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Given a graph 𝐺, a set 𝑋 of vertices in 𝐺 satisfying that between every two vertices in 𝑋
(respectively, in 𝐺) there is a shortest path whose internal vertices are not in 𝑋 is a mutual-
visibility (respectively, total mutual-visibility) set in 𝐺. The cardinality of a largest (total) mutual-
visibility set in 𝐺 is known under the name (total) mutual-visibility number, and has been studied 
in several recent works.
In this paper, we propose two lower variants of these concepts, defined as the smallest possible 
cardinality among all maximal (total) mutual-visibility sets in 𝐺, and denote them by 𝜇−(𝐺) and 
𝜇−
𝑡
(𝐺), respectively. While the total mutual-visibility number is never larger than the mutual-

visibility number in a graph 𝐺, we prove that both differences 𝜇−(𝐺) − 𝜇−
𝑡
(𝐺) and 𝜇−

𝑡
(𝐺) − 𝜇−(𝐺)

can be arbitrarily large. We characterize graphs 𝐺 with some small values of 𝜇−(𝐺) and 𝜇−
𝑡
(𝐺), and 

prove a useful tool called the Neighborhood Lemma, which enables us to find upper bounds on 
the lower mutual-visibility number in several classes of graphs. We compare the lower mutual-
visibility number with the lower general position number, and find a close relationship with 
the Bollobás-Wessel theorem when this number is considered in Cartesian products of complete 
graphs. Finally, we also prove the NP-completeness of the decision problem related to 𝜇−

𝑡
(𝐺).

1. Introduction

While studying graph invariants, one aspires to find an extremal (minimum or maximum cardinality) set, which satisfies the 
defining properties of a given invariant. In most cases, the invariants are hard to be determined in general, while maximal or 
minimal sets with respect to set inclusion are relatively easy to obtain using a greedy approach. In this way, upper or lower versions 
of the studied invariants naturally appear, representing the worst outcome of a greedy procedure that satisfies the conditions imposed 
in the definition of the studied invariant.

For instance, consider a maximum independent set of a graph 𝐺, which corresponds to the graph invariant denoted by 𝛼(𝐺). 
We could (somewhat naively) attempt to obtain such a set by adding vertices that are pairwise non-adjacent one at a time as long 
as this is possible. This process eventually produces a maximal independent set, and the cardinality of a smallest possible such set 
is denoted by 𝑖(𝐺) (this invariant is usually called the independent domination number, but sometimes it is also referred to as the 
lower independence number of 𝐺). There is some hope that 𝑖(𝐺) is a good approximation for 𝛼(𝐺), which is precisely the motivation 
behind introducing the well-covered graphs [18], which are the graphs 𝐺 with 𝑖(𝐺) = 𝛼(𝐺). Another example comes from graph 
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domination, where the domination number 𝛾(𝐺) is the smallest cardinality among all dominating sets in a graph 𝐺, while the upper 
domination number Γ(𝐺) is the largest cardinality among all minimal dominating sets in 𝐺 (see [14] for a recent monograph on 
graph domination).

The concept of mutual-visibility was recently introduced by Di Stefano in [10] with a primary motivation to achieve confidential 
communication between mobile entities in a network; see [10] for further references containing several other earlier studies. The 
paper was followed by more studies that all arose within the last year [7–9,20]. Given a graph 𝐺 and 𝑋 ⊂ 𝑉 (𝐺), two vertices 
𝑎, 𝑏 ∈ 𝑉 (𝐺) are 𝑋-visible if there exists a shortest 𝑎, 𝑏-path 𝑃 in 𝐺 such that 𝑉 (𝑃 ) ∩ 𝑋 ⊆ {𝑎, 𝑏}. If each pair of vertices in 𝑋 are 
𝑋-visible, then 𝑋 is a mutual-visibility set of 𝐺. The cardinality of a largest mutual-visibility set in 𝐺 is the mutual-visibility number, 
𝜇(𝐺), of 𝐺. While studying mutual-visibility in strong products of graphs, the authors of [9] encountered the following useful and 
natural variation. A set 𝑋 of vertices in 𝐺 is a total mutual-visibility set if every two vertices in 𝐺 (not only in 𝑋!) are 𝑋-visible. The 
cardinality of a largest total mutual-visibility set in 𝐺 is the total mutual-visibility number, 𝜇𝑡(𝐺), of 𝐺.

We initiate here the study of two variations of the two concepts above, which are in line with the initial discussion on upper/lower 
versions of graph invariants. In particular, since the decision problems of determining 𝜇(𝐺) and 𝜇𝑡(𝐺) are NP-complete [7], it is 
interesting to obtain lower bounds and potential approximations of the studied invariants. A set 𝑋 ⊂ 𝑉 (𝐺) is a maximal (total) 
mutual-visibility set in 𝐺 if 𝑋 is a (total) mutual-visibility set in 𝐺 and every set 𝑌 , with 𝑋 ⊊ 𝑌 , is not a (total) mutual-visibility set 
in 𝐺. The cardinality of a smallest maximal (total) mutual-visibility set is the lower (total) mutual-visibility number of 𝐺, denoted by 
𝜇−(𝐺), respectively, 𝜇−

𝑡
(𝐺).

1.1. Preliminaries and notation

In this paper, we only consider simple and undirected graphs. In addition, since vertices from different connected components 
cannot belong to the same mutual-visibility set, we will mainly restrict our attention to connected graphs. Let 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) be 
a connected graph. A vertex 𝑣 of 𝐺 is a cut-vertex if 𝐺 − 𝑣 (the graph obtained from 𝐺 by removing the vertex 𝑣 and the edges 
incident with it) is disconnected, and an edge 𝑒 ∈ 𝐸(𝐺) is a cut-edge in 𝐺 if 𝐺 − 𝑒 (the graph obtained from 𝐺 by removing the edge 
𝑒) is disconnected. It is well known and easy to see that an edge 𝑒 is a cut-edge in 𝐺 if and only if 𝑒 does not lie in a cycle. The 
neighborhood, 𝑁𝐺(𝑣), of a vertex 𝑣 in 𝐺 is the set of vertices that are adjacent to 𝑣, and the closed neighborhood of 𝑣 is defined as 
𝑁𝐺[𝑣] =𝑁𝐺(𝑣) ∪ {𝑣}. The degree, deg𝐺(𝑣), of 𝑣 in 𝐺 is |𝑁𝐺(𝑣)|, while Δ(𝐺) and 𝛿(𝐺) denote the maximum, resp. minimum, degree of 
vertices in 𝐺. Let 𝑛(𝐺) = |𝑉 (𝐺)|. By a clique in 𝐺 we mean a maximal complete subgraph in 𝐺; that is, a complete subgraph, which is 
not properly included in another complete subgraph of 𝐺. The cardinality of a largest clique in 𝐺 is denoted by 𝜔(𝐺). Additionally, 
the complete graph, 𝐾𝑛, may also be called a clique. A vertex whose neighborhood induces a complete graph is simplicial. A graph 𝐺
is chordal if any induced cycle in 𝐺 is a triangle. It is well known that every chordal graph contains a simplicial vertex. A cograph is 
a graph that does not contain a path 𝑃4 as an induced subgraph. Cographs have been characterized by a procedure that starts with 
a single vertex and uses operations of complementation and disjoint union; see [3]. It is well known that every non-trivial cograph 
contains two vertices that have the same neighborhoods.

For graph-theoretic notions not defined in the paper, the reader is referred to the book [22].
The distance, 𝑑𝐺(𝑢, 𝑣) between two vertices 𝑢 and 𝑣 in a graph 𝐺 is the length of a shortest 𝑢, 𝑣-path (that is, the number of edges 

on such a path). The interval, 𝐼𝐺(𝑢, 𝑣), between 𝑢 and 𝑣 in 𝐺 is the set of all vertices of 𝐺 that lie on a shortest path in 𝐺, that is, 
𝐼𝐺(𝑢, 𝑣) = {𝑤 ∈ 𝑉 (𝐺) ∶ 𝑑𝐺(𝑢, 𝑣) = 𝑑𝐺(𝑢, 𝑤) + 𝑑𝐺(𝑤, 𝑣)}. A subgraph 𝐻 in a graph 𝐺 is convex if every shortest path between vertices 
of 𝑉 (𝐻) lies in 𝐻 . In other words, 𝐻 is convex in 𝐺 if 𝐼𝐺(𝑢, 𝑣) ⊂ 𝑉 (𝐻) for any 𝑢, 𝑣 ∈ 𝑉 (𝐻). If 𝐻 is a subgraph of 𝐺 such that 
𝑑𝐻 (𝑢, 𝑣) = 𝑑𝐺(𝑢, 𝑣) holds for any 𝑢, 𝑣 ∈ 𝑉 (𝐻), then 𝐻 is an isometric subgraph of 𝐺.

