto:konc@cmm.ki.si
www.sciencedirect.com/science/journal/00222860
https://www.elsevier.com/locate/molstr
https://doi.org/10.1016/j.molstruc.2024.137639
https://doi.org/10.1016/j.molstruc.2024.137639
https://doi.org/10.1016/j.molstruc.2024.137639
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molstruc.2024.137639&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Molecular Structure 1304 (2024) 137639

2

using a maximum weight clique search on a quantum device has been
explored by others [12].

ProBiS-Dock enables rapid docking of small molecules to proteins
and has been successfully validated in silico using standard benchmarks
as well as in vitro by the discovery of new inhibitors in cancer therapy
[7]. Internally, it uses specially constructed vertex-weighted graphs,
so-called docking graphs, in which a k-clique with the highest weight
corresponds to the conformation with the lowest energy of a small
molecule bound to the protein.

We construct a comprehensive new test set of docking graphs. We
then evaluate the performance of our new graph-theoretic algorithm on
these graphs as well as on random weighted graphs. Our algorithm
shows superior performance on both types of graphs compared to

another competing algorithm in the field. The docking graphs con
structed in this work can also serve as a valuable, real world test set for
other researchers to evaluate the effectiveness of their graph-theoretic
algorithms operating on vertex-weighted graphs.

2. Methods

2.1. Generation of weighted graphs for testing

2.1.1. Random weighted graphs
The first test set consists of 88 random weighted graphs. We gener

ated the random weighted graphs with 100, 200, 300, 500, 700, 1000,
5000 and 10,000 vertices. We also varied the edge density within each
graph size category, where the edge density of a graph is the probability
p of an edge between two graph vertices. These probabilities took
discrete values of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and 0.99.
For each graph of a given size, for each pair of vertices vi and vj, we have
connected the vertices vi and vj by an edge if a uniform continuous
distribution u(vi, vj) for random numbers in the range [0, 1) is less than
the probability p with equal probability in the entire range.

We have assigned a weight to each vertex v, which is a positive
integer, by proceeding as follows For each vertex v, we have generated a
real random number according to the normal random number distri
bution, which is defined as follows: f(x;μ,σ)=1/(σ⋅sqrt(2π))e^(− 1/2-
((x− μ)/σ)^2), where μ is the mean and σ is the standard deviation; we set
μ to 100.0 and σ to 20.0. We checked that the resulting random values
were positive numbers. We then multiplied the real number by 10,000
and rounded the resulting value to the nearest integer so that we ob
tained a positive integer random number that was used as the weight of
vertex v.

2.1.2. Docking protein-ligand weighted graphs
The second test set consists of 447 weighted docking graph, which

are based on actual protein-ligand structures. Docking protein-ligand
graphs were generated using the procedure introduced and described
in detail in Ref. [7] and are based on the Directory of Useful Decoys
(DUD-E) benchmark set [13]. The DUD-E set contains 22,886 active
compounds and their affinities against 102 protein targets, an average of
224 ligands per protein target and was developed for benchmarking
molecular docking programs. We used up to nine active compounds for
each of the 93 protein targets we were able to prepare. For each target,
only active compounds with different CHEMBL identifiers [14] and
different fragment numbers were considered. This resulted in 447
docking graphs. The following describes how a docking graph repre
senting a combination of an active compound and a protein target was
constructed (see Fig. 2).

First, each active compound to be docked was broken down into rigid
fragments and rotatable bonds (Fig. 2a). The fragments are rigid sub
structures of the active compound, while the rotatable bonds correspond
to the atoms between the rigid fragments, where the relative orientation
of the fragments to each other can change, i.e. rotatable bonds allow a
molecule to adopt different conformations. The number of possible ro
tations and conformations therefore increases exponentially with the
number of rotatable bonds. The active compounds in our set consisted of
one to thirteen fragments.

Second, the resulting rigid fragments were each inserted individually
into the protein binding site in different positions and orientations
(Fig. 2b). Each fragment was moved across a grid within the binding site
in steps of approximately 0.75 Å. At each position on the grid, a frag
ment was systematically rotated around its geometric center in all three
dimensions. For each position and rotation of a fragment obtained, a
docking score, the so-called ProBiS-score, was calculated [7]. This score
corresponds approximately to the strength of the binding of the frag
ment to the protein. Several positions were determined for each frag
ment and the most favorable ones, i.e. those with a ProBiS score of less
than zero, were selected for further analysis. All fragments of an active

Fig. 1. Overview of molecular docking with the new N highest weight k-cli
ques algorithm.

K. Rozman et al.

Journal of Molecular Structure 1304 (2024) 137639

3

compound were treated equally using the procedure described above, so
that we obtained several possible positions and orientations within the
binding site for each fragment.

Third, the collection of fragment positions was considered as a set of
vertices (Fig. 2c). The docking graph was constructed such that each of
its vertices corresponds to a position of each rigidly docked fragment, i.
e., its geometric center. The vertices thus represent different fragments
and their different positions. The ProBiS-Score of the fragment is used as
the weight of the vertex. Since docking scores are negative real numbers,
we converted them to weights, which are positive integers, by multi
plying each docking score by − 10,000 and rounding the resulting value
to the nearest integer.

Fourth, the edges between the vertices were constructed (Fig. 2d).
Two vertices, each representing a different fragment of the docked
ligand, were connected by an edge if the corresponding docked frag
ments could be reconnected to the original small molecule ligand, where
in most cases the docked small molecule is in a different conformation
than the conformation used as input. For this purpose, a linker was
inserted between each fragment pair, where a linker can be a chain of
rotatable bonds or a combination of rotatable bonds and other rigid
fragments. Whether two fragments can be linked together is determined
by a) checking that the fragments do not collide with each other, and b)
comparing the actual distance between a pair of docked fragments in the
binding site with the maximum possible distance between these

fragments in the docked small molecule. The latter distance is calculated
as the length of the shortest path, measured in atom-atom bonds, be
tween the two fragments in a molecule. If the actual distance is less than
the maximum possible distance, the two vertices have been connected
by an edge.

This procedure leads to a docking graph (Fig. 2e), a vertex-weighted
graph in which a highest weight k-clique, where k is the number of
fragments of the small molecule, corresponds to the lowest energy
configuration of the k fragments representing the complete small
molecule. Completeness is meant here in the sense that the k-clique
contains all the constituent fragments of a small molecule. Linkers,
which are inserted between the docked fragments later in the process,
are still missing at this stage. The fragments that form a highest weight k-
clique are at a relative distance from each other, which makes it possible
to reconnect them by inserting linkers to form a complete active com
pound. After insertion of the linkers, a docked conformation of the given
small molecule bound to the target protein is obtained (Fig. 2f).

