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For some α with 0 < α ≤ 1, a subset X of vertices in a graph G of order n is an α-partial 
dominating set of G if the set X dominates at least α × n vertices in G . The α-partial 
domination number pdα(G) of G is the minimum cardinality of an α-partial dominating 
set of G . In this paper partial domination of graphs with minimum degree at least 3 is 
studied. It is proved that if G is a graph of order n and with δ(G) ≥ 3, then pd 7

8
(G) ≤ 1

3 n. If 
in addition n ≥ 60, then pd 9

10
(G) ≤ 1

3 n, and if G is a connected cubic graph of order n ≥ 28, 
then pd 13

14
(G) ≤ 1

3 n. Along the way it is shown that there are exactly four connected cubic 
graphs of order 14 with domination number 5.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

One of the central themes of the theory of graph domination is establishing upper bounds for graphs with a prescribed 
minimum degree as a function of graph order. The topic is in depth surveyed in the paper [14] as well as in the 2023 
book [13]. Special attention has been paid to cubic graphs and graphs of minimum degree at least 3. For the latter graphs, 
Reed [25] in 1996 established a best possible upper bound.

Theorem 1.1. ([25]) If G is a graph of order n with δ(G) ≥ 3, then γ (G) ≤ 3
8 n.

In 2009, Kostochka and Stocker sharpened Reed’s bound for connected cubic graphs as follows.

Theorem 1.2. ([17]) If G is a connected cubic graph of order n, then γ (G) ≤ 5
14 n, unless G is one of the two graphs A1 and A2 shown 

in Fig. 1.

Kostochka and Stocker further proved that the graphs A1 and A2 are the only connected, cubic graphs that achieve the 
3
8 -bound of Theorem 1.1. On the other hand, Reed [25] conjectured that γ (G) ≤ � 1

3 n� whenever G is a connected cubic 
graph of order n. Kostochka and Stodolsky [18] disproved this conjecture by constructing an infinite sequence {Gk}∞k=1 of 
connected, cubic graphs with
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(a) A1 (b) A2

Fig. 1. The (non-planar) cubic graphs A1 and A2 of order n = 8 with γ (A1) = γ (A2) = 3

lim
k→∞

γ (Gk)

|V (Gk)| ≥ 1

3
+ 1

69
.

Subsequently, Kelmans [16] constructed an infinite series of 2-connected, cubic graphs Hk with

lim
k→∞

γ (Hk)

|V (Hk)| ≥ 1

3
+ 1

60
.

Thus, there exist connected cubic graphs G of arbitrarily large order n satisfying

γ (G) ≥
(

1

3
+ 1

60

)
n.

So, γ (G) ≤ � 1
3 n� does not hold for all connected cubic graphs. On the other hand, in 2010 Verstraëte conjectured that 

if G is a cubic graph of order n and girth at least 6, then γ (G) ≤ 1
3 n, see [13, Conjecture 10.23]. In [21] the conjecture has 

been verified for cubic graphs with girth at least 83. Further upper bounds on the domination number of a cubic graph in 
terms of its order and girth were proved in [19,20,24].

The following concepts were independently introduced in [4,5]. Let G = (V (G), E(G)) be a graph of order n. For some α
with 0 < α ≤ 1, a set S ⊆ V (G) is an α-partial dominating set of G if

|NG [S]| ≥ α × n,

that is, the set S dominates at least αn vertices in G . The α-partial domination number of G , denoted by pdα(G) (also by 
γα(G) in the literature), is the minimum cardinality of an α-partial dominating set of G . Investigations on the concept of 
partial domination in graphs can be found in [3–6,22,23]. At this point, it should be pointed out that the term “partial 
domination” is also used to refer to a concept that is different from ours [2]. We also remark that the concept of an 
α-dominating set [7,8,15] is different from our concept of an α-partial dominating set.

In light of the above, this paper addresses the following natural question: What is the largest possible value on α such 
that the α-partial domination number of a connected cubic graph is at most one-third the order of the graph? We further 
consider the same question in the more general setting of graphs with minimum degree at least 3.

We proceed as follows. In Section 2, we present the graph theory terminology we adopt in this paper, and state prelim-
inary results. In Section 3, we prove that the 7

8 -partial domination number of a connected cubic graph G of order 14 is at 
most 4. Thereafter in Section 4, we prove that the 7

8 -partial domination number of a graph with minimum degree at least 3
is at most one-third its order, and prove a stronger statement if the order of the graph is large enough. In Section 5 we 
show that there are exactly four connected cubic graphs of order 14 with domination number 5, and conjecture that these 
are the only graphs achieving equality in the upper bound γ (G) ≤ 5

14 n given by Kostochka and Stocker in Theorem 1.2.