Given two graphs 𝐺 and 𝐻 , the Cartesian product 𝐺□ 𝐻 of 𝐺 and 𝐻 is the graph with 𝑉 (𝐺□ 𝐻) = 𝑉 (𝐺) ×𝑉 (𝐻) and (𝑔, ℎ)(𝑔′, ℎ′) ∈
𝐸(𝐺□ 𝐻) whenever (𝑔 = 𝑔′ and ℎℎ′ ∈𝐸(𝐻)) or (𝑔𝑔′ ∈𝐸(𝐺) and ℎ = ℎ′). Given the vertices 𝑔 ∈ 𝑉 (𝐺) and ℎ ∈ 𝑉 (𝐻), the set {(𝑔, 𝑦) ∶ 𝑦 ∈
𝑉 (𝐻)} is an 𝐻 -fiber, and the set {(𝑥, ℎ) ∶ 𝑥 ∈ 𝑉 (𝐺)} is a 𝐺-fiber of the Cartesian product 𝐺□ 𝐻 . Clearly, 𝐺□ 𝐻 has |𝑉 (𝐺)| 𝐻 -fibers 
each of which is isomorphic to 𝐻 . The Cartesian product is associative and commutative, so the Cartesian product 𝐺1□ ⋯ □ 𝐺𝑘 of 
𝑘 graphs 𝐺1, … , 𝐺𝑘 is well defined. In particular, the 𝑘-cube, 𝑄𝑘, or the hypercube of dimension 𝑘, is the Cartesian product of 𝑘 copies 
of the graph 𝐾2.

1.2. Goal and organization of the paper

In this paper, we initiate the study of lower variants of mutual-visibility and total mutual-visibility. Note that the corresponding 
graph invariants (𝜇−(𝐺) and 𝜇−

𝑡
(𝐺)) give natural lower bounds on the (total) mutual-visibility number in graphs. In addition, they 

represent the worst outcome of the procedure in which we construct a (total) mutual-visibility set by using a greedy approach adding 
vertices to the set 𝑆 until 𝑆 is a maximal (total) mutual-visibility set. Since the latter procedure can be done in polynomial time, 
there is an additional reason for studying these invariants.

In Section 2, we give some additional arguments for studying the lower mutual-visibility number. In Section 2.1, we prove a 
useful result, called the Neighborhood Lemma, and present some applications yielding upper bounds on the lower mutual-visibility 
number in several graph classes. Since the introduction of mutual-visibility was inspired by the general position problem in graphs, 
it is interesting to mention that a lower version of the general position number was recently introduced, and we compare it with 
the lower mutual-visibility number in Section 2.2. Then, in Section 2.3, we notice an interesting relationship of the lower mutual-
visibility number with an old problem of Erdős, Hajnal and Moon [12], which was independently solved by Wessel and Bollobás. The 
2

solution enables us to determine the lower mutual-visibility number of the Cartesian product of two complete graphs. In Section 3, 
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we establish the NP-completeness of the decision problem regarding the lower total mutual-visibility number (unfortunately, we 
were not able to determine the same for the lower mutual-visibility number). In the subsequent section, we present general upper 
and lower bounds on 𝜇−(𝐺) and 𝜇−

𝑡
(𝐺), where 𝐺 is a connected graph. In particular, we characterize the graphs 𝐺 with 𝜇−(𝐺) = 2

as the graphs having a cut-edge. In Section 5, we then show that the differences 𝜇−(𝐺) − 𝜇−
𝑡
(𝐺) and 𝜇−

𝑡
(𝐺) − 𝜇−(𝐺) can be arbitrarily 

large by presenting two infinite families that attain all possible values for the stated differences. This is in contrast with the trivial 
fact that 𝜇𝑡(𝐺) ≤ 𝜇(𝐺) in any graph 𝐺. We conclude the paper in Section 6 with a number of remarks and open problems.

2. Related problems and Neighborhood Lemma

Our study has connections with several known topics in graph theory. One of them is a newly introduced topic that comes from 
the well known, and recently very active, area of general position problems, while another one is a classical combinatorial problem 
that goes back to Erdős, Hajnal and Moon.

We may recall that the general position problem aims to find the cardinality of a largest set 𝑋 of vertices in a graph 𝐺 such 
that no shortest path between a pair of vertices of 𝑋 contains a third vertex of 𝑋. (Note that, connecting this definition to that of 
mutual-visibility sets, one can roughly say that 𝑋 is a set of vertices of 𝐺 such that each two vertices of 𝑋 are 𝑋-visible through all 
the possible shortest paths between them.) The general position number is then the cardinality of a largest such set in a graph 𝐺, and 
is denoted by gp(𝐺). The concept already appeared in [15], where it was considered in the context of graph theory (concerning the 
class of hypercubes) for the first time, and was more recently rediscovered in [4,17].

Clearly, a general position set is also a mutual-visibility set in any connected graph 𝐺, and consequently,

𝜇(𝐺) ≥ gp(𝐺). (1)

2.1. Neighborhood Lemma and some applications

In this subsection, we present a useful tool for proving upper bounds on the lower mutual-visibility number of graphs. It somehow 
indicates that appropriate maximal mutual-visibility sets can also be considered locally.

Lemma 1. [Neighborhood Lemma] Let 𝐺 be a connected graph and 𝑥 ∈ 𝑉 (𝐺). The set 𝑁[𝑥] is a maximal mutual-visibility set if and only 
if for every two vertices 𝑢, 𝑣 ∈𝑁(𝑥) we have 𝑢𝑣 ∈𝐸(𝐺) or there exists 𝑤 ∈𝐺 −𝑁[𝑥], which is a common neighbor of 𝑢 and 𝑣 in 𝐺.

Proof. Let 𝑁[𝑥] be a maximal mutual-visibility set in 𝐺, and let 𝑢, 𝑣 ∈𝑁(𝑥) such that 𝑢𝑣 ∉𝐸(𝐺). Since 𝑢 and 𝑣 are 𝑁[𝑥]-visible, and 
𝑑𝐺(𝑢, 𝑣) = 2, there should be a vertex 𝑤 outside 𝑁[𝑥] so that 𝑢𝑤𝑣 is a (shortest) path. Thus, 𝑤 ∈𝑁(𝑢) ∩𝑁(𝑣), as claimed.

Conversely, let 𝑥 be a vertex in 𝐺 such that for every two vertices 𝑢, 𝑣 ∈𝑁(𝑥) we have 𝑢𝑣 ∈ 𝐸(𝐺) or there exists 𝑤 ∈ 𝐺 −𝑁[𝑥] so 
that 𝑤 ∈𝑁(𝑢) ∩𝑁(𝑣). The latter condition ensures that every two vertices in 𝑁(𝑥) are 𝑁[𝑥]-visible. Clearly, 𝑥 is 𝑁[𝑥]-visible to all its 
neighbors. Thus, 𝑁[𝑥] is a mutual-visibility set. It is also clear that 𝑁[𝑥] is a maximal mutual-visibility set, because for 𝑆 =𝑁[𝑥] ∪{𝑧}, 
where 𝑧 is any vertex in 𝑉 (𝐺) ⧵𝑁[𝑥], the vertices 𝑥 and 𝑧 are not 𝑆-visible. □

We follow with some applications of the Neighborhood Lemma. In the event that there exists a vertex 𝑥 ∈ 𝑉 (𝐺) that admits the 
conditions in Lemma 1, we get the following upper bound:

𝜇−(𝐺) ≤ |𝑁(𝑥)|+ 1 ≤Δ(𝐺) + 1.

In particular, the conditions are fulfilled if 𝑥 is a simplicial vertex, in which case we also get the bound 𝜇−(𝐺) ≤ 𝜔(𝐺), where 𝜔(𝐺) is 
the cardinality of a largest clique. We infer the following result:

Corollary 2. If 𝐺 is a chordal graph, then 𝜇−(𝐺) ≤ 𝜔(𝐺).

Next, consider a non-trivial cograph 𝐺, and let 𝑥, 𝑦 ∈ 𝑉 (𝐺) be two vertices in 𝐺 that have the same neighborhoods. Now, if the 
conditions of Lemma 1 hold for 𝑥, then 𝑁𝐺[𝑥] is a maximal mutual-visibility set, and 𝜇−(𝐺) ≤ Δ(𝐺) + 1. On the other hand, if the 
conditions of Lemma 1 are not fulfilled for 𝑥, then 𝑋 =𝑁𝐺[𝑥] ⧵ {𝑦} is a mutual-visibility set. Indeed, any two vertices in 𝑁𝐺(𝑥) ⧵ {𝑦}
that are not adjacent are 𝑋-visible by the shortest path that goes through 𝑦. Clearly, 𝑋 is also a maximal mutual-visibility set. These 
observations yield the following result.

Corollary 3. If 𝐺 is a non-trivial cograph, then 𝜇−(𝐺) ≤Δ(𝐺) + 1.