2.2. Molecular docking with the ProBiS-Dock algorithm enabled by the N
highest weight k-cliques algorithm

It is important to distinguish the search for highest weight k-cliques
from the search for maximum weight cliques in the context of molecular
docking. In the latter type of algorithms, the goal is to find the maximum

Fig. 2. Construction of docking graphs used in the ProBiS-Dock molecular docking algorithm [7]. (a) The input small molecule is divided into rigid fragments
separated by rotatable bonds and linkers (sets of atoms connected by rotatable bonds); (b) each fragment is docked separately to the protein binding site, resulting in
multiple possible docking positions for each fragment; (c) graph vertices are determined as geometric centers of the fragments, each vertex is assigned a weight
representing its docked score, and a distance d between each pair of vertices is calculated; (d) graph edges are determined so that if the distance between two vertices
(each representing a different fragment) is less than the maximum possible distance, an edge is inserted between these two vertices; (e) a highest weight k-clique (k =
3 in this case, since there are three different fragments in the small molecule) in the constructed docking graph represents a possible energetically favorable
configuration with the highest weight (minimum docking score) of the three fragments in the protein binding site; (f) for each highest weight k-clique, a docked small
molecule is reconstructed from the three fragments forming the clique by inserting missing rotatable bonds and linkers between them.

K. Rozman et al.

Journal of Molecular Structure 1304 (2024) 137639

4

weight clique, a clique with the highest sum of vertex weights. The
number of vertices in this clique is not limited to k as is in the search for
k-cliques.

Assuming that a small molecule to be docked consists of k fragments,
where k can be different for different small molecules (see Fig. 2, where
k = 3), then a weighted clique represents a configuration of fragments in
three-dimensional binding site space so they are at distances relative to
each other which allow them to be bonded back into the original small
molecule. The vertex weights here indicate the fragment docking scores.
There can be multiple fragment configurations that fulfil these criteria.
A maximum weight clique algorithm or a highest weight k-clique al
gorithm can be used to identify a configuration with the highest docking
score. However, a maximum weight clique search could lead to a solu
tion with less than k vertices, which as such does not represent the entire
molecule. In constrast, the highest weight k-clique represents the
configuration that includes all k fragments and thus represents the most
favorable docked conformation of the entire small molecule within a
protein binding site. This is the desired result in molecular docking. The
search for the k-clique with the highest weight is thus an important and
still open problem to be solved for these types of calculations.

2.3. Graph notations

This paper introduces a new N highest weight k-cliques algorithm
and its variant. The algorithm builds on and extends the MaxClique
maximum clique algorithm developed earlier [15]. The new algorithm,
K-CliqueWeight (KCQW), and its variant K-CliqueDynWeight (KCQDW)
both search for up to N highest weight k-cliques in a vertex-weighted
graph. The KCQDW variant uses dynamically varying upper bounds as
introduced in [15], which in general increase efficiency of the algo
rithm. Table 1 gives an overview of the developed algorithms, and
Table 2 gives an overview of the variables used in the developed algo
rithms and their meaning.

2.4. A maximum clique algorithm for unweighted undirected graphs – the
core algorithm

We outline the MaxClique (MCQ) algorithm for finding maximum
cliques in an unweighted undirected graph, here referred to as the core
algorithm, which was first described in [15]. In the present work, we
have extended this core algorithm with the ability to find N highest
weight k-cliques in a vertex-weighted graph, as described in Section 5.

The core algorithm consists of two procedures, the Expand proced
ure, a recursive depth-first search procedure that uses the branch-and-
bound technique to explore possible maximum cliques in a graph, and
the ColorSort procedure, an improved approximate graph coloring al
gorithm that provides upper bounds on the size of the maximum clique
that can be found at each step of the Expand procedure. In graph col
oring, each graph vertex is assigned a color using the smallest possible
number of colors so that no two adjacent vertices have the same color.
This is an NP-hard problem, and performing it exactly on a graph would
take exponential time as the number of graph vertices increases.
Therefore, we use an approximate coloring algorithm that determines a
suboptimal number of colors. This approximate algorithm is fast and still
provides reasonable upper bounds on the size of a clique in a graph.

Input. The algorithm takes as input an unweighted graph G repre
sented by a set of vertices R and a set of adjacent vertices Γ(v) for each
vertex v∈R.

Output. The maximum clique that was found in the input graph
represented by the set Qmax consisting of its vertices. The algorithm
outputs one of possibly several alternative maximum cliques that are in
the input graph.

Initialization. The vertices in set R (see line 1 in Table 3) are
initially sorted by their degrees in decreasing order, so that the first
vertex has the highest degree of all vertices in R and the last one has the
lowest degree. The initial upper bound (color) is then determined for
each vertex v∈R, so that the first Δ(R) vertices in R have their colors set
to 0, 1, 2, … Δ(R), respectively, and the remaining vertices have their
colors set to Δ(R) (see line 2 in Table 3). This initialization of colors was
found to be efficient in [15].

Table 1
Overview of the developed maximum clique and highest weight k-cliques
algorithms.

Name* Definition Graph type Searches for

MCQ [15] MaxClique unweighted graph maximum clique
MCQD [15] MaxCliqueDyn unweighted graph maximum clique

KCQW K-CliqueWeight weighted graph at most N k-cliques
KCQDW K-CliqueDynWeight weighted graph at most N k-cliques

* New and old algorithms are separated by horizontal line.

Table 2
Graph variables and definitions used in the clique algorithms.

Name Definitions Algorithm*

G An input graph G represented by a set of vertices R and a
set of adjacent vertices Γ(v) for each vertex v∈R.

All

R A set of input graph vertices represented by numbers 0…
n.

Γ(v) A set of vertices adjacent (connected by an edge) to each
vertex v∈R in the input graph G.

|Γ(v)| Degree of vertex v, the number of adjacent vertices of
vertex v∈R, i.e., connected by an edge to vertex v.

Δ(R) Maximum degree of any vertex in R.
C A set of color classes C[k], k = 1…|R| + 1, where each

contains non-adjacent vertices only; k represents the color
of all vertices in the k-th color class.

Q A global variable, a set of graph vertices that represent a
(weighted) clique being constructed.

W A set of weights for graph vertices of the input graph (e.g.,
W[R[i]] denotes the weight of vertex with index i in R).

KCQ(D)W

k Number of vertices k in a k-clique.
N The maximum number of highest weight k-cliques to be

outputted by the algorithm.
P A set of k-cliques and their weights, containing N or less

highest weight k-cliques found in the input graph G.

* »All« denotes that variables in this section (between horizontal lines) are used
by all the developed algorithms (maximum clique and k-clique); KCQ(D)W: only
by K-CliqueWeight and K-CliqueDynWeight.

Table 3
Initialization of graph vertices and the first call of the maximum (weight) clique
algorithms.

Line Pseudocode Description Algorithm*

1. SortDecDeg (R) Sort vertices in R by decreasing
degrees (from the highest to the
lowest degree).

MCQ

2. InitializeColors (R) Determine initial upper bounds
(colors).

3. SortDecDegIncWeigh
(R, W)

Sort vertices in R by decreasing
degrees, then sort vertices with
equal degrees by increasing
weights.