2. Preliminaries

In this section, we call up the definitions, concepts and known results that we need for what follows. Let G =
(V (G), E(G)) be a graph. The open neighborhood NG(v) of a vertex v in G is the set of vertices adjacent to v , while the closed 
neighborhood of v is the set NG [v] = {v} ∪ NG(v). For a set D ⊆ V (G), its open neighborhood is the set NG (D) = ∪v∈D NG(v), 
and its closed neighborhood is the set NG [D] = NG(D) ∪ D . The minimum and maximum degrees in G are denoted by δ(G)

and �(G), respectively. The graph G is r-regular if every vertex in G has degree r. A 3-regular graph is called a cubic graph, 
and a graph G with �(G) ≤ 3 a subcubic graph. To these established terms we add the term supercubic graph which refers to 
graphs G with δ(G) ≥ 3.

A dominating set of a graph G is a set S of vertices of G such that every vertex not in S has a neighbor in S . The 
domination number of G , denoted by γ (G), is the minimum cardinality of a dominating set. A γ -set of G is a dominating 
set of G of minimum cardinality γ (G). Let X and Y be subsets of vertices in G . The set X dominates the set Y if every 
vertex in Y is in the set X or has a neighbor in the set X , that is, if Y ⊆ NG [X]. If X is a set of vertices in a graph G , then 
we denote by domG(X) the number of vertices dominated by the set X , and so domG(X) = |NG [X]|. A thorough treatise on 
domination in graphs can be found in [11–13].

For a set of vertices S in a graph G and a vertex v ∈ S , the S-private neighborhood of v is defined by pn[v, S] = {w ∈
V (G) : NG [w] ∩ S = {v}}. The S-external private neighborhood of v is the set epn[v, S] = pn[v, S] \ S . (The set epn[v, S] is 
2
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also denoted epn(v, S) in the literature.) An S-external private neighbor of v is a vertex in epn[v, S]. In 1979, Bollobás and 
Cockayne [1] established the following property of minimum dominating sets in graphs to be used later on.

Lemma 2.1. ([1]) Every isolate-free graph G contains a γ -set D such that epn[v, D] = ∅ for every vertex v ∈ D.

A set S of vertices in G is a packing in G if the closed neighborhoods of vertices in S are pairwise disjoint. Equivalently, 
S is a packing in G if the vertices in S are pairwise at distance at least 3. A packing is sometimes called a 2-packing in the 
literature. The packing number of G , denoted by ρ(G), is the maximum cardinality of a packing in G . In 1996, Favaron [9]
proved the following result on the packing number of a cubic graph.

Theorem 2.2. (Favaron [9]) If G is a connected cubic graph of order n different from the Petersen graph, then ρ(G) ≥ n
8 .

For a set of vertices in G , the subgraph of G induced by S is denoted by G[S]. Finally, the boundary of a set S of vertices 
in G , denoted by ∂(S), is the set of vertices not in S that have a neighbor in S , that is, ∂(S) = NG [S] \ S .

3. (Partial) domination in cubic graphs of order 14

In this section, we present a preliminary result that the 7
8 -partial domination number of a connected cubic graph G of 

order 14 is at most 4. We will need this result when proving our main theorem in Section 4.

Theorem 3.1. If G is a connected cubic graph of order n = 14, then

pd 7
8
(G) ≤ 4 <

1

3
n .

Proof. Let α = 7
8 and let G be a connected cubic graph of order n = 14. Let γ = γ (G). By Theorem 1.2, γ ≤ � 5

14 n� = 5. If 
γ ≤ � 1

3 n� = 4, then every γ -set of G is certainly an α-partial dominating set of G . Thus in this case, pdα(G) ≤ γ ≤ 4, as 
desired. Hence we may assume in what follows that γ = 5.

By Theorem 2.2, the graph G has packing number ρ(G) ≥ � n
8 � = 2. Let P be a maximum packing in G , and so |P | =

ρ(G) ≥ 2. Suppose that ρ(G) > 2, implying that ρ(G) = 3. In this case, domG(P ) = |NG [P ]| = 12. Thus if v is any one of the 
two vertices in V (G) \ NG [P ] and S = P ∪ {v}, then the set S satisfies domG(S) ≥ 13 > 7

8 n, and so pdα(G) ≤ |S| = 4. Hence 
we may assume that |P | = ρ(G) = 2, for otherwise the desired result follows.