Another application of the Neighborhood Lemma is in the class of Cartesian grids. We mention that the graph 𝑃𝑛□ 𝑃𝑚 was 
earlier studied in some papers concerning mutual-visibility parameters. In particular, it was proved by Di Stefano in [10] that 
𝜇(𝑃𝑛□ 𝑃𝑚) = 2 min{𝑚, 𝑛}. Now, consider the lower mutual-visibility number of grids. Denoting 𝑉 (𝑃𝑚) = [𝑚], we note that the neighbors 
(1, 2) and (2, 1) of the vertex (1, 1) in the graph 𝑃𝑚□ 𝑃𝑛 are at distance 2, and there is a path of length two between them, which avoids 
(1, 1). Thus, by Lemma 1, we infer that 𝑆 = {(1, 1), (2, 1), (1, 2)} is a maximal mutual-visibility set in 𝑃𝑚□ 𝑃𝑛. Hence, 𝜇−(𝑃𝑚□ 𝑃𝑛) ≤ 3. 
On the other hand, it is easy to see (and it follows directly from Theorem 13 which we prove in Section 4) that 𝜇−(𝑃𝑚□ 𝑃𝑛) > 2. (See 
3

Fig. 1, where a maximal mutual-visibility set of the grid 𝑃15□ 𝑃7 is shown.)
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Fig. 1. A maximal mutual-visibility set in 𝑃15□𝑃7 depicted with black circles.

𝑎 𝑎′

𝑏

𝐾𝑡′′𝐾𝑡

𝐾𝑡′

𝐵

Fig. 2. A sketch of a graph 𝐺∗ .

Corollary 4. If 𝑚, 𝑛 ≥ 2, then 𝜇−(𝑃𝑚□ 𝑃𝑛) = 3.

We will use the Neighborhood Lemma in several further results in the paper.

2.2. Lower version of the general position problem

In connection with the general position problem, and the smallest possible sets with a maximality property, the lower general 
position problem has been recently considered in [11] as follows. Given a graph 𝐺, a set 𝑋 ⊂ 𝑉 (𝐺) is a maximal general position set in 
𝐺 if 𝑋 is a general position set (that is, for every two vertices 𝑢, 𝑣 ∈𝑋, 𝐼𝐺(𝑢, 𝑣) ∩𝑋 = {𝑢, 𝑣}), and every set 𝑌 , where 𝑋 ⊊ 𝑌 , is not a 
general position set. The cardinality of a smallest maximal general position set is the lower general position number of 𝐺, denoted by 
gp−(𝐺).

One might think that, in view of the relationship (1) between general position and mutual-visibility numbers, it could be expected 
that a similar inequality would hold between their lower versions. However, this is far from reality, since the lower parameters are 
not in general comparable, as we now show. To this end, we consider the following construction.

We begin with an arbitrarily large set of isolated vertices 𝐵, and three extra vertices 𝑎, 𝑎′, 𝑏. Then we add the edges 𝑎𝑏, 𝑎′𝑏 and 
𝑎𝑥, 𝑎′𝑥 for every 𝑥 ∈ 𝐵. We next add three (arbitrarily large) cliques 𝐾𝑡, 𝐾𝑡′ and 𝐾𝑡′′ and all the edges 𝑎𝑥, 𝑏𝑥 with 𝑥 ∈ 𝑉 (𝐾𝑡), 𝑏𝑥 with 
𝑥 ∈ 𝑉 (𝐾𝑡′ ), and 𝑎′𝑥, 𝑏𝑥 with 𝑥 ∈ 𝑉 (𝐾𝑡′′ ). We denote the graph thus obtained as 𝐺∗. See Fig. 2 for a sketch of such a graph 𝐺∗.

Proposition 5. For any graph 𝐺∗, 𝜇−(𝐺∗) ≤ 3 and gp−(𝐺∗) ≫ 3.

Proof. We first claim that 𝑋 = {𝑎, 𝑎′, 𝑏} is a maximal mutual-visibility set. Clearly, these three vertices are 𝑋-visible, and so, 𝑋 is a 
mutual-visibility set. Now, observe that no vertex 𝑤 ∈ 𝐵 can be added to 𝑋 keeping the mutual-visibility property because then 𝑏, 𝑤
would not be visible. Similarly, no vertex from 𝑉 (𝐾𝑡), 𝑉 (𝐾𝑡′ ) or 𝑉 (𝐾𝑡′′ ) can be added to 𝑋, since they would be not visible with 𝑎 or 
with 𝑎′. Thus, 𝑋 is maximal, and so 𝜇−(𝐺∗) ≤ 3.

Now, to see that gp−(𝐺∗) ≫ 3 consider the following arguments. Let 𝑆 be a maximal general position set of the smallest cardinality. 
If 𝑆 ∩ 𝑉 (𝐾𝑡) ≠ ∅, or 𝑆 ∩ 𝑉 (𝐾𝑡′ ) ≠ ∅, or 𝑆 ∩ 𝑉 (𝐾𝑡′′ ) ≠ ∅, then 𝑉 (𝐾𝑡) ⊆ 𝑆, or 𝑉 (𝐾𝑡′ ) ⊆ 𝑆, or 𝑉 (𝐾𝑡′′ ) ⊆ 𝑆, respectively, and so, gp−(𝐺∗) ≫ 3, 
since 𝐾𝑡, 𝐾𝑡′ and 𝐾𝑡′′ are arbitrarily large cliques. Hence, we may assume that 𝑆 ∩ (𝑉 (𝐾𝑡) ∪ 𝑉 (𝐾𝑡′ ) ∪ 𝑉 (𝐾𝑡′′ )) = ∅. If neither 𝑎 nor 𝑎′
are in 𝑆, then it must be 𝑆 = 𝐵 ∪ {𝑏}, and so, gp−(𝐺∗) ≫ 3, since 𝐵 has an arbitrarily large cardinality (and at least larger than 2). By 
4

symmetry, we may assume that 𝑎 ∈ 𝑆, and consider two cases.
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Case 1: 𝑎′ ∈ 𝑆 (and 𝑎 ∈ 𝑆). In this case, (𝐵 ∪ {𝑏}) ∩ 𝑆 = ∅. But then 𝑆 is not maximal, since {𝑎, 𝑎′} ∪ (𝑉 (𝐾𝑡) ∪ 𝑉 (𝐾𝑡′ ) ∪ 𝑉 (𝐾𝑡′′ )) is a 
general position set, a contradiction.

Case 2: 𝑎′ ∉ 𝑆 (and 𝑎 ∈ 𝑆). In this situation, 𝑆 could contain at most one vertex from the set 𝐵 ∪ {𝑏}. If 𝑏 ∈ 𝑆, then 𝑆 is not maximal, 
since {𝑎, 𝑏} ∪ (𝑉 (𝐾𝑡)) is a general position set, a contradiction. On the other hand, if 𝑏 ∉ 𝑆, then again 𝑆 is not maximal since 
{𝑎, 𝑥} ∪ (𝑉 (𝐾𝑡′′ )) (where 𝑥 ∈𝐵) is a general position set. □

From the above proof we can deduce that gp−(𝐺∗) ≥min{𝑡, 𝑡′, 𝑡′′, |𝐵|}. By the definition of the graphs 𝐺∗ each of the values on the 
right side of the equality can be as large as one wants.

The proposition above shows that there are graphs 𝐺 such that 𝜇−(𝐺) < gp−(𝐺). Moreover, the examples of complete bipartite 
graphs show that this inequality can also be reversed.

Proposition 6. For any 𝑟 ≥ 𝑠 ≥ 1, 𝜇−(𝐾𝑟,𝑠) = 𝑠 + 1 and gp−(𝐾𝑟,𝑠) = 2.

Proof. If 𝑠 = 1, then 𝐾𝑟,𝑠 is a star and one can easily verify that 𝜇−(𝐾𝑟,𝑠) = 2 = 𝑠 + 1 and gp−(𝐾𝑟,𝑠) = 2. We may next assume that 
𝑟 ≥ 𝑠 ≥ 2. Let 𝑈 and 𝑈 ′ be the bipartition sets of 𝐾𝑟,𝑠 of cardinality 𝑟 and 𝑠, respectively. The equality gp−(𝐾𝑟,𝑠) = 2 was proved in 
[11]. On the other hand, consider the set 𝑋 =𝑈 ′ ∪ {𝑢} where 𝑢 ∈𝑈 . Note that 𝑋 =𝑁[𝑢] and the conditions of Lemma 1 are fulfilled. 
Therefore, 𝑋 is a maximal mutual-visibility set, which leads to 𝜇−(𝐾𝑟,𝑠) ≤ 𝑠 + 1.