KCQ(D)W

4. ColorSortKWeight (R) Set initial colors and wcolors of
the input vertices in set R. These
are the upper bounds to the size
and the weight of a highest
weight k-clique, respectively.

5. Expand (R) Start the recursive branch-and-
bound tree search for (weight)
cliques.

All

* »All« denotes that pseudocode in this section (between horizontal lines) is used
by all the developed algorithms (weighted and unweighted); MCQ: only by
unweighted MaxClique and MaxCliqueDyn algorithms; KCQ(D)W: only by K-
CliqueWeight and K-CliqueDynWeight.

K. Rozman et al.

Journal of Molecular Structure 1304 (2024) 137639

5

ColorSort procedure: determination of upper bounds to clique
size. ColorSort efficiently colors the input graph’s vertices, where the
number of colors represents the upper bound for the size of the
maximum clique that can be found in the graph (Table 4). The procedure
also sorts (reorders) the vertices. It takes the candidate set of graph
vertices, R, as input, and partitions it into color classes represented by
the set C, where each color class C[k] contains vertices with color k in set
R. In a loop over vertices in R, each vertex p∈R is assigned a color (a
positive number k) based on its connectivity with other vertices, so that
no two adjacent vertices have the same color. Therefore, each two
adjacent vertices p, r∈R are always assigned into two different color
classes C[k1] and C[k2] where k1 ∕= k2. The algorithm continues until all
vertices in R are colored.

In comparison to the original maximum clique algorithm [16], on
which we based our maximum clique algorithm [15], we introduced an
improvement in the ColorSort algorithm. This improvement is based on
the observation that a vertex v in the candidate set of graph vertices, R,
with its color denoted as color(v) will never be added to the current
growing clique Q if color(v) < |Qmax| − |Q| + 1. Such vertices can be
kept in their initial non-increasing degrees ordering, which is favorable
as input to the coloring algorithm at the next level of the recursion of the
Expand procedure, as it enables the graph to be colored with fewer
colors and since the number of colors is the upper bound to the size of a
maximum clique, this results in tighter upper bounds [17]. Thus, at the
start of the algorithm (line 3, Table 4), we calculate a minimum color
min_k = |Qmax|–|Q| + 1. Vertices with colors below min_k are kept in
the initial order, whereas vertices with color of min_k and above are
reordered based on their colors. Overall, our improved approximate
coloring algorithm developed in [15] provides an efficient and effective
way to color the vertices of an unweighted graph, providing efficient
upper bounds to the size of a maximum clique, and enabling an efficient
search for a maximum clique in the input graph.

Expand procedure: finding a maximum clique. After the upper
bounds of vertices in R are set, the Expand procedure is called. This call
is done once during the Initialization phase (see line 5 in Table 3) and at

each step during the recursive branch-and bound tree search (line 15 in
Table 5). The Expand procedure explores the search tree of possible
cliques, starting with the initially empty set Q representing a set of
vertices of the currently growing weighted clique. At each step, Expand
selects the last vertex p∈R with the highest color, which is the upper
bound to the size of the maximum clique (line 3 in Table 5), and removes
this vertex p from the set R. If the size of Q plus the color of vertex p is
greater than the size of Qmax (line 4 in Table 5), then vertex p is added
to Q (line 6 in Table 5).

The subset of vertices Rp⊂R, in which each vertex is adjacent to p, is
determined (line 7 in Table 5), and if this set Rp is not empty, the Col
orSort procedure is called with Rp as an argument. This sets the upper
bounds (colors) for vertices in set Rp. The Expand procedure is then
called recursively with Rp as argument. The recursive calls continue
until Rp is empty. If Rp is empty, and the size of Q is greater than the size
of Qmax (line 16 in Table 5), Qmax is updated to be Q. In any case, if the
size of the candidate clique Q is greater than the size of the Qmax or not,
Expand backtracks removing the added vertex from Q and allowing the
search along a different branch of the search tree. The result of the
Expand procedure is a set Qmax containing vertices of a maximum cli
que that was found in the input graph.

Dynamically varying bounds for greater efficiency. In [15], we
introduce the concept of varying the tightness of upper bounds
dynamically during the maximum clique search resulting in the Max
CliqueDyn algorithm. Varying bounds enables to reduce the number of

Table 4
Improved approximate coloring algorithm that colors an un
weighted undirected graph developed in [15], which serves as the
core algorithm in this work for development of its weighted
k-clique version. The set Q that contains the currently growing
clique and the set Qmax which contains the largest clique
currently found, are global variables. For definitions of all vari
ables see Table 2.

Line Pseudocode

1. procedure ColorSort (R)
2. maxno = 1
3. min_k = max 1, |Qmax| − |Q| + 1
4. j = 0
5. C[1] = ∅, C[2] = ∅
6. for i = 0 to |R| − 1
7. p = R[i]
8. k = 1
9. while C[k] ∩ Γ(p) ∕= ∅
10. k = k + 1
11. if k > maxno
12. maxno = k
13. C[maxno + 1] = ∅
14. C[k] = C[k] ∪ {p}
15. if k < min_k
16. R[j] = R[i]
17. j = j + 1
18. if j > 0
19. color(R[j − 1]) = 0
20. for k = min_k to maxno
21. for i = 0 to |C[k]| - 1
22. R[j] = C[k][i]
23. color(R[j]) = k
24. j = j + 1

Table 5
Expand procedure for the maximum clique algorithm developed in [15] and for
the new N highest weight k-cliques algorithm developed in this work. The set Q
that contains the currently growing clique, the set Qmax which contains the
largest clique currently found, and the set P which contains up to N highest
weight k-cliques currently found, as well as parameters K and N, are global
variables. For definitions of all variables see Table 2.

Line Pseudocode Algorithm*

1. procedure Expand (R) All
2. while R ∕= ∅
3. p = last vertex in R # choose vertex with highest color and/

or cumulative weight

4. if |Q| + color(p) > |Qmax| MCQ(D)

5. if |Q| + color(p)≥ K and weight(Q) + wcolor(p) >
lowest_weight(P)

KCQ(D)W

6. Q = Q ∪ {p} All
7. Rp = R ∩ Γ(p)

8. if Rp ∕= ∅ MCQ(D)

9. if |Q| < K and Rp ∕= ∅ KCQ(D)W

10. if T[level] < Tlimit MCQD,
KCQDW

11. SortDecDeg (Rp) MCQD

12. SortDecDegIncWeigh (Rp, W) KCQDW

13. ColorSort (Rp) MCQ(D)

14. ColorSortKWeight (Rp) KCQ(D)W

15. Expand (Rp) All

16. else if |Q| > |Qmax| MCQ(D)

17. else if |Q| = K and weight(Q) > lowest_weight(P) KCQ(D)W
18. if |P| = N
19. P = P \ {Qlowest_weight_in_P}
20. P = P ∪ {Q}

21. Q = Q \ {p} All
22. else return
23. R = R \ {p}

* »All« denotes that pseudocode in this section (between horizontal lines) is used
by all the developed algorithms (weighted and unweighted); MCQ(D): only by
unweighted MaxClique and MaxCliqueDyn algorithms; KCQ(D)W: only by K-
CliqueWeight and K-CliqueDynWeight.