Let X = V (G) \ NG [P ], and so |X | = 6. If a vertex in X has all three of its neighbors in the set X , then we can add such a 
vertex to the set P to produce a packing of cardinality 3, contradicting our assumption that ρ(G) = 2. Hence, every vertex 
in X has at most two neighbors that belong to X .

Suppose that a vertex x ∈ X has two neighbors in the set X . In this case, we let P x = P ∪{x}. The resulting set P x satisfies 
|P x| = 3 and domG(P x) = 4 + 4 + 3 = 11. Let Z = V (G) \ NG [P x], and so |Z | = 3. If there is a vertex z ∈ Z with at least one 
neighbor in Z , then the set S = P x ∪ {z} satisfies domG(S) ≥ 13 and |S| = 4, and so as before pdα(G) ≤ |S| = 4. Hence, 
we may assume that Z is an independent set in G . Thus, every vertex in Z has all three of its neighbors contained in the 
boundary ∂(P x) of the set P x . Denoting by �1 the number of edges between the sets Z and ∂(P x), we obtain �1 = 3|Z | = 9. 
Since |∂(P x)| = domG(P x) − |P x| = 11 − 3 = 8, by the Pigeonhole Principle at least one vertex v in the boundary ∂(P x)

of P x has at least two neighbors in Z . Thus the set S = P x ∪ {v} satisfies domG(S) ≥ 13 and |S| = 4, and so as before 
pdα(G) ≤ |S| = 4.

Hence, we may assume that every vertex in X has at most one neighbor that belongs to X , and therefore at least two 
neighbors that belong to the boundary ∂(P ) of P . Denoting by �2 the number of edges between the sets X and ∂(P ), we 
obtain �2 ≥ 2|X | = 2 × 6 = 12. However every vertex in ∂(P ) has one neighbor in P and therefore at most two neighbors 
in X , and so �2 ≤ 2|∂(P )| = 2 × 6 = 12. Consequently, �2 = 12, implying that ∂(P ) is an independent set and each vertex in 
∂(P ) has exactly two neighbors in X . Furthermore, each vertex in X has exactly two neighbors in ∂(P ) and one neighbor in 
X . In particular, the subgraph induced by the set X consists of three disjoint copies of P2, that is, G[X] = 3P2.

Let Y = ∂(P ), and let H be the graph with vertex set X ∪ Y and with edge set consisting of all edges in G between X
and Y . By our earlier observations, |X | = |Y | = 6. The resulting bipartite graph H has partite sets X and Y and is a 2-regular 
graph of order 12. Thus, either H = 2C6, or H = 3C4, or H = C4 ∪ C8, or H = C12. Let P = {v1, v2}. Let X = {x1, x2, . . . , x6}
and Y = {y1, y2, . . . , y6}.

Claim 1. H = 2C6 .

Proof. Suppose, to the contrary, that H = 2C6. Renaming vertices in X and Y if necessary, we may assume that 
Q 1 : x1 y1x2 y2x3 y3x1 and Q 2 : x4 y4x5 y5x6 y6x4 are the two 6-cycles in H , and so H = Q 1 ∪ Q 2. Renaming vertices if neces-
sary, we may assume that v1 y1 is an edge of G . Since v1 is adjacent to at most two vertices from the cycle Q 2, we may 
assume, renaming vertices of Q 2 if necessary, that v2 y4 is an edge of G . Thus the graph F shown in Fig. 2 is a spanning 
3
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v1 v2

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

Fig. 2. A spanning subgraph F of G in the proof of Claim 1

v1 v2

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

Fig. 3. A spanning subgraph F of G in the proof of Claim 2

subgraph of G . In this case, the set S = {y1, x3, y4, x6} is a dominating set of F (where the vertices in S are shaded in 
Fig. 2), and so γ ≤ γ (F ) = 4, a contradiction. (�)

Claim 2. H = C12 .

Proof. Suppose, to the contrary, that H = C12. Renaming vertices in X and Y if necessary, we may assume that H is the 
cycle x1 y1x2 y2 . . . x6 y6x1. The vertex v1 has three edges to Y , implying that v1 has exactly one edge to at least one of the 
three sets {y1, y4}, {y2, y5} and {y3, y6}. Renaming vertices if necessary, we may assume that v1 has exactly one edge to 
the set {y1, y4}. Further, we may assume that v1 y1 is an edge of G , and so v1 y4 is not an edge of G . Since every vertex 
in Y is adjacent to exactly one of v1 and v2, this implies that v2 y4 is an edge. Thus the graph F shown in Fig. 3 is a 
spanning subgraph of G . In this case, the set S = {y1, x3, y4, x6} is a dominating set of F (see Fig. 3), and so γ ≤ γ (F ) ≤ 4, 
a contradiction. (�)

Claim 3. If H = 3C4 , then pdα(G) ≤ 4.