On the other hand, let 𝑋′ be a maximal mutual-visibility set of 𝐾𝑟,𝑠. First observe that 𝑋′ is neither a subset of 𝑈 nor of 𝑈 ′. 
Indeed, if, for instance, 𝑋′ ⊆ 𝑈 , then we can extend 𝑋′ to a larger mutual-visibility set by adding any vertex of 𝑈 ′ (notice that 𝑈 ′

has cardinality at least two), which is a contradiction since 𝑋′ is maximal. Thus, 𝑋′ ∩ 𝑈 ≠ ∅ and 𝑋′ ∩ 𝑈 ′ ≠ ∅. Also, if 𝑈 ⊂ 𝑋′, then 
|𝑋′ ∩ 𝑈 ′| = 1, for otherwise, there are two vertices of 𝑋′ ∩ 𝑈 ′, which are not 𝑋′-visible. Thus, |𝑋′| = |𝑈 | + 1 ≥ 𝑠 + 1. An analogous 
conclusion follows if 𝑈 ′ ⊂𝑋′.

In this sense, we may assume |𝑋′ ∩ 𝑈 | < |𝑈 | = 𝑟 and |𝑋′ ∩ 𝑈 ′| < |𝑈 ′| = 𝑠. If |𝑋′ ∩ 𝑈 | < 𝑟 − 1, then we can extend 𝑋′ to a larger 
mutual-visibility set by adding to 𝑋′ one vertex of 𝑈 not yet in 𝑋′, which is not possible. Thus, |𝑋′ ∩𝑈 | = 𝑟 −1. By similar arguments, 
we also deduce that |𝑋′ ∩𝑈 ′| = 𝑠 −1. Altogether, we obtain that |𝑋′| ≥ 𝑟 + 𝑠 −2 ≥ 𝑠 +1 (when 𝑟 ≥ 3), which gives the desired equality. 
If 𝑟 ∈ {1, 2}, then 𝐾𝑟,𝑠 is either 𝑃2, 𝑃3 or 𝐶4, where clearly gp−(𝐾𝑟,𝑠) = 𝑠 + 1. □

2.3. Relation to Bollobás-Wessel theorem

The problem of mutual-visibility in Cartesian products of two complete graphs is intrinsically related to the famous Zarankiewicz 
problem, which is still open. More directly, it was noticed by Cicerone, Di Stefano and Klavžar in [8] that 𝜇(𝐾𝑚□ 𝐾𝑛) equals 
𝑧(𝑚, 𝑛; 2, 2), which is the maximum number of 1 s in an 𝑚 × 𝑛 binary matrix that contains no constant 2 × 2 submatrix of 1 s; see [8]
for more details. Here we present a similarly strong connection between the lower mutual-visibility number of Cartesian products of 
two complete graphs with another old result related to binary matrices. In fact, the result can also be presented in terms of complete 
bipartite subgraphs of bipartite graphs, which was first conjectured by Erdős, Hajnal and Moon [12].

Let 𝐺 be a bipartite graph with bipartition sets of cardinalities 𝑚 and 𝑛. The graph 𝐺 has the property (𝑘, 𝓁) if adding any new 
edge to 𝐺 increases the number of complete bipartite subgraphs 𝐾𝑘,𝓁 of 𝐺. It was conjectured in [12] that a bipartite graph with 
bipartition sets of cardinalities 𝑚 and 𝑛 that satisfies the property (𝑘, 𝓁) has at least (𝑘 − 1)𝑚 + (𝓁 − 1)𝑛 − (𝑘 − 1)(𝓁 − 1) edges. The 
conjecture was proved independently by Wessel [21] and Bollobás [2]. The special case of the result when 𝑘 = 𝓁 = 2 is related to the 
topic of this paper. Note that the Bollobás-Wessel theorem in this case states that, when 𝐺 is a bipartite graph with bipartition sets 
of cardinalities 𝑚 and 𝑛, if adding any new edge increases the number of 4-cycles (that is, subgraphs isomorphic to 𝐶4), then 𝐺 has 
at least 𝑚 + 𝑛 − 1 edges.

Consider the lower mutual-visibility problem in the Cartesian product 𝐾𝑚□ 𝐾𝑛 of two complete graphs, whose vertex sets are 
denoted by [𝑚] and [𝑛]. Let 𝑇 = ({1} × [𝑛]) ∪ ([𝑚] × {1}) be the subset of [𝑚] × [𝑛]. Clearly, 𝑇 is the closed neighborhood of the vertex 
(1, 1), and the conditions of Lemma 1 are fulfilled. Therefore, 𝑇 is a maximal mutual-visibility set and 𝜇−(𝐾𝑚□ 𝐾𝑛) ≤ |𝑇 | =𝑚 + 𝑛 − 1.

On the other hand, note that the set of vertices of the Cartesian product 𝐾𝑚□ 𝐾𝑛 uniquely corresponds to the edge set of the 
bipartite graph 𝐵 with bipartition sets of cardinalities 𝑚 and 𝑛 defined as follows. Denoting the bipartition sets of 𝐵 by [𝑚] and 
[𝑛], we have 𝑖𝑗 ∈ 𝐸(𝐵) if and only if (𝑖, 𝑗) ∈ 𝑉 (𝐾𝑚□ 𝐾𝑛) for any 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛]. Now we have that a given set 𝑆 ⊂ 𝑉 (𝐾𝑚□ 𝐾𝑛)
is a mutual-visibility set of 𝐾𝑚□ 𝐾𝑛 if and only if 𝑆 does not contain a subgraph isomorphic to 𝐶4 (this fact was proved in [8]). 
Equivalently, this means that the subgraph of 𝐵 induced by the edges in 𝐵 that correspond to the vertices of 𝑆 in 𝐾𝑚□ 𝐾𝑛 do not 
contain 𝐾2,2 as a subgraph.

Suppose that 𝑆 is a mutual-visibility set of 𝐾𝑚□ 𝐾𝑛, where |𝑆| <𝑚 +𝑛 −1. We will show that 𝑆 is not maximal. Consider the edges 
𝑆′ in 𝐵 corresponding to the vertices of 𝑆. Clearly |𝑆′| = |𝑆| <𝑚 + 𝑛 − 1. By the Bollobás-Wessel theorem, there exists an edge not in 
𝑆′ (say, 𝑖′𝑗′), which one can add to 𝑆′ and the number of subgraphs isomorphic to 𝐾2,2 in 𝑆′ does not increase (that is, it remains 
zero). Translating this to the corresponding mutual-visibility set 𝑆 in 𝐾𝑚□ 𝐾𝑛 we observe that 𝑆 is not a maximal mutual-visibility 
set, because 𝑆 ∪ {(𝑖′, 𝑗′)} is a mutual-visibility set in 𝐾𝑚□ 𝐾𝑛. We infer the following result.
5

Corollary 7. If 𝑚, 𝑛 are positive integers, then 𝜇−(𝐾𝑚□ 𝐾𝑛) =𝑚 + 𝑛 − 1.
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𝑥

𝑣𝑒1 𝑣𝑒2 𝑣𝑒3 𝑣𝑒4

𝑆4:

𝐾𝑡

𝐾𝑡 𝐾𝑡 𝐾𝑡 𝐾𝑡

𝐾𝑚

Fig. 3. The graph 𝐺′ from the star 𝐺 = 𝑆4 on four leaves.

3. Computational complexity

This section is focused on computational aspects of the lower total mutual-visibility number of graphs. That is, we consider the 
following decision problem:

LOWER TOTAL MUTUAL-VISIBILITY PROBLEM

Input: A connected graph 𝐺 = (𝑉 , 𝐸) and 𝑘 ≤ 𝑛(𝐺).
Question: Is 𝜇−

𝑡
(𝐺) ≤ 𝑘?

The fact that the LOWER TOTAL MUTUAL-VISIBILITY PROBLEM belongs to the class NP is, unlike with many other similar problems, 
not obvious. For this purpose we will need to use the following remark, which follows from the fact that if a set of vertices 𝑋 is not 
a total mutual-visibility set, then no superset of 𝑋 is a total mutual-visibility set.

Remark 8. Let 𝐺 be a graph and let 𝑋 be a total mutual-visibility set of 𝐺. Then, 𝑋 is maximal if and only if 𝑋 ∪ {𝑤} is not a total 
mutual-visibility set for every 𝑤 ∈ 𝑉 (𝐺) ⧵𝑋.

To prove the NP-completeness of the problem, we present a polynomial reduction from the INDEPENDENT DOMINATING SET 
PROBLEM to the LOWER TOTAL MUTUAL-VISIBILITY PROBLEM. The former problem was already shown to be NP-complete in the book 
of Garey and Johnson [13]. For the reduction, we follow a construction already given in [7]. We may also recall that an independent 
dominating set 𝑆 of a graph 𝐺 is a set of vertices that is independent and all vertices in 𝑉 (𝐺) − 𝑆 have a neighbor in 𝑆.