K. Rozman et al.

Journal of Molecular Structure 1304 (2024) 137639

6

steps required to find the maximum clique and improve the run time of
the algorithm by as much as an order of magnitude on dense graphs,
while preserving its performance on sparse graphs.

Until now, in the MaxClique algorithm the calculation of the degrees
and sorting of vertices was performed only once with the initial set of
vertices R (see line 1 in Table 3). In [15], we developed a new algorithm
MaxCliqueDyn that recalculates at certain steps of the Expand proced
ure, determined heuristically as explained below, the degrees of vertices
in Rp in the graph induced by these vertices, i.e., G(Rp); these vertices
are then sorted in a decreasing order with respect to their degrees in G
(Rp). The ColorSort algorithm thus considers vertices in Rp sorted by
their degrees in the induced graph G(Rp) rather than in G. The upper
bounds given by this coloring algorithm are tighter with this approach
for the steps of the Expand procedure where the degrees are recalcu
lated, than for the steps where the degrees are not recalculated. How
ever, the calculation of degrees is computationally expensive (O(|Rp|2),
therefore we need to determine at which steps this should be performed
to decrease the overall running time of the maximum clique search.

The heuristic by which we determine the steps where the recalcu
lation of degrees in G(Rp) and resorting of vertices is performed assumes
that the calculation time is improved only when the candidate set Rp is
large. Obviously, set Rp is larger on initial (close to root) levels of the
recursion of the Expand procedure than on the higher levels (close to
leafs). With the recursion level we denote the number of recursive calls
of the Expand procedure from the first call to the current branch. For
large candidate sets the computational expense related to the compu
tation of tighter bound is much smaller than the cost of investigating
false solutions, which arise when applying less tight bounds.

Therefore, we count the number of steps up to and including each
level of the recursion in the Expand procedure and also the number of all
steps completed so far. Using these two values, we calculate T[level],
which is the fraction of steps up to the current level among all the steps
completed so far (see line 10 in Table 5). With a new heuristic param
eter, which we call Tlimit, we can then limit the use of tighter bounds
(recalculation of degrees) to levels close to the root. While T[level] is
less than Tlimit, we perform the calculations of the degrees and sorting,
so that in the ColorSort algorithm (see line 13 in Table 5) we consider
vertices in Rp sorted by their degrees in the induced graph G(Rp). The
Tlimit parameter is set to 0.025 by default, which limits the calculation
of degrees to the lower levels of the recursion where Rp is the largest. We
found this value of the Tlimit parameter optimal for random as well as
for DIMACS graphs [15,18,19].

In the following subsection, a new algorithm is presented for finding
up to N highest weight k-cliques in weighted undirected graphs. This
algorithm is used for molecular docking in our developed ProBiS-Dock
algorithm [7], but it can, due to its generality, also be applied in other
bioinformatics and drug discovery settings, as well as in other research
fields and industry.

2.5. A new algorithm to find N highest weight k-cliques in a weighted
undirected graph

We introduce a new algorithm K-CliqueWeight, which is an exten
sion of the MaxClique maximum clique algorithm (the core algorithm)
developed in [15], and which we have described in the previous section.
The new algorithm finds up to N highest weight k-cliques in an undi
rected vertex-weighted graph. A k-clique is defined as a clique with
exactly k vertices, where k can take values between one and the size of a
maximum clique in the current graph. The new algorithm is shown in
Tables 5 and 6.

The algorithm works by recursively exploring the search tree of the
possible weighted k-cliques using a branch-and-bound technique to
efficiently prune parts of the search space that cannot contain a
weighted k-clique that is among the N highest weight k-cliques. The
algorithm consists of the Expand procedure (see Table 5), the recursive
procedure that performs the branch-and-bound search, and the new

ColorSortKWeight function (see Table 6) that provides the upper bounds
to the weight and size of the k-clique that can be found at each step of the
search tree.

Input. The algorithm takes as input a weighted graph G represented
by a set of vertices R, a set of adjacent vertices Γ(v) for each vertex v∈R,
and a set of weights W, where each vertex v∈ R has assigned a weight w,
which is a positive number (w>0). In addition, it takes as input
parameter K, which is the number of vertices in a k-clique that we wish
to be found, and parameter N, which is the maximum number of highest
weight k-cliques that we wish to be found.

Output. The set P containing up to N highest weight k-cliques found
in the input vertex-weighted graph sorted by their decreasing weights. If
N is not specified or if there are less than N k-cliques in a graph, the
algorithm returns all k-cliques in a graph.

Initialization. Vertices in the set R (see Table 3) are sorted by their
decreasing degrees, then vertices with equal degrees are sorted by their
increasing weights. This order of vertices produces the tightest upper
bounds to the size of a maximum weight clique in our experiments. This
is different from the maximum clique algorithm (see Section 4), where
vertices are sorted by their decreasing degrees. The ColorSortKWeight
procedure is called once on the input vertices in the set R (line 4 in
Table 3). This procedure efficiently determines the initial upper bounds
to the size (color) of a clique for each vertex v∈R, as well as for the
weight (wcolor) of a clique if vertex v is selected to be part of the
growing clique. Both these upper bounds are used in the prunning

Table 6
A new approximate coloring algorithm ColorSortKWeight for vertex-weighted
undirected graphs that is used in the new N highest weight k-cliques algo
rithm. The set Q that contains the currently growing clique, the set Qmax that
contains the largest clique currently found, and the set P that contains up to N
highest weight k-clique currently found, as well as the parameter K, are global
variables. For definitions of all variables see Table 2.