Proof. Suppose that H = 3C4. Renaming vertices in X and Y if necessary, we may assume that Q 1 : x1 y1x2 y2x1, 
Q 2 : x3 y3x4 y4x3 and Q 3 : x5 y5x6 y6x5 are the three 4-cycles in H , and so H = Q 1 ∪ Q 2 ∪ Q 3.

Suppose that v1 is adjacent in G to a vertex from each of the three 4-cycles of H . Renaming vertices if necessary, 
we may assume that NG (v1) = {y1, y3, y5}. Since every vertex in Y is adjacent to exactly one of v1 and v2, this implies 
that NG (v2) = {y2, y4, y6}. Thus the graph F shown in Fig. 4(a) is a spanning subgraph of G . In this case, the set S =
{v1, y2, y4, y6} is a dominating set of F (see Fig. 4(a)), and so γ ≤ γ (F ) = 4, a contradiction.

Hence, neither v1 nor v2 is adjacent in G to a vertex from each of the three 4-cycles of H . Renaming vertices if necessary, 
we may assume that NG (v1) = {y1, y2, y3} and NG (v2) = {y4, y5, y6}. By our earlier observations, G[X] = 3P2. If x1x2 is 
an edge, then the graph F shown in Fig. 4(b) is a spanning subgraph of G . In this case, the set S = {v2, x2, y3, y5} is a 
dominating set of F (see Fig. 4(b)), and so γ ≤ γ (F ) = 4, a contradiction. Hence, x1x2 /∈ E(G). By symmetry, x5x6 /∈ E(G).

Suppose that x3x4 is an edge. Renaming vertices in necessary, we may assume in this case that x1x6 and x2x5 are edges. 
Thus the graph G is determined and is shown in Fig. 4(c). In this case, the set S = {x2, x6, y3, y4} is a dominating set of G
(see Fig. 4(c)), and so γ ≤ 4, a contradiction. Hence, x3x4 /∈ E(G).

The graph G is therefore determined. Renaming vertices if necessary, we may assume that G = G14.1, where G14.1 is the 
graph shown in Fig. 4(d). We note that γ = 5. In this case, the set S = {y1, y3, y5, v2} satisfies domG(S) = 13 (the vertex y2
represented by the square in Fig. 4(d) is the only vertex not dominated by S) and |S| = 4, implying that pdα(G) ≤ |S| ≤ 4. 
This completes the proof of Claim 3. (�)

Claim 4. If H = C4 ∪ C8 , then pdα(G) ≤ 4.

Proof. Suppose that H = C4 ∪ C8. Renaming vertices in X and Y if necessary, we may assume that Q 1 : x1 y1x2 y2x1 is the 
4-cycle in H and Q 2 : x3 y3x4 y4x5 y5x6 y6x3 is the 6-cycle in H .
4
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v1 v2

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

(a)

v1 v2

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

(b)

v1 v2

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

(c)

v1 v2

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

(d) G14.1

Fig. 4. Spanning subgraphs F of G in the proof of Claim 3

v1 v2

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

(a)

v1 v2

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

(b)

v1 v2

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

(c)

v1 v2

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

(d)

Fig. 5. Spanning subgraphs F of G in the proof of Claim 4.1

Claim 4.1. Both v1 and v2 are adjacent to exactly one vertex from the cycle Q 1.

Proof. Suppose, to the contrary, that v1 or v2, say v1, is adjacent in G to two vertices in the cycle Q 1. Renaming vertices 
if necessary, we may assume that NG (v1) = {y1, y2, y3}, and so NG (v2) = {y4, y5, y6}. Recall that G[X] = 3P2.

If x1x2 is an edge, then the graph F shown in Fig. 5(a) is a spanning subgraph of G . In this case, the set S =
{x1, x6, y3, y4} is a dominating set of F (see Fig. 5(a)), and so γ ≤ γ (F ) = 4, a contradiction. Hence, x1x2 /∈ E(G). If x2x6
is an edge, then the graph F shown in Fig. 5(b) is a spanning subgraph of G . In this case, the set S = {x1, x6, y3, y4} is a 
dominating set of F (see Fig. 5(b)), and so γ ≤ γ (F ) = 4, a contradiction. Hence, x2x6 /∈ E(G). By symmetry, x1x6 /∈ E(G). If 
x2x5 is an edge, then the graph F shown in Fig. 5(c) is a spanning subgraph of G . In this case, the set S = {x1, x5, y3, y6} is 
a dominating set of F (see Fig. 5(c)), and so γ ≤ γ (F ) = 4, a contradiction. Hence, x2x5 /∈ E(G). By symmetry, x1x5 /∈ E(G).