The construction is made as follows. Let 𝐺 be a graph with 𝑉 (𝐺) = [𝑛]. For every edge 𝑒 = 𝑖𝑗 of 𝐺, a vertex 𝑣𝑒 = 𝑣𝑖𝑗 is added as well 
as the edges 𝑖𝑣𝑒 and 𝑗𝑣𝑒. Also, all possible edges between all the vertices 𝑣𝑒, where 𝑒 ∈𝐸(𝐺), are added so that these vertices induce 
a clique 𝐾𝑚. Let 𝑡 ≥ 3 be an integer. A clique 𝐾𝑡+1 is added and one of its vertices, denoted by 𝑥, is chosen, so that each vertex of 𝐺
is joined by an edge to 𝑥. Assume that 𝑉 (𝐾𝑡+1) = {𝑥, 𝑥1, … , 𝑥𝑡}. Note that {𝑥1, … , 𝑥𝑡} induce a clique 𝐾𝑡. In addition, for each vertex 
𝑣𝑒 with 𝑒 ∈𝐸(𝐺), a clique 𝐾𝑡 with vertex set 𝑉 (𝐾𝑡) = {𝑒𝑦1 , … , 𝑒𝑦𝑡} is added, and each vertex of such 𝐾𝑡 is joined by an edge with the 
corresponding 𝑣𝑒. The resulting graph is denoted by 𝐺′. A drawing of a fairly representative example of the graph 𝐺′, when 𝐺 = 𝑃5, 
was given in [7, Figure 1]. However, in order to facilitate the reading, we next include a similar drawing when 𝐺 is the star 𝑆4 on 
four leaves (Fig. 3).

Theorem 9. LOWER TOTAL MUTUAL-VISIBILITY PROBLEM is NP-complete.

Proof. In the proof, we use similar arguments as the ones used in [7, Theorem 3.1] to prove some related complexity results. 
However, instead of using a reduction from the INDEPENDENT SET PROBLEM, in this proof, we use a reduction from the INDEPENDENT 
DOMINATING SET PROBLEM.

We first observe that the LOWER TOTAL MUTUAL-VISIBILITY PROBLEM is in NP, since one can check in polynomial time whether 
6

a given set is indeed a total mutual-visibility set, and also, by using Remark 8, that it is maximal.
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Let 𝐺 be an arbitrary connected graph and consider the construction 𝐺′ from 𝐺 as described above. Let 𝑚 = |𝐸(𝐺)|, and let 
𝑋 ⊂ 𝑉 (𝐺′) contain all the vertices of all the 𝑚 +1 involved cliques 𝐾𝑡 whose vertices are simplicial vertices together with the vertices 
of an independent dominating set 𝐼 of 𝐺. We claim that 𝑋 is a maximal total mutual-visibility set of 𝐺′.

Indeed, by using the arguments of the proof of [7, Theorem 3.1], we derive that 𝑋 is a total mutual-visibility set of 𝐺′. Now, 
observe that none of the vertices from the set {𝑥} ∪𝑉 (𝐾𝑚) (which are cut-vertices of 𝐺′) can be added to 𝑋 keeping the total mutual-
visibility property for 𝑋 in 𝐺′. Moreover, if we add a vertex 𝑖 ∈ 𝑉 (𝐺) ⧵ 𝐼 to 𝑋, then since 𝐼 is an independent dominating set of 𝐺, 
there is 𝑗 ∈ 𝐼 such that 𝑒 = 𝑖𝑗 ∈ 𝐸(𝐺). This means that the vertices of the clique 𝐾𝑡 adjacent to the vertex 𝑣𝑒 ∈ 𝑉 (𝐾𝑚) are not visible 
with any other vertex from the clique 𝐾𝑡 whose vertices are adjacent to the vertex 𝑥. This is a contradiction, which implies that 𝑋 is 
a maximal total mutual-visibility set, as desired. Thus, 𝜇−

𝑡
(𝐺′) ≤ 𝑡(𝑚 + 1) + 𝑖(𝐺).

On the other hand, let 𝑋′ be a maximal total mutual-visibility set in 𝐺′ of the smallest cardinality. Notice that none of the vertices 
of the set {𝑥} ∪ 𝑉 (𝐾𝑚) can be in 𝑋′, since they are cut-vertices of 𝐺′. Also, all the vertices from all the 𝑚 + 1 involved cliques 𝐾𝑡

whose vertices are simplicial vertices must be in 𝑋′ as well, since they are simplicial vertices in 𝐺′. Now, if 𝐼 ′ =𝑋′ ∩ 𝑉 (𝐺) is not an 
independent set, then there is an edge 𝑒 = 𝑖𝑗 ∈ 𝐸(𝐺) such that 𝑖, 𝑗 ∈ 𝐼 ′. Thus, similarly to a previous comment, we will find vertices 
that are not 𝑋′-visible, which is not possible. Thus, 𝐼 ′ must be independent. In addition, if 𝐼 ′ is not a maximal independent set 
of 𝐺, then 𝑋′ is not a maximal total mutual-visibility set, since it can be extended to a larger total mutual-visibility set by adding 
more vertices from 𝐺 being not adjacent to any vertex of 𝐼 ′, which is not possible. Thus, 𝐼 ′ is a maximal independent set of 𝐺. 
Consequently, we deduce that 𝜇−

𝑡
(𝐺′) = |𝑋′| ≥ |𝐼 ′| + 𝑡(𝑚 + 1) ≥ 𝑖(𝐺) + 𝑡(𝑚 + 1). Therefore, we deduce that 𝜇−

𝑡
(𝐺′) = 𝑡(𝑚 + 1) + 𝑖(𝐺), by 

which the reduction from the INDEPENDENT DOMINATING SET PROBLEM is complete. It is also easy to see that one can construct 𝐺′

from 𝐺 in polynomial time. □

The reduction above (as well as the ones presented in [7, Theorem 3.1]) cannot be directly adapted to prove a similar conclusion 
to the above one, for the case of the lower mutual-visibility problem. This problem seems to be more challenging, and we leave it as 
an open question.

4. General bounds and extremal families

We start this section with general bounds on the (total) mutual-visibility number.

Proposition 10. If 𝐺 is a connected graph, then

(i) 1 ≤ 𝜇−(𝐺) ≤ 𝜇(𝐺), and 𝜇−(𝐺) = 1 if and only if 𝐺 =𝐾1;

(ii) 0 ≤ 𝜇−
𝑡
(𝐺) ≤ 𝜇𝑡(𝐺) and 𝜇−

𝑡
(𝐺) = 0 if and only if 𝜇𝑡(𝐺) = 0.

Proof. Note that the inequalities in (i) are trivial. To see the second statement of (i), note that 𝐾1 is the only (connected) graph with 
𝜇−(𝐾1) = 1. Indeed, if 𝐺 is a graph with an edge 𝑒 = 𝑢𝑣, then it is clear that {𝑢, 𝑣} is a mutual-visibility set, which implies 𝜇−(𝐺) ≥ 2.

Concerning (ii), it is again trivial that 0 ≤ 𝜇−
𝑡
(𝐺) ≤ 𝜇𝑡(𝐺) and that 𝜇𝑡(𝐺) = 0 implies 𝜇−

𝑡
(𝐺) = 0. Now, let 𝜇−

𝑡
(𝐺) = 0, and suppose, to 

the contrary, that 𝜇𝑡(𝐺) > 0. Then, there exists a set 𝑋 ⊂ 𝑉 (𝐺), which is a total mutual-visibility set of cardinality |𝑋| > 0. Hence, the 
empty set, ∅, is not a maximal mutual-visibility set, and so 𝜇−

𝑡
(𝐺) > 0, a contradiction. □

It is easy to see that a vertex, which is the center of a convex 𝑃3, does not lie in a total mutual-visibility set (because the ends of 
the convex 𝑃3 would in this case not be visible). Tian and Klavžar [20] extended this observation by giving a characterization of the 
graphs 𝐺 with 𝜇𝑡(𝐺) = 0, which in view of Proposition 10 yields the following result.

Corollary 11. Let 𝐺 be a graph. Then 𝜇−
𝑡
(𝐺) = 0 if and only if every vertex is the central vertex of a convex 𝑃3 in 𝐺.

We continue with an auxiliary result, which can also be of independent interest.

Lemma 12. Let 𝑒 = 𝑢𝑣 be an edge in a connected graph 𝐺. Then {𝑢, 𝑣} is a maximal mutual-visibility set of 𝐺 if and only if 𝑒 is a cut-edge 
in 𝐺.

Proof. Clearly, {𝑢, 𝑣} is a mutual-visibility set. Assume first {𝑢, 𝑣} is a maximal mutual-visibility set, and suppose that 𝑒 is not a cut-
edge. Then 𝑒 = 𝑢𝑣 lies on a cycle, and let 𝑢 = 𝑢0𝑢1⋯ 𝑢𝑘 = 𝑣𝑢, where 𝑘 ≥ 2, be a shortest cycle on which 𝑒 lies. Note that {𝑢, 𝑢

⌊
𝑘

2 ⌋
, 𝑣} is a 

mutual-visibility set, which is a contradiction to the maximality of {𝑢, 𝑣} as a mutual-visibility set. Conversely, if 𝑒 = 𝑢𝑣 is a cut-edge 
in 𝐺, then for any vertex 𝑤 ∈ 𝑉 (𝐺) ⧵ {𝑢, 𝑣} either 𝑢 lies on every (shortest) 𝑣, 𝑤-path in 𝐺 or 𝑣 lies on every (shortest) 𝑢, 𝑤-path in 𝐺. 
This implies that {𝑢, 𝑣} is a maximal mutual-visibility set. □

Using Lemma 12, we next characterize the graphs with the lower mutual-visibility number equal to 2.
7

Theorem 13. Let 𝐺 be a connected graph on at least two vertices. Then, 𝜇−(𝐺) = 2 if and only if 𝐺 has a cut-edge.
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Proof. If 𝐺 has a cut-edge 𝑒 = 𝑢𝑣, then, by Lemma 12, {𝑢, 𝑣} is a maximal mutual-visibility set. Hence 𝜇−(𝐺) ≤ 2, and, by Proposi-
tion 10 (i), we get 𝜇−(𝐺) = 2.