Line Pseudocode

1. procedure ColorSortKWeight (R)
2. maxno = 1
3. for i = 0 to |R| - 1
4. p = R[i]
5. k = 1
6. C[1] = ∅, C[2] = ∅
7. weight(C[1]) = -inf, weight(C[2]) = -inf
8. while C[k] ∩ Γ(p) ∕= ∅
9. k = k + 1
10. if k > maxno
11. maxno = k
12. C[maxno + 1] = ∅
13. weight(C[maxno + 1]) = -inf
14. weight(C[k]) = max W[p], weight(C[k])
15. C[k] = C[k] ∪ {p}
16. color(p) = k
17. min_k_w = 1
18. while min_k_w < maxno and Σk=1..min_k_w(weight(C[k])) ≤ lowest_weight(P)

– weight(Q)
19. min_k_w = min_k_w + 1
20. min_k_s = max 1, K - |Q|
21. min_k = max min_k_w, min_k_s
22. j = 0
23. for i = 0 to |R| - 1
24. if color(R[i]) < min_k
25. R[j] = R[i]
26. j = j + 1
27. if j > 0
28. color(R[j]) = 0
29. for k = min_k to maxno
30. Ck = {weight(C[1]), weight(C[2]), …, weight(C[k])}
31. Ch = {weight(C[i]) | weight(C[i]) is among the min_k_s highest weights in Ck}
32. for i = 0 to |C[k]| - 1
33. wcolor(R[j]) = Σw∈Ch(w)
34. color(R[j]) = k
35. R[j] = C[k][i]
36. j = j + 1

K. Rozman et al.

Journal of Molecular Structure 1304 (2024) 137639

7

conditions in the Expand procedure.
ColorSortKWeight procedure: determination of clique weight

and size upper bounds. The ColorSortKWeight procedure takes a set of
vertices R as input and partitions these vertices into color classes C,
where vertices in the same color class C[k] are not connected by an edge
as shown in Table 6. Here, k represents the color of all vertices in color
class C[k]. For each vertex p∈R, the procedure determines the lowest
color k such that no vertex in the k-th color class C[k] is adjacent to p
(see line 8 in Table 6). If k is greater than the maximum number of colors
seen so far represented by the variable maxno (line 10 in Table 6), a new
color class is created. Vertex p is then inserted into this color class k and
its color k is assigned to it, i.e., color(p) = k. In contrast to unweighted
ColorSort (see Table 4), at each step, the weight of color class C[k],
initially set to negative infinity, is updated to the weight of the vertex p
that was inserted into C[k] if the weight of p is larger than the weight of
C[k] (line 14 in Table 6). This results in each color class C[k] being
assigned the maximum weight of any of its vertices. Thus, any current
clique Q consisting of vertices in the set R that is found will have at most
k vertices and its weight will be less or equal the sum of the maximum
weights of the color classes 1 through k, i.e., weight(Q) ≤ Σn=1..k(weight
(C[n])). This condition holds after line 16 in Table 6.

In the next step, the ColorSortKWeight procedure determines the
minimum color class (min_k). Vertices with colors less than min_k do not
satisfy either of the size or weight conditions and cannot be used to
extend the currently growing clique Q. Such vertices are kept in their
initial ordering in the resulting set R (see line 25 in Table 6), which was
found an efficient strategy [15]. The color class min_k is determined as
the maximum of two auxiliary minimum color classes, min_k_s and
min_k_w (see line 21 in Table 6), of which min_k_s is the minimum color
class below which vertices cannot be used to extend the growing clique
because such a clique would not satisfy the size condition (it would al
ways have less than K vertices), and min_k_w is the minimum color class
below which vertices cannot be used since such a clique containing such
vertices would not satisfy the weight condition (such cliques would have
lower weight than the weight of the currently lowest weight clique in set
P).

The value of min_k_w is determined iteratively by starting with
min_k_w = 1 (see line 17 in Table 6) and increasing it to maxno; the
search is stopped when the sum of the weights of the k smallest color
classes is greater than the difference between the weight of the lowest
weight k-clique in set P found so far and the weight of the currently
growing clique Q. If vertices from color classes below min_k_w were
selected to extend the currently growing clique Q, each such clique
would be of lower weight than the lowest weight clique out of the
highest weight k-cliques currently in the set P as returned by lowest_
weight(P). The size of set P is at most N, so that it can contain at most N
k-cliques. However, if there are less than N k-cliques in P (e.g., this
occurs at the beginning of the search), then lowest_weight(P) returns
negative infinity. This ensures that each k-clique is accepted into set P
even if it has a lower weight than those k-cliques already in the set P,
until the set P is full.

The second minimum color class min_k_s is calculated as the differ
ence between parameter K and the size of the current clique Q (line 20 in
Table 6). It is used to identify vertices that do not satisfy the clique size
condition. If a vertex is selected from a color class below min_k_s, each
weighted clique containing such a vertex would have less than K
vertices. Therefore, such vertices are discarded and not used further in
construction of k-cliques.

Vertices in color classes with k greater or equal to the determined
min_k can form k-cliques with at least k vertices and with higher weights
than the weight of the lowest weight k-clique in the set P. These vertices
are copied from their respective color classes C, starting from C[min_k]
and ending with C[maxno], back to the set R in the order in which they
appear in each color class (see line 35 in Table 6). Each such vertex with
color of k is assigned a weight upper bound (wcolor), which is the sum of
min_k_s highest color class weights (see lines 30–31 in Table 6). On each

step of the loop on lines 29–36 in Table 6, a set Ch is constructed (line 31
in Table 6), which is comprised of min_k_s highest color class weights
selected from the set Ck which contains weights for color classes 1 to k. A
cumulative weight (wcolor) of each vertex in the set R that is going to be
used to extend future cliques is then determined as the sum of color class
weights in Ch. This results in tight weight upper bounds of these
vertices, since min_k_s is always less or equal to K (see line 20 in Table 6),
and therefore, the sum of weights in set Ch, which is used as the upper
bound, is always less than the sum of weights in Ck.

In addition, clique size upper bounds (colors) are assigned to each
vertex with k greater or equal to determined min_k (see line 34 in
Table 6). As in the maximum clique algorithm described in Section 4,
these upper bounds are used to prune the branches that would give k-
cliques with less than K vertices in the Expand procedure, which is
described next.

Expand procedure: finding up to N highest weight k-cliques. On
each step, the recursive Expand procedure selects the last vertex p from
set R (see line 3 in Table 5), which is a set of remaining graph vertices yet
to be explored. On line 5 in Table 5, the size upper bound (color) and the
weight upper bound (wcolor) of vertex p are used to check if adding p to
the growing clique Q would increase the size of Q to be greater than or
equal to K, and if it would result in a higher weight clique than the
lowest weight k-clique in set P. If both of these conditions are true,
vertex p is added to Q (line 6 in Table 5).

The subset of vertices Rp⊂R, in which each vertex is adjacent to p, is
determined (line 7 in Table 5), and if this set Rp is not empty, the Col
orSortKWeight procedure is called with Rp as an argument. This sets the
size and weight upper bounds, i.e., colors and wcolors, respectively, for
vertices in set Rp. The Expand procedure is then called recursively with
Rp as argument. The recursive calls continue until Rp is empty.

If Rp is empty (see line 17 in Table 5), and if both the size of the
growing clique Q equals to K and the weight of Q is greater than the
weight of the lowest weight k-clique in set P (if P has not yet reached its
final size N, then lowest_weight(P) returns negative infinity), the clique
Q is inserted into set P by replacing the lowest weight k-clique in P if size
of P is N or by adding a new k-clique to set P is not full yet (see lines
17–20 in Table 5). Once there are no more branches to explore, the
resulting set P holds up to N highest weight k-cliques that were found in
the input vertex-weighted graph. The set P is the output of the
algorithm.