Renaming x1 and x2 if necessary, we may assume that x1x4 and x2x3 are edges. The remaining edge in G[X] is therefore 
the edge x5x6. Thus, the graph G is determined and is shown in Fig. 5(d). In this case, the set S = {v1, x3, x4, y5} is a 
dominating set of G (see Fig. 5(d)), and so γ ≤ 4, a contradiction. This completes the proof of Claim 4.1. (�)

By Claim 4.1, both v1 and v2 are adjacent to exactly one vertex from the cycle Q 1. Renaming y1 and y2 if necessary, we 
may assume that v1 y1 and v2 y2 are edges.
5
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v1 v2

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

Fig. 6. A spanning subgraph F of G in the proof of Claim 4.2

v1 v2

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

(a)

v1 v2

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

(b)

v1 v2

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

(c)

v1 v2

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

(d) G14.2

Fig. 7. Spanning subgraphs F of G in the proof of Claim 4

Claim 4.2. The vertex v1 is adjacent to two vertices in Q 2 at distance 2 in Q 2 .

Proof. Suppose, to the contrary, that v1 is adjacent to two vertices in Q 2 at distance 4. Renaming vertices if necessary, we 
may assume that v1 y3 and v1 y5 are edges. Thus, NG (v1) = {y1, y3, y5} and NG (v2) = {y2, y4, y6}. Thus the graph F shown 
in Fig. 6 is a spanning subgraph of G . In this case, the set S = {v1, y2, y4, y6} is a dominating set of F (see Fig. 6), and so 
γ ≤ γ (F ) = 4, a contradiction. (�)

By Claim 4.2, the vertex v1 is adjacent to two vertices in Q 2 at distance 2 in Q 2. Renaming vertices if necessary, we may 
assume that NG (v1) = {y1, y3, y4} and NG (v2) = {y2, y5, y6}. If x1x2 is an edge, then the graph F shown in Fig. 7(a) is a 
spanning subgraph of G . In this case, the set S = {x1, x5, y3, y6} is a dominating set of F (see Fig. 7(a)), and so γ ≤ γ (F ) = 4, 
a contradiction. Hence, x1x2 /∈ E(G).

If x2x3 is an edge, then the graph F shown in Fig. 7(b) is a spanning subgraph of G . In this case, the set S =
{x1, x3, y4, y5} is a dominating set of F (see Fig. 7(b)), and so γ ≤ γ (F ) = 4, a contradiction. Hence, x2x3 /∈ E(G). By sym-
metry, x1x3 /∈ E(G).

If x2x5 is an edge, then the graph F shown in Fig. 7(c) is a spanning subgraph of G . In this case, the set S =
{x1, x5, y3, y6} is a dominating set of F (see Fig. 7(c)), and so γ ≤ γ (F ) = 4, a contradiction. Hence, x2x5 /∈ E(G). By sym-
metry, x1x5 /∈ E(G).

Renaming x1 and x2 if necessary, we may assume that x1x6 and x2x4 are edges. The remaining edge in G[X] is therefore 
the edge x3x5. Thus, the graph G is determined. Renaming vertices if necessary, we may assume that G = G14.2, where 
G14.2 is the graph shown in Fig. 7(d). We note that γ = 5. In this case, the set S = {y1, y3, y5, v2} satisfies domG(S) = 13
(the vertex y4 represented by the square in Fig. 7(d) is the only vertex not dominated by S) and |S| = 4, implying that 
pdα(G) ≤ |S| = 4. This completes the proof of Claim 4. (�)

We now return to the proof of Theorem 3.1 one final time. As observed earlier, there are four possibilities for the graph 
H , namely H = 2C6 or H = 3C4 or H = C4 ∪ C8 or H = C12. By Claim 1, H = 2C6. By Claim 2, H = C12. By Claim 3, if 
H = 3C4, then pdα(G) ≤ 4. By Claim 4, if H = C4 ∪ C8, then pdα(G) ≤ 4. This completes the proof of Theorem 3.1. �
6
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(a) A1 (b) A2

Fig. 8. 7
8 -partial dominating sets in A1 and A2. In each, the vertex represented by the square is the only vertex not dominated by the two shaded vertices.

4. Partial domination in supercubic graphs

We start this section by proving a useful lemma. We first present a key lemma, which allows us to grow a given set of 
vertices to a larger set that dominates more vertices. Recall that we refer to graphs G with δ(G) ≥ 3 as supercubic graphs.