Conversely, let 𝜇−(𝐺) = 2, and let {𝑢, 𝑣} be a maximal mutual-visibility set in 𝐺. We may assume that 𝑢𝑣 ∉ 𝐸(𝐺), for otherwise 
the proof is done by Lemma 12. Hence, 𝑑𝐺(𝑢, 𝑣) = 𝑘 ≥ 2. First, we claim that 𝐼𝐺(𝑢, 𝑣) consists only of vertices in exactly one (shortest) 
𝑢, 𝑣-path. Let 𝑃 ∶ 𝑢 = 𝑢0⋯ 𝑢𝑘 = 𝑣 be a shortest 𝑢, 𝑣-path. Suppose now that 𝐼𝐺(𝑢, 𝑣) ≠ 𝑉 (𝑃 ), and let 𝑤 be a vertex closest to 𝑢 that is in 
𝐼𝐺(𝑢, 𝑣) ⧵ 𝑉 (𝑃 ). Then, {𝑢, 𝑤, 𝑣} is a mutual-visibility set. Indeed, the shortest 𝑢, 𝑣-path 𝑃 avoids 𝑤, and since 𝑤 ∈ 𝐼𝐺(𝑢, 𝑣), there is a 
shortest 𝑢, 𝑤-path avoiding 𝑣 and a shortest 𝑤, 𝑣-path avoiding 𝑢. This is a contradiction with the assumption that {𝑢, 𝑣} is a maximal 
mutual-visibility set.

Next, we claim that there is no vertex in 𝑉 (𝐺) ⧵ 𝑉 (𝑃 ) that is adjacent to a vertex in {𝑢1, … , 𝑢𝑘−1}. Suppose that 𝑥 ∈ 𝑉 (𝐺) ⧵ 𝑉 (𝑃 ) is 
adjacent to 𝑢𝑖, for some 𝑖 ∈ [𝑘 − 1]. Note that 𝑖 ≤ 𝑑𝐺(𝑢, 𝑥) ≤ 𝑖 + 1 ≤ 𝑘, and 𝑘 − 𝑖 ≤ 𝑑𝐺(𝑥, 𝑣) ≤ 𝑘 − 𝑖 + 1 ≤ 𝑘. This implies that 𝑣 does not lie 
on a shortest 𝑢, 𝑥-path and 𝑢 does not lie on a shortest 𝑥, 𝑣-path. In addition, 𝑥 ∉ 𝐼𝐺(𝑢, 𝑣), thus the set {𝑢, 𝑥, 𝑣} forms a mutual-visibility 
set, a contradiction.

Finally, we claim that 𝑢𝑢1 is a cut-edge in 𝐺 (in fact, by similar arguments one can prove that every edge of 𝑃 is a cut-edge in 
𝐺). Suppose that 𝑢𝑢1 is not a cut-edge. Due to the observation in the previous paragraph, every 𝑢, 𝑢1-path that is not just the path 
𝑢𝑢1 crosses 𝑣. Let 𝑄 be a shortest 𝑢, 𝑣-path in the subgraph of 𝐺 induced by 𝑉 (𝐺) ⧵ {𝑢1, … , 𝑢𝑘−1}. Then 𝑄 is an induced path also in 
𝐺, and there is a vertex 𝑤 in 𝑄 such that |𝑑𝐺(𝑢, 𝑤) − 𝑑𝐺(𝑤, 𝑣)| ≤ 1. Hence, a shortest 𝑢, 𝑤-path in 𝐺 is a subpath of 𝑄, and a shortest 
𝑤, 𝑣-path in 𝐺 is the complementary subpath of 𝑄. In addition, since 𝑤 ∉ 𝑉 (𝑃 ), we infer that {𝑢, 𝑤, 𝑣} is a mutual-visibility set in 𝐺, 
a contradiction with maximality of {𝑢, 𝑣}. Hence, 𝑢𝑢1 is a cut-edge. □

In connection with the result above and the lower general position number previously defined, it was proved in [11] that a graph 
𝐺 satisfies gp−(𝐺) = 2 if and only if 𝐺 has a universal line. For a metric space (or a graph) 𝑀 = (𝑋, 𝑑𝑀 ) and two elements 𝑥, 𝑦 of 𝑋, a 
line 𝑀 (𝑥, 𝑦) induced by 𝑥, 𝑦 is the set of elements of 𝑋 given as follows:

{𝑤 ∈𝑋 ∶ 𝑑𝑀 (𝑥, 𝑦) = 𝑑𝑀 (𝑥,𝑤) + 𝑑𝑀 (𝑤,𝑦) or 𝑑𝑀 (𝑥, 𝑦) = |𝑑𝑀 (𝑥,𝑤) − 𝑑𝑀 (𝑤,𝑦)|} .

In this sense, a line is called universal if it contains the whole set 𝑋. The class of graphs that have a universal line is not yet known. 
Indeed, Chen and Chvátal [5] conjectured that if the number of lines in a metric space is smaller than |𝑋|, then 𝑀 has a universal 
line, and this question remains open; see [6,19] for more on this problem.

Related to Theorem 13, since any graph having a cut-edge has a universal line, we deduce that if 𝜇−(𝐺) = 2 for some graph 𝐺, then 
𝐺 has a universal line, and so, clearly gp−(𝐺) = 2. The opposite of this is not true, since there are several graphs having a universal 
line and having no cut-edge (grid graphs for example), and so, 𝜇−(𝐺) > 2 in view of Theorem 13.

5. Relationships between the two parameters

It is a direct consequence of the definitions that 𝜇𝑡(𝐺) ≤ 𝜇(𝐺) holds for every graph 𝐺; see [9]. However, this is not the case for 
the lower variants of mutual-visibility, which can be demonstrated by the class of block graphs whose definition we now recall.

A block in a graph 𝐺 is a maximal subgraph in 𝐺 having no cut-vertex. A graph 𝐺 is a block graph if each of its blocks is a complete 
graph. The block graphs are precisely the diamond-free chordal graphs [1].

Theorem 14. If 𝐺 is a connected block graph on at least two vertices, 𝑆 is the set of its simplicial vertices, and 𝑊 is a maximal clique of 
minimum cardinality in 𝐺, then

(i) 𝜇−
𝑡
(𝐺) = |𝑆|, and

(ii) 𝜇−(𝐺) = |𝑉 (𝑊 )|.

Proof. To prove (i) note that any vertex in 𝑉 (𝐺) ⧵ 𝑆 is the center of a convex 𝑃3, hence it cannot be in a total mutual-visibility set. 
Therefore any total mutual-visibility set is a subset of 𝑆. In addition, any subset of 𝑆 is clearly a total mutual-visibility set in 𝐺. We 
readily infer that 𝑆 is the unique maximal total mutual-visibility set in 𝐺, thus 𝜇−

𝑡
(𝐺) = |𝑆|.

For the proof of (ii), first note that vertices of a clique 𝑊 form a maximal mutual-visibility set in 𝐺, and so 𝜇−(𝐺) ≤ |𝑉 (𝑊 )|. 
Now, let 𝑇 be a maximal mutual-visibility set in 𝐺, and for the purpose of getting a contradiction assume that |𝑇 | < |𝑉 (𝑊 )|. 
Since 𝐺 is a block graph, there exists a clique 𝑊 ′ in 𝐺 such that all vertices of 𝑇 lie in different components of 𝐺 − 𝐸(𝑊 ′). 
Since |𝑉 (𝑊 ′)| ≥ |𝑉 (𝑊 )| > |𝑇 |, we infer that there is a component 𝐶 of 𝐺 − 𝐸(𝑊 ′) having no vertices of 𝑇 . Let 𝑥 ∈ 𝑉 (𝑊 ′) be the 
vertex that lies in 𝐶 . Now, it is easy to see 𝑇 ∪ {𝑥} is a mutual-visibility set of 𝐺, a contradiction with maximality of 𝑇 . This gives 
𝜇−(𝐺) = |𝑉 (𝑊 )|. □

Theorem 14 implies that the difference 𝜇−
𝑡
(𝑇 ) − 𝜇−(𝑇 ) can be arbitrarily large. In particular, if 𝐺 is a tree, then 𝜇−

𝑡
(𝐺) equals 

the number of its leaves, while 𝜇−(𝐺) = 2. To see that the reversed inequality is also possible, consider the graphs 𝑆(𝐾𝑛), which are 
obtained from the complete graphs 𝐾𝑛 by subdividing each of its edges exactly once. We say that a vertex of 𝑆(𝐾𝑛) is an original 
vertex if it corresponds to a vertex of 𝐾𝑛 , and it is a subdivided vertex if it is the result of the subdivision of an edge of 𝐺.
8
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Theorem 15. If 𝑛 ≥ 3, then

(i) 𝜇−
𝑡
(𝑆(𝐾𝑛)) = 0, and

(ii) 𝜇−(𝑆(𝐾𝑛)) = 𝑛.