3. Results and discussion

To evaluate the developed N highest weight k-cliques algorithm K-
CliqueWeight and its dynamic variant K-CliqueDynWeight we have
tested them on the test set of random weighted graphs as well as on the
test set of real-world docking graphs. We have compared our algorithms
to the Cliquer algorithm [20,21] for finding a maximum weight clique,
which is widely used and well established in the research community.

3.1. Test set of random weighted graphs

The results for random weighted graphs are in Fig. 3. The total
calculation time over all graphs for K-CliqueWeight with the parameter
N set to 100 and parameter K set individually to the size of a maximum
clique in each of the test graphs, the total calculation time is 8820 s, for
K-CliqueDynWeight it is 6612 s, while for Cliquer it is 1362,774 s,
resulting in 155x speedup for the K-CliqueWeight and 206x speedup for
its dynamic variant K-CliqueDynWeight. These are lower estimates for
speedups since we stopped the Cliquer algorithm after 5 days, when it
was still calculating three heavy random weighted graph instances,
namely the 200/0.95, 200/0.99 and 300/0.99, where each graph name
indicates the number of verticies vertices and edge density of a graph.
All these graphs are characterized by their high edge densities, where
our algorithms performed excellently.

K. Rozman et al.

Journal of Molecular Structure 1304 (2024) 137639

8

Fig. 4. Calculation times for the K-CliqueWeight algorithm and K-CliqueDynWeight variant compared to the state-of-the-art Cliquer algorithm on docking weighted
graphs. The N = 100 indicates that each calculation was requested to return ≤100 highest weight k-cliques; K was set to the size of the maximum clique (unweighted)
in each graph separately. For brevity, every 15th graph label (num.vertices/density) is shown below the x-axis. Graph labels are valid for the KCQW algorithm, and
each curve represents calculation times sorted from smallest to largest separately for each algorithm. Each calculation was repeated 10-times with randomly shuffled
vertices, so that each reported value of the calculation time is an average over 10 calculations. Calculation times that were <1 ms were set to 1 ms.

Fig. 3. Calculation times for the K-CliqueWeight algorithm and K-CliqueDynWeight variant compared to the state-of-the-art Cliquer algorithm on random weighted
graphs. The N = 100 indicates that each calculation returned 100 or less highest weight k-cliques; K was set for each graph separately to the size of the maximum
clique in that graph. For the sake of clarity, alternating graph labels, valid for the KCQW algorithm, and indicating number of vertices and edge densites are shown
beneath the x-axis. Each curve on the graph illustrates calculation times, arranged from smallest to largest, for each algorithm individually. To ensure accuracy, every
calculation was iterated 10 times, with graph vertices randomly shuffled before each iteration. The reported calculation time for each data point represents an
average across these 10 calculations. This method effectively mitigates the impact of the initial vertex order within the input graph, which could potentially cause
variations in clique-finding speed. Calculations completing in under 1 ms were recorded as 1 ms, while those exceeding 5 days were stopped and assigned a fixed
calculation time of 5 days.

K. Rozman et al.

Journal of Molecular Structure 1304 (2024) 137639

9

3.2. Real docking graphs

Next, we tested the developed N highest weight k-cliques algorithm
and its variant on docking graphs. These graphs are used in drug dis
covery for molecular docking and are implemented in the ProBiS-Dock
algorithm that enables screening of libraries of millions of small mole
cules against thousands of proteins [7]. The developed set of docking
graphs represent a diverse set of possible drug discovery scenarios (see
Methods section for details on how the graphs were generated). There
fore, the results presented are meaningful estimates of real-world per
formance of our algorithm.

The results for finding N highest weight k-cliques, where the
parameter N is set to 100, in docking graphs are in Fig. 4. The K-Cli
queWeight algorithm’s total calculation time for docking graphs was
5171 s, while K-CliqueDynWeight it was 8838 s, which represents a 25x
and 14.8x speedup, respectively, compared to the Cliquer algorithm that
achieved a total calculation time of 131,219 s. These results clearly show
that our developed algorithm and its variant outperform the reference
algorithm by a large margin on docking graphs, confirming their role in
drug discovery.

A result of docking a small molecule inhibitor to a protein histone
deacetylase 2 (PDB ID: 3max) using the ProBiS-Dock algorithm [7] is
shown in Fig. 5. It can be seen that the predicted docked pose of the
inhibitor corresponds well to the co-crystallized pose of the same ligand
in this case. This result confirms that using K-CliqueWeight algorithm to
detect N highest weight k-cliques in docking graphs can be a successful
strategy to predict accurate protein-ligand complexes.

A limitation of our test approach is that our algorithm produces so
lutions that differ slightly from those of the compared maximum weight
clique algorithm. While our algorithm identifies N highest weight k-
cliques, the compared algorithm returns a single maximum weight cli
que per input graph. To address this issue, for each test graph, we set the
parameter k to match the size of the maximum clique in that particular
graph. This ensures the comparability of the results.

4. Conclusions

We present a novel algorithm, K-CliqueWeight, designed for efficient
identification of the N highest weight k-cliques in vertex-weighted
graphs, together with its variant, K-CliqueDynWeight. Our algorithm
is general and can find use in various research areas such as molecular
docking and beyond. To demonstrate its effectiveness, we have per
formed tests on both randomly weighted graphs and real docking graphs
used in the ProBiS-Dock molecular docking algorithm. Our results show
a 155-fold speedup of the K-CliqueWeight algorithm on random
weighted graphs and a 25-fold speedup on docking graphs, while for K-
CliqueDynWeight variant the relevant speedups are 206-fold and 15-
fold compared to the widely used maximum weight clique detection
algorithm. The developed algorithm has the potential to significantly
accelerate the drug discovery process.

CRediT authorship contribution statement

Kati Rozman: Writing – review & editing, Writing – original draft,
Visualization, Validation, Software, Methodology, Investigation, Formal
analysis, Data curation, Conceptualization. An Ghysels: Writing – re
view & editing, Writing – original draft, Visualization, Validation,
Software, Methodology, Formal analysis, Data curation, Conceptuali
zation. Bogdan Zavalnij: Writing – review & editing, Writing – original
draft, Visualization, Validation, Methodology, Formal analysis, Data
curation, Conceptualization. Tanja Kunej: Writing – review & editing,
Writing – original draft, Visualization, Validation, Formal analysis, Data
curation, Conceptualization. Urban Bren: Writing – review & editing,
Writing – original draft, Visualization, Validation, Methodology, Inves
tigation, Conceptualization. Dušanka Janežič: Writing – review &
editing, Writing – original draft, Visualization, Validation, Supervision,
Software, Resources, Project administration, Methodology, Investiga
tion, Funding acquisition, Formal analysis, Data curation, Conceptuali
zation. Janez Konc: Writing – review & editing, Writing – original draft,
Visualization, Validation, Supervision, Software, Resources, Project
administration, Methodology, Investigation, Funding acquisition,

Fig. 5. Docked pose of small molecule inhibitor N-(4-aminobiphenyl-3-yl) benzamide (orange sticks) in the protein binding site (pink sticks) of histone deacetylase 2
(blue cartoon) calculated using the ProBiS-Dock algorithm in comparison with the crystal pose of the same inhibitor (cyan sticks).