Lemma 4.1. Let k be a positive integer and G a supercubic graph of order n. If S ⊆ V (G), U S = V (G) \ NG [S], and

4|U S | > k(n − |S|) ,

then there exists a vertex in ∂(S) ∪ U S that dominates at least k + 1 vertices from U S .

Proof. Consider the ‘useful’ vertex pairs (x, y) such that y ∈ U S and x dominates y (allowing x = y). Denote by p the 
number of useful pairs. As all vertices from U S can be dominated by itself or one of its at least three neighbors, p ≥ 4|U S |. 
Since y ∈ U S = V (G) \ NG [S], we have NG [y] ∩ S = ∅. It follows that x ∈ ∂(S) ∪ U S .

To prove the statement, we suppose that there is no vertex in G which dominates more than k vertices from U S . 
Equivalently, every vertex x ∈ ∂(S) ∪ U S belongs to at most k different useful pairs (x, y) (s.t. x is the first entry). We then 
conclude

k(|∂(S)| + |U S |) = k(n − |S|) ≥ p ≥ 4|U S |
that contradicts the given condition and therefore proves the statement. �

We are now in a position to prove that the 7
8 -partial domination number of a cubic graph G is at most one-third of the 

order of G . In fact, our result states that the same is true for every supercubic graph.

Theorem 4.2. If G is a supercubic graph of order n, then

pd 7
8
(G) ≤ 1

3
n .

Proof. First suppose that G is the disjoint union of the components G1, . . . , Gk . It was already observed in [5] that pdα(G) ≤∑k
i=1 pdα(Gi) holds for each α. Therefore, it suffices to prove the statement for connected graphs.
Let G be a connected graph of order n and of minimum degree δ(G) ≥ 3. Let α = 7

8 and γ = γ (G). We proceed further 
with two claims.

Claim 5. If n ≤ 14, then pdα(G) ≤ 1
3 n.

Proof. By Theorem 1.1, γ ≤
⌊

3
8 n

⌋
holds, so 

⌊
3
8 n

⌋
vertices are enough to dominate the entire vertex set. Since 

⌊
3
8 n

⌋
= ⌊ 1

3 n
⌋

holds whenever n ≤ 14 and n /∈ {8, 11, 14}, it suffices to consider graphs of order 8, 11 and 14.
Suppose first that G is cubic. Then only n ∈ {8, 14} must be considered. If n = 14, then by Theorem 3.1 we have pdα(G) ≤

1
3 n. Hence we may assume that n = 8. If G is isomorphic to A1 or A2, then as illustrated in Fig. 8, there exists a set S of 
two (shaded) vertices in G that dominates seven vertices. For any other cubic graph G of order 8 we have γ (G) ≤ 2 by 
Theorem 1.2. Hence pdα(G) ≤ 2 = 1

4 n < 1
3 n for each cubic graph G of order 8.

Assume in the rest that G is supercubic but not cubic. Hence there exists a vertex u of degree at least 4.
If n = 8, a vertex u of maximum degree dominates |NG [u]| = domG({u}) ≥ 5 vertices. If domG({u}) ≥ 6, then any undom-

inated vertex u′ /∈ NG [u] can be added to the set and we have domG({u, u′}) ≥ 7. If domG({u}) = 5, we apply Lemma 4.1
with k = 1 and S = {u}. Since 4|U S | = 4 × 3 > 8 − 1, there exists a vertex u′ such that domG({u, u′}) ≥ 7. In both cases, 
domG({u, u′}) ≥ 7 implies pdα(G) ≤ 2 = ⌊ 1

3 n
⌋

.
If n = 11, we want to prove that there are three vertices v1, v2, v3 that dominate at least 10 vertices in G . Then, 

pdα(G) ≤ 3 = ⌊ 1
3 n

⌋
will follow. Let v1 be a vertex of maximum degree. We have domG({v1}) ≥ 5. If domG({v1}) = 5 then, 

for S = {v1}, the inequality 4|U S | = 24 > 2(n − |S|) = 20 holds and Lemma 4.1 implies the existence of a vertex v2 that 
7
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dominates at least three vertices from U S . It follows that domG({v1, v2}) ≥ 8. If domG({v1}) = 6 then, by setting S = {v1}, 
we get 4|U S | = 20 > n − |S| = 10 that shows, by Lemma 4.1, the existence of a vertex v2 which dominates at least two new 
vertices. Again, we have that domG({v1, v2}) ≥ 8. If domG({v1}) ≥ 7, then v2 can be chosen as an arbitrary undominated 
vertex and domG({v1, v2}) ≥ 8 is achieved. For the choice of the last vertex, we consider two cases. If domG({v1, v2}) = 8, 
the set S = {v1, v2} satisfies the condition in Lemma 4.1 with k = 1 and the existence of a vertex v3 which dominates at 
least two vertices from U S follows. It means domG({v1, v2, v3}) ≥ 10 as required. If domG({v1, v2}) ≥ 9, then any undomi-
nated vertex can be chosen as v3 and we have domG({v1, v2, v3}) ≥ 10 again.