Proof. For the proof of (i), note that 𝑛 ≥ 3 implies that 𝛿(𝑆(𝐾𝑛)) = 2, and the girth (i.e., the length of a shortest cycle) of 𝑆(𝐾𝑛)) is 
6. By the result of Tian and Klavžar [20, Corollary 3.4], which follows from the characterization of the graphs with 𝜇𝑡(𝐺) = 0, every 
graph with girth at least 5 and minimum degree at least 2 has total mutual-visibility number 0. Hence, we get 𝜇−

𝑡
(𝑆(𝐾𝑛)) = 0.

Next, we concentrate on (ii). Let 𝑇 be a maximal mutual-visibility set of 𝑆(𝐾𝑛), and let 𝐺 = 𝑆(𝐾𝑛). If all vertices in 𝑇 are original, 
then due to the maximality of 𝑇 , it is only possible that 𝑇 consists of all original vertices, thus |𝑇 | = 𝑛. This readily implies that 
𝜇−
𝑡
(𝐺) ≤ 𝑛. Now, suppose that 𝑇 contains also some subdivided vertices. We claim that |𝑇 | ≥ 𝑛, which suffices for the proof of the 

theorem.
Let 𝑂 be the set of original vertices in 𝑇 , and let 𝑆 the set of subdivided vertices in 𝑇 . Next, let 𝑆0, 𝑆0 ⊆ 𝑆, be the set of subdivided 

vertices in 𝑇 with a neighbor in 𝑂. (It is possible that 𝑂 is empty or that 𝑂 ≠ ∅ and 𝑆0 = ∅. In these cases the proof simplifies, and we 
will return to these cases in a later stage of the proof.) Clearly, if 𝑥 ∈ 𝑆0, then only one of the neighbors of 𝑥 is in 𝑂, for otherwise 
the two neighbors of 𝑥 from 𝑂 would not be 𝑇 -visible, a contradiction. From a similar reason, each vertex in 𝑂 can have at most one 
neighbor in 𝑆. Moreover, if 𝑥 and 𝑦 are vertices in 𝑆0, we claim that 𝑥 and 𝑦 have no common neighbor. Suppose that 𝑢 is a common 
neighbor of 𝑥 and 𝑦. Clearly, 𝑢 is an original vertex, but 𝑢 ∉𝑂, as noted above. Now, let 𝑣′ ∈𝑂 be the other neighbor of 𝑥 and 𝑣′′ ∈𝑂

be the other neighbor of 𝑦, different from 𝑢. Note that 𝑑𝐺(𝑣′, 𝑦) = 3, and there are only two shortest 𝑣′, 𝑦-paths, one crossing 𝑥 ∈ 𝑇 , 
and the other crossing 𝑣′′ ∈ 𝑇 . Hence, 𝑦′ and 𝑧 are not 𝑇 -visible, a contradiction. We summarize this part by noting that each vertex 
in 𝑂 has at most one neighbor in 𝑆0 and no two vertices in 𝑆0 have a common neighbor.

Let 𝑂1 be the set of original vertices that are not in 𝑂 and have a neighbor in 𝑆0. Clearly, by the above, |𝑂1| = |𝑆0|. Now, it is 
possible that there are no subdivided vertices in 𝑆 − 𝑆0 that have exactly one neighbor in 𝑂1. On the other hand, if there are such 
vertices, let us denote the set of vertices in 𝑆 −𝑆0 that have exactly one neighbor in 𝑂1 by 𝑆1, and let 𝑂2 be the set of the neighbors 
of vertices in 𝑆1 that do not belong to 𝑂1. Since a vertex from 𝑂2 is adjacent to at least one (subdivided) vertex from 𝑆2, we infer 
|𝑂2| ≤ |𝑆1|.

Continuing in this way, and assuming that the sets 𝑂1, … , 𝑂𝑘, and 𝑆0, … , 𝑆𝑘−1 have already been determined, we consider the 
following two possibilities. Either there are no subdivided vertices in 𝑆 − (𝑆0 ∪⋯ ∪ 𝑆𝑘−1) that have exactly one neighbor in 𝑂𝑘 or 
there are such subdivided vertices. In the former case, the process is finished, and we denote the set of original vertices that do not 
belong to 𝑂 ∪𝑂1 ∪⋯ ∪𝑂𝑘 by 𝑂′. Otherwise, the process continues, and we denote by 𝑆𝑘 the set of vertices in 𝑆 − (𝑆0 ∪⋯ ∪ 𝑆𝑘−1)
that have exactly one neighbor in 𝑂𝑘, and denote by 𝑂𝑘+1 the set of the neighbors of vertices in 𝑆𝑘 that do not belong to 𝑂𝑘. Since a 
vertex from 𝑂𝑘+1 is adjacent to at least one (subdivided) vertex from 𝑆𝑘, we infer |𝑂𝑘+1| ≤ |𝑆𝑘|.

Since the graph is finite, the process eventually ends, with the sets 𝑆𝓁 and 𝑂𝓁+1, while the set 𝑂′ can be empty or not. If 𝑂′ = ∅, 
then note that

|𝑇 | = |𝑂|+ |𝑆| ≥ |𝑂|+ |𝑆0|+⋯+ |𝑆𝓁| ≥ |𝑂|+ |𝑂1|+⋯+ |𝑂𝓁+1| = 𝑛,

and we are done. So, we are left to consider the case when |𝑂′| > 0 (Note that in the case when 𝑂 = ∅, the set 𝑂′ consists of all 
original vertices. In addition, when 𝑂 ≠ ∅ and 𝑆0 = ∅, then 𝑂′ consists of all original vertices that are not in 𝑂.)

First, let |𝑂′| ≥ 3. Consider the graph 𝐻 with 𝑉 (𝐻) = 𝑂′ and for two vertices 𝑥, 𝑦 ∈ 𝑂′ we have 𝑥𝑦 ∈ 𝐸(𝐻) if and only if the 
subdivided vertex 𝑢 ∈ 𝑉 (𝐺), which is adjacent to 𝑥 and 𝑦, belongs to 𝑆. We claim that 𝛿(𝐻) ≥ 2. Suppose to the contrary that there is 
a vertex 𝑥 ∈𝑂′ such that deg𝐻 (𝑥) ≤ 1. Hence, 𝑥 has at most one common neighbor from 𝑆 with a vertex in 𝑂′. Since |𝑂′| ≥ 3, 𝑥 has 
another common neighbor 𝑣 with a vertex 𝑦 in 𝑂′ such that 𝑣 does not belong to 𝑆. We claim that 𝑇 ′ = 𝑇 ∪ {𝑣} is a mutual-visibility 
set, which will be a contradiction with the maximality assumption on 𝑇 . Clearly, 𝑣 is 𝑇 ′-visible with any vertex 𝑢 in 𝑆, which is 
adjacent to 𝑥 or to 𝑦, since 𝑑𝐻 (𝑢, 𝑣) = 2, and their common neighbor is not in 𝑇 . It is also easy to see that 𝑣 is 𝑇 ′-visible with a vertex 
𝑤 in 𝑂. Indeed, 𝑑𝐻 (𝑤, 𝑣) = 3, and consider the path from 𝑣 to 𝑤 through 𝑥 and the common neighbor of 𝑥 and 𝑤, both of which are 
not in 𝑇 . It remains to check that 𝑣 is 𝑇 ′-visible to other vertices in 𝑆 that are at distance 4 from 𝑣. Suppose that 𝑠 is a vertex in 𝑆
that has at least one end-vertex 𝑧 in 𝑂1 ∪⋯ ∪𝑂𝓁+1. Then the path 𝑣𝑥𝑟𝑧𝑠, where 𝑟 is the common neighbor of 𝑥 and 𝑧, has only its 
end-vertices in 𝑇 ′. We infer that 𝑣 and 𝑠 are 𝑇 ′-visible. The final possibility is that 𝑠 ∈ 𝑆 is at distance 4 from 𝑣 and both neighbors 
𝑔 and ℎ of 𝑠 are in 𝑂′. Since deg𝐻 (𝑥) ≤ 1, at least one of the vertices 𝑔 or ℎ has the common neighbor with 𝑥 that is not in 𝑆. From 
this we can readily find the path from 𝑣 to 𝑠 with no internal vertices from 𝑇 ′. To finish the proof that 𝑇 ′ is a mutual-visibility set, 
we need to prove that vertices in 𝑇 are 𝑇 ′-visible. For this purpose we need to consider only those pairs of vertices in 𝑇 , which 
have 𝑣 on their shortest path. In addition, this implies that 𝑥 and 𝑦 are also on their shortest path. Moreover, this is only possible if 
deg𝐻 (𝑥) = 1, 𝑣′ ∈ 𝑆 is a neighbor of 𝑥, 𝑣′′ ∈ 𝑆 is a neighbor of 𝑦, and 𝑣′𝑥𝑣𝑦𝑣′′ is a shortest 𝑣′𝑣′′-path. Let 𝑡 be the other neighbor of 
𝑣′′, different from 𝑦. Since deg𝐻 (𝑥) = 1, the common neighbor 𝑢′ of 𝑥 and 𝑡 is not in 𝑆, and so 𝑣′𝑥𝑢′𝑡𝑣′′ is a shortest 𝑣′𝑣′′-path whose 
internal vertices are not in 𝑇 ′. This yields that 𝑇 ′ is indeed a mutual-visibility set, a contradiction, by which the claim that 𝛿(𝐻) ≥ 2
is proved. Let 𝑆′ be the set of vertices in 𝑆 that are adjacent to two vertices in 𝑂′. Note that each edge of 𝐻 uniquely corresponds to 
a vertex in 𝑆′. Thus, since 𝛿(𝐻) ≥ 2, we infer |𝑆′| = |𝐸(𝐻)| ≥ |𝑉 (𝐻)| = |𝑂′|. Hence,