K. Rozman et al.

Journal of Molecular Structure 1304 (2024) 137639

10

Formal analysis, Data curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported by the Slovenian Research and Innovation
Agency project grants N1-0142, N1-0209, J1-4414, J1-1715, and L7-
8269.

References

[1] V. Vassilevska, Efficient algorithms for clique problems, Inf. Process Lett. 109
(2009) 254–257, https://doi.org/10.1016/j.ipl.2008.10.014.

[2] S. Szabó, B. Zaválnij, Clique search in graphs of special class and job shop
scheduling, Mathematics 10 (2022) 697, https://doi.org/10.3390/math10050697.

[3] G. Palla, D. Ábel, I.J. Farkas, P. Pollner, I. Derényi, T. Vicsek, k-Clique percolation
and clustering, B. Bollobás, R. Kozma, D. Miklós (Eds.). Handbook of Large-Scale
Random Networks, Springer, Berlin, Heidelberg, 2008, pp. 369–408, https://doi.
org/10.1007/978-3-540-69395-6_9.

[4] G. Bass, C. Tomlin, V. Kumar, P. Rihaczek, J. Dulny, Heterogeneous quantum
computing for satellite constellation optimization: solving the weighted k-clique
problem, Quantum Sci. Technol. 3 (2018) 024010, https://doi.org/10.1088/2058-
9565/aaadc2.

[5] B. Balasundaram, S. Butenko, Graph domination, coloring and cliques in
telecommunications, M.G.C. Resende, P.M. Pardalos (Eds.). Handbook of
Optimization in Telecommunications, Springer US, Boston, MA, 2006,
pp. 865–890, https://doi.org/10.1007/978-0-387-30165-5_30.

[6] D.S. Manoharan, A. Sathesh, Patient diet recommendation system using k clique
and deep learning classifiers, J. Artif. Intell. Capsule Netw. 2 (2020) 121–130.

[7] J. Konc, S. Lešnik, B. Škrlj, M. Sova, M. Proj, D. Knez, S. Gobec, D. Janežič, ProBiS-
Dock: a hybrid multitemplate homology flexible docking algorithm enabled by
protein binding site comparison, J. Chem. Inf. Model. 62 (2022) 1573–1584,
https://doi.org/10.1021/acs.jcim.1c01176.

[8] J. Konc, S. Lešnik, B. Škrlj, D. Janežič, ProBiS-Dock database: a web server and
interactive web repository of small ligand–protein binding sites for drug design,
J. Chem. Inf. Model. 61 (2021) 4097–4107, https://doi.org/10.1021/acs.
jcim.1c00454.

[9] J. Konc, D. Janežič, ProBiS-Fold approach for annotation of human structures from
the alphafold database with no corresponding structure in the PDB to discover new
druggable binding sites, J. Chem. Inf. Model. 62 (2022) 5821–5829, https://doi.
org/10.1021/acs.jcim.2c00947.

[10] V. Furlan, J. Konc, U. Bren, Inverse molecular docking as a novel approach to study
anticarcinogenic and anti-neuroinflammatory effects of curcumin, Molecules 23
(2018) 3351, https://doi.org/10.3390/molecules23123351.

[11] J. Konc, J.T. Konc, M. Penca, D. Janežič, Binding-sites prediction assisting protein-
protein docking, Acta Chim. Slov. 58 (2011) 396–401.

[12] L. Banchi, M. Fingerhuth, T. Babej, C. Ing, J.M. Arrazola, Molecular docking with
Gaussian boson sampling, Sci. Adv. 6 (2020) eaax1950, https://doi.org/10.1126/
sciadv.aax1950.

[13] M.M. Mysinger, M. Carchia, J.J. Irwin, B.K. Shoichet, Directory of useful decoys,
enhanced (DUD-E): better ligands and decoys for better benchmarking, J. Med.
Chem. 55 (2012) 6582–6594, https://doi.org/10.1021/jm300687e.

[14] A. Gaulton, A. Hersey, M. Nowotka, A.P. Bento, J. Chambers, D. Mendez,
P. Mutowo, F. Atkinson, L.J. Bellis, E. Cibrián-Uhalte, M. Davies, N. Dedman,
A. Karlsson, M.P. Magariños, J.P. Overington, G. Papadatos, I. Smit, A.R. Leach,
The ChEMBL database in 2017, Nucl. Acids Res. 45 (2017) D945–D954, https://
doi.org/10.1093/nar/gkw1074.

[15] J. Konc, D. Janezic, An improved branch and bound algorithm for the maximum
clique problem, MATCH Commun. Math. Comput. Chem. 58 (2007) 569–590.

[16] E. Tomita, T. Seki, An efficient branch-and-bound algorithm for finding a
maximum clique, C.S. Calude, M.J. Dinneen, V. Vajnovszki (Eds.). Discrete
Mathematics and Theoretical Computer Science, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003, pp. 278–289, https://doi.org/10.1007/3-540-45066-1_
22.

[17] N. Biggs, Some heuristics for graph coloring, in: R. Nelson, R.J. Wilson (Eds.),
Graph Colourings, Longman, New York, 1990, pp. 87–96.

[18] D.S. Johnson, M.A. Trick, Cliques, coloring, and satisfiability: second DIMACS
implementation challenge, Am. Math. Soc. (1993), 1996, https://books.google.co
m/books?hl=en&lr=&id=-ysHoxUwdMUC&oi=fnd&pg=PP13&dq=David+S+
Johnson+and+Michael+A+Trick.+Cliques,+coloring,+and+satisfiability:+seco
nd+DIMACS+implementation+challenge,+October+11-13,+1993.+Vol.+26.+
American+Math-+ematical+Soc.,+1996.&ots=o4fL8GPnYY&sig=Xropz7Wu
IemH_0OLihAnZAunMdI. accessed October 19, 2023.

[19] K. Reba, M. Guid, K. Rozman, D. Janežič, J. Konc, Exact maximum clique algorithm
for different graph types using machine learning, Mathematics 10 (2022) 97,
https://doi.org/10.3390/math10010097.

[20] S. Niskanen, P. Östergård, Cliquer user’s guide, version 1.0, Technical Report No.
T48 (2003). https://research.aalto.fi/en/publications/cliquer-users-guide-ve
rsion-10. accessed October 19, 2023.