If n = 14, we want to prove that there exist four vertices v1, v2, v3, v4 which together dominate at least 13 vertices. 
Then, pdα(G) ≤ 4 = ⌊ 1

3 n
⌋

will follow. Let v1 be a vertex of maximum degree. If domG({v1}) = 5 and N(v1) is a dominating 
set in G , then domG(N(v1)) = 14 and we are ready. In the other case, domG({v1}) = 5 and N(v1) is not a dominating set in 
G . Then there exists a vertex v2 such that {v1, v2} is a packing in G . If v2 is a vertex of degree 3, then domG({v1, v2}) = 9
and for S = {v1, v2} and k = 1, the condition 4 × 5 > 14 − 2 holds and Lemma 4.1 implies the existence of a vertex v3 with 
domG({v1, v2, v3}) ≥ 11. If v2 is a vertex of degree at least 4, then domG({v1, v2}) ≥ 10 and domG({v1, v2, v3}) ≥ 11 can 
be easily achieved. For the choice of the last vertex, we consider two further subcases. If domG({v1, v2, v3}) = 11, we have 
4 ×3 > 14 −3 and Lemma 4.1 implies the existence of a vertex v4 with domG({v1, v2, v3, v4}) ≥ 13. If domG({v1, v2, v3}) ≥
12 and there are undominated vertices, then we may choose such a vertex v4 and get domG({v1, v2, v3, v4}) ≥ 13. (�)

By Claim 5, we may assume that n ≥ 15, for otherwise the desired result follows. Let D = {v1, v2, . . . , vγ } be a γ -set 
of G satisfying the Bollobás-Cockayne Lemma 2.1, and so epn[v, D] = ∅ for every vertex v ∈ D . By Theorem 1.1, we have 
γ ≤ � 3

8 n�. If γ ≤ 1
3 n, then the set D is certainly an α-partial dominating set of G of cardinality at most 1

3 n. Thus in this 
case, pdα(G) ≤ |D| ≤ 1

3 n. Hence we may assume that γ > 1
3 n, for otherwise the desired result is immediate.

Using the vertices v1, . . . , vγ from D , let (V 1, V 2, . . . , Vγ ) be a partition of the vertex set V (G) such that for all i ∈ [γ ], 
the following properties hold: (i) vi ∈ V i , (ii) epn[vi, D] ⊂ V i , and (iii) V i ⊆ NG [vi]. As observed earlier, |epn[vi, D]| ≥ 1, 
and so |V i | ≥ |{vi}| + |epn[vi, D]| ≥ 2 for all i ∈ [γ ]. Renaming the vertices v1, v2, . . . , vγ if necessary, we may assume that 
|V i| ≥ |V i+1| for all i ∈ [γ − 1], that is,

|V 1| ≥ |V 2| ≥ · · · ≥ |Vγ | ≥ 2. (1)

Let k1 = � 1
3 n� and let k2 = γ − k1. By assumption, 1

3 n < γ . By Theorem 1.1, γ ≤ � 3
8 n�. Hence, 1

3 n < γ ≤ � 3
8 n�. By 

definition of k1 and k2 and by our earlier observations and assumptions,

1 ≤ k2 = γ − k1 ≤
⌊

3

8
n

⌋
−

⌊
1

3
n

⌋
. (2)

Let S = {v1, v2, . . . , vk1 }, and so |S| = k1 = � 1
3 n�. Since (V 1, V 2, . . . , Vγ ) is a partition of the vertex set V (G), we note 

that the number of vertices dominated by the set S is at least the number of vertices in the sets V 1 ∪ · · · ∪ Vk1 , that is,

domG(S) ≥
k1∑

i=1

|V i |. (3)

We proceed further with the following claim.

Claim 6. If |Vk1 | ≥ 3, then pdα(G) ≤ 1
3 n.