|𝑇 | = |𝑂|+ |𝑆| ≥ |𝑂|+ |𝑆0|+⋯+ |𝑆𝓁|+ |𝑆′| ≥ |𝑂|+ |𝑂1|+⋯+ |𝑂𝓁+1|+ |𝑂′| = 𝑛,
9

as desired.
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Finally, let |𝑂′| ∈ {1, 2}. In this case 𝑂 ≠ ∅ and 𝑆0 ≠ ∅ (implying also 𝑂1 ≠ ∅), since 𝑛 ≥ 3. Indeed, if 𝑂 = ∅, then |𝑇 | ≤ 1, which is 
clearly impossible. On the other hand, if 𝑆0 ≠ ∅, then |𝑆| ≤ 1, which leads to a contradiction with maximality of the mutual-visibility 
set 𝑇 . We distinguish two cases. First, suppose |𝑂′| = 1, and let 𝑂′ = {𝑥}. Note that 𝑥 is not adjacent to any vertex in 𝑇 . Letting 
𝑇 ′ = 𝑇 ∪ {𝑥}, we get a mutual-visibility set, a contradiction. Second, let |𝑂′| = 2, and let 𝑂′ = {𝑥, 𝑦}. We can also assume that the 
common neighbor 𝑣 of 𝑥 and 𝑦 is in 𝑆, for otherwise we can again make a larger mutual-visibility set by adding 𝑥 to 𝑇 , which is the 
same contradiction as in the case |𝑂′| = 1. Now, let 𝑧 be a neighbor of 𝑥, different from 𝑣, which is also a neighbor of a vertex in 
𝑂𝓁+1. Letting 𝑇 ′ = 𝑇 ∪ {𝑧}, we derive that 𝑇 ′ is a mutual-visibility set by following similar lines as in the previous paragraph. By this 
final contradiction the proof is complete. □

Combining Theorems 14 and 15 we infer the following result.

Corollary 16. For any 𝑘 ∈ ℕ there exist graphs 𝐺 and 𝐻 such that 𝜇−(𝐺) − 𝜇−
𝑡
(𝐺) = 𝑘 and 𝜇−

𝑡
(𝐻) − 𝜇−(𝐻) = 𝑘.

6. Concluding remarks

In earlier studies of (total) mutual-visibility problems authors considered grids, Hamming graphs, and other types of graph prod-
ucts. As mentioned in Section 2, the mutual-visibility number of Cartesian products of two complete graphs is in close relationship 
with the well known Zarankiewicz problem. In Section 2.3, we established a similarly close connection between the lower mutual-
visibility number of Cartesian products of two complete graphs with a Bollobás-Wessel theorem, which enabled us to determine the 
value of 𝜇−(𝐾𝑛□ 𝐾𝑚). The natural question is if one can determine the total mutual-visibility number of Cartesian products of two 
complete graphs. For the standard version of the total mutual-visibility number, the following formula holds (cf. [20, Proposition 
4.3]):

𝜇𝑡(𝐾𝑛□𝐾𝑚) = max{𝑚,𝑛},

and we could prove a similar result for the lower total mutual-visibility number (which we state without a proof):

Proposition 17. For any 𝑚, 𝑛 ≥ 3, we have 𝜇−
𝑡
(𝐾𝑚□ 𝐾𝑛) =min{𝑚, 𝑛}.

In Section 2.1, we established, as one of the applications of the Neighborhood Lemma, that 𝜇−(𝑃𝑚□ 𝑃𝑛) = 3. Again, we can ask 
about the lower total mutual-visibility number in grids. The authors of [7] observed, based on the results of Tian and Klavžar [20], 
that 𝜇𝑡(𝑃𝑛□ 𝑃𝑚) = 4. In fact, they noticed that the total mutual-visibility number of the Cartesian product of 𝑘 paths, each on at least 
three vertices, equals 2𝑘. Now, let 𝑆 be a total mutual-visibility set of 𝑃𝑛1

□ ⋯ □ 𝑃𝑛𝑘
, where 𝑘 ≥ 2 and all 𝑛𝑖 ≥ 3. If 𝑣 is a vertex of 

degree at least 3, then 𝑣 is the center of a convex 𝑃3, hence 𝑣 ∉ 𝑆. Hence, only vertices of degree 2 can lie in 𝑆. In addition, if not all 
2𝑘 vertices of degree 2 are in 𝑆, then 𝑆 is not a maximal total mutual-visibility set of 𝑃𝑛1

□ ⋯ □ 𝑃𝑛𝑘
. We derive the following result.

Proposition 18. If 𝑘 ≥ 2 and 𝑛𝑖 ≥ 3 for all 𝑖 ∈ [𝑘], then 𝜇−
𝑡
(𝑃𝑛1

□ ⋯ □ 𝑃𝑛𝑘
) = 2𝑘.

As already mentioned, total mutual-visibility appeared naturally in the study of mutual-visibility in strong products of graphs [9], 
while it was further and separately studied for the Cartesian and other products of graphs in [8,16,20]. From this perspective, it 
would be interesting to consider lower (total) mutual-visibility in Cartesian product of graphs and other graph products. Whilst some 
general results concerning the (total) mutual-visibility numbers in Cartesian products of graphs would be desirable, one can also 
restrict to some basic classes of graph products that were considered in earlier papers on mutual-visibility. We explicitly state some 
of these problems as follows.

Problem 1. Determine the lower (total) mutual-visibility numbers of Cartesian cylinders (graphs 𝐶𝑚□ 𝑃𝑛), tori (graphs 𝐶𝑚□ 𝐶𝑛), and 
hypercubes 𝑄𝑛.

In Section 3, we proved that the decision version of determining the lower total mutual-visibility number is NP-complete. How-
ever, we could not establish this for the lower mutual-visibility number, which we now formulate as the following problem.

Problem 2. What is the computational complexity of the decision version of determining 𝜇−(𝐺)?

In Section 4, we established general bounds on the two newly introduced invariants. For the lower bounds we characterized 
extremal graphs, which we even extended to graphs 𝐺 with 𝜇−(𝐺) = 2; see Theorem 13. In this sense, it would be interesting to 
characterize the graphs 𝐺 with 𝜇−

𝑡
(𝐺) = 1.

Concerning the upper bounds in Proposition 10, we have not explicitly mentioned that they can be attained. Yet, from Propo-
sition 10 and Theorem 13 we immediately infer that 𝜇−(𝐺) = 𝜇(𝐺) for every connected graph 𝐺 with a cut-edge. Similarly, 
Proposition 18 and [7, Corollary 4.2] imply that 𝜇−

𝑡
(𝑃𝑛1

□ ⋯ □ 𝑃𝑛𝑘
) = 𝜇𝑡(𝑃𝑛1

□ ⋯ □ 𝑃𝑛𝑘
). In this vein, we conclude the paper with 
10
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Problem 3. Characterize the graphs 𝐺 with 𝜇−(𝐺) = 𝜇(𝐺), and 𝜇−
𝑡
(𝐺) = 𝜇𝑡(𝐺), respectively.

Finally, from Propositions 5 and 6, one may consider dealing with a realization result that involves the two parameters gp− and 
𝜇−, which is the following problem.

Problem 4. Given any two integers 𝑟, 𝑡 ≥ 2, construct a graph 𝐺 such that gp−(𝐺) = 𝑟 and 𝜇−(𝐺) = 𝑡.
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