[21] P.R.J. Östergård, A new algorithm for the maximum-weight clique problem, Nordic
J. Comput. 8 (2001) 424–436.

K. Rozman et al.

https://doi.org/10.1016/j.ipl.2008.10.014
https://doi.org/10.3390/math10050697
https://doi.org/10.1007/978-3-540-69395-6_9
https://doi.org/10.1007/978-3-540-69395-6_9
https://doi.org/10.1088/2058-9565/aaadc2
https://doi.org/10.1088/2058-9565/aaadc2
https://doi.org/10.1007/978-0-387-30165-5_30
http://refhub.elsevier.com/S0022-2860(24)00162-5/sbref0006
http://refhub.elsevier.com/S0022-2860(24)00162-5/sbref0006
https://doi.org/10.1021/acs.jcim.1c01176
https://doi.org/10.1021/acs.jcim.1c00454
https://doi.org/10.1021/acs.jcim.1c00454
https://doi.org/10.1021/acs.jcim.2c00947
https://doi.org/10.1021/acs.jcim.2c00947
https://doi.org/10.3390/molecules23123351
http://refhub.elsevier.com/S0022-2860(24)00162-5/sbref0011
http://refhub.elsevier.com/S0022-2860(24)00162-5/sbref0011
https://doi.org/10.1126/sciadv.aax1950
https://doi.org/10.1126/sciadv.aax1950
https://doi.org/10.1021/jm300687e
https://doi.org/10.1093/nar/gkw1074
https://doi.org/10.1093/nar/gkw1074
http://refhub.elsevier.com/S0022-2860(24)00162-5/sbref0015
http://refhub.elsevier.com/S0022-2860(24)00162-5/sbref0015
https://doi.org/10.1007/3-540-45066-1_22
https://doi.org/10.1007/3-540-45066-1_22
http://refhub.elsevier.com/S0022-2860(24)00162-5/sbref0017
http://refhub.elsevier.com/S0022-2860(24)00162-5/sbref0017
https://books.google.com/books?hl=en&tnqh_x0026;lr=&tnqh_x0026;id=-ysHoxUwdMUC&tnqh_x0026;oi=fnd&tnqh_x0026;pg=PP13&tnqh_x0026;dq=David+S+Johnson+and+Michael+A+Trick.+Cliques,+coloring,+and+satisfiability:+second+DIMACS+implementation+challenge,+October+11-13,+1993.+Vol.+26.+American+Math-+ematical+Soc.,+1996.&tnqh_x0026;ots=o4fL8GPnYY&tnqh_x0026;sig=Xropz7WuIemH_0OLihAnZAunMdI
https://books.google.com/books?hl=en&tnqh_x0026;lr=&tnqh_x0026;id=-ysHoxUwdMUC&tnqh_x0026;oi=fnd&tnqh_x0026;pg=PP13&tnqh_x0026;dq=David+S+Johnson+and+Michael+A+Trick.+Cliques,+coloring,+and+satisfiability:+second+DIMACS+implementation+challenge,+October+11-13,+1993.+Vol.+26.+American+Math-+ematical+Soc.,+1996.&tnqh_x0026;ots=o4fL8GPnYY&tnqh_x0026;sig=Xropz7WuIemH_0OLihAnZAunMdI
https://books.google.com/books?hl=en&tnqh_x0026;lr=&tnqh_x0026;id=-ysHoxUwdMUC&tnqh_x0026;oi=fnd&tnqh_x0026;pg=PP13&tnqh_x0026;dq=David+S+Johnson+and+Michael+A+Trick.+Cliques,+coloring,+and+satisfiability:+second+DIMACS+implementation+challenge,+October+11-13,+1993.+Vol.+26.+American+Math-+ematical+Soc.,+1996.&tnqh_x0026;ots=o4fL8GPnYY&tnqh_x0026;sig=Xropz7WuIemH_0OLihAnZAunMdI
https://books.google.com/books?hl=en&tnqh_x0026;lr=&tnqh_x0026;id=-ysHoxUwdMUC&tnqh_x0026;oi=fnd&tnqh_x0026;pg=PP13&tnqh_x0026;dq=David+S+Johnson+and+Michael+A+Trick.+Cliques,+coloring,+and+satisfiability:+second+DIMACS+implementation+challenge,+October+11-13,+1993.+Vol.+26.+American+Math-+ematical+Soc.,+1996.&tnqh_x0026;ots=o4fL8GPnYY&tnqh_x0026;sig=Xropz7WuIemH_0OLihAnZAunMdI
https://books.google.com/books?hl=en&tnqh_x0026;lr=&tnqh_x0026;id=-ysHoxUwdMUC&tnqh_x0026;oi=fnd&tnqh_x0026;pg=PP13&tnqh_x0026;dq=David+S+Johnson+and+Michael+A+Trick.+Cliques,+coloring,+and+satisfiability:+second+DIMACS+implementation+challenge,+October+11-13,+1993.+Vol.+26.+American+Math-+ematical+Soc.,+1996.&tnqh_x0026;ots=o4fL8GPnYY&tnqh_x0026;sig=Xropz7WuIemH_0OLihAnZAunMdI
https://books.google.com/books?hl=en&tnqh_x0026;lr=&tnqh_x0026;id=-ysHoxUwdMUC&tnqh_x0026;oi=fnd&tnqh_x0026;pg=PP13&tnqh_x0026;dq=David+S+Johnson+and+Michael+A+Trick.+Cliques,+coloring,+and+satisfiability:+second+DIMACS+implementation+challenge,+October+11-13,+1993.+Vol.+26.+American+Math-+ematical+Soc.,+1996.&tnqh_x0026;ots=o4fL8GPnYY&tnqh_x0026;sig=Xropz7WuIemH_0OLihAnZAunMdI
https://doi.org/10.3390/math10010097
https://research.aalto.fi/en/publications/cliquer-users-guide-version-10
https://research.aalto.fi/en/publications/cliquer-users-guide-version-10
http://refhub.elsevier.com/S0022-2860(24)00162-5/sbref0021
http://refhub.elsevier.com/S0022-2860(24)00162-5/sbref0021

	Enhanced molecular docking: Novel algorithm for identifying highest weight k-cliques in weighted general and protein-ligand ...
	1 Introduction
	2 Methods
	2.1 Generation of weighted graphs for testing
	2.1.1 Random weighted graphs
	2.1.2 Docking protein-ligand weighted graphs

	2.2 Molecular docking with the ProBiS-Dock algorithm enabled by the N highest weight k-cliques algorithm
	2.3 Graph notations
	2.4 A maximum clique algorithm for unweighted undirected graphs – the core algorithm
	2.5 A new algorithm to find N highest weight k-cliques in a weighted undirected graph

	3 Results and discussion
	3.1 Test set of random weighted graphs
	3.2 Real docking graphs

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