Proof. Suppose that |Vk1 | ≥ 3. In this case, by Inequalities (1) and (3), and by our assumption that n ≥ 15, we infer that

domG(S) ≥ 3k1 = 3

⌊
1

3
n

⌋
≥

⌈
7

8
n

⌉
. (4)

By Inequality (4), we have domG(S) ≥ 7
8 n, implying that the set S is an α-partial dominating set of G , and so pdα(G) ≤

|S| ≤ 1
3 n, yielding the desired result. (�)

By Claim 6, we may assume that |Vk1 | = 2, for otherwise the desired result follows. With this assumption and by 
inequality (1), we note that |V i | = 2 for all i ≥ k1. Hence by Inequality (2), we have

k2∑
i=k1+1

|V i| = 2k2 ≤ 2

(⌊
3

8
n

⌋
−

⌊
1

3
n

⌋)
. (5)

Thus, by inequalities (3) and (5), and by our assumption that n ≥ 15, we infer that

domG(S) ≥
k1∑

|V i | = n −
k2∑

|V i | ≥ n − 2

(⌊
3

8
n

⌋
−

⌊
1

3
n

⌋)
≥

⌈
7

8
n

⌉
. (6)
i=1 i=k1+1

8
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By Inequality (6), we have domG(S) ≥ 7
8 n, implying that the set S is an α-partial dominating set of G , and so pdα(G) ≤

|S| ≤ 1
3 n, yielding the desired result. �

The bound in Theorem 4.2 is best possible in the sense that if α > 7
8 and G is A1 or A2 (see Fig. 1), then in this case 

�α × n� = 8 = n, and at least three vertices are needed to dominate all vertices of G . Thus in this example, pdα(G) = 3 =
3
8 n > 1

3 n. The same is true if every component of G is isomorphic to A1 or A2. Hence the value for α in the statement of 
Theorem 4.2 cannot be increased in general in order to guarantee that the α-partial domination number of a connected 
cubic graph is at most one-third its order.

However if the connected cubic graph G has sufficiently large order n, then we can improve the value α = 7
8 given in 

Theorem 4.2 to a larger value of α. For example, if n ≥ 28, then α = 13
14 suffices, as the following result shows.

Theorem 4.3. If G is a connected cubic graph of order n ≥ 28, then

pd 13
14

(G) ≤ 1

3
n .

Proof. Let G be a connected cubic graph of order n ≥ 28 and let α = 13
14 . We adopt exactly our notation from the proof of 

Theorem 4.2. In particular, D is a γ -set of G satisfying Lemma 2.1. As before, by Theorem 1.2 we have γ ≤ � 5
14 n�. If γ ≤ 1

3 n, 
then domG(D) = n. Hence we may assume that γ > 1

3 n, for otherwise the desired result is immediate. Let k1 and k2 be 
defined exactly as in the proof Theorem 4.2. If |Vk1 | ≥ 3, then

domG(S) ≥ 3k1 = 3

⌊
1

3
n

⌋
≥

⌈
13

14
n

⌉
, (7)

implying that the set S is an α-partial dominating set of G . Thus, pdα(G) ≤ |S| ≤ 1
3 n, yielding the desired result. Hence we 

may assume that |Vk1 | = 2. With this assumption, we note that |V i | = 2 for all i ≥ k1. Thus proceeding exactly as before, 
we yield the inequality chain where recall that by supposition we have n ≥ 28 and so

domG(S) ≥
k1∑

i=1

|V i | = n −
k2∑

i=k1+1

|V i | ≥ n − 2

(⌊
5

14
n

⌋
−

⌊
1

3
n

⌋)
≥

⌈
13

14
n

⌉
. (8)

Once again, domG(S) ≥ 13
14 n, implying that the set S is an α-partial dominating set of G . Thus, pdα(G) ≤ |S| ≤ 1

3 n. �
Note that in the proof of Theorem 4.3 we used the inequality γ ≤ � 5

14 n� which holds for every connected cubic graph of 
order at least 10. Hence we cannot avoid the assumption that G is connected. On the other hand, γ ≤ � 3

8 n� holds for every 
supercubic graph, and we have the following result.

Theorem 4.4. If G is a supercubic graph of order n ≥ 60, then

pd 9
10

(G) ≤ 1

3
n .

Proof. We can proceed along the same lines as in the proof of Theorem 4.3. The only difference is that now we cannot 
apply Theorem 1.2, instead we apply Theorem 1.1. Then (7) rewrites as

domG(S) ≥ 3k1 = 3

⌊
1

3
n

⌋
≥

⌈
9

10
n

⌉
, (9)

which holds for n ≥ 18, while (8) rewrites as

domG(S) ≥
k1∑

i=1

|V i | = n −
k2∑

i=k1+1

|V i | ≥ n − 2

(⌊
3

8
n

⌋
−

⌊
1

3
n

⌋)
≥

⌈
9

10
n

⌉
, (10)

which holds for n ≥ 60. The conclusion follows. �
5. Closing remarks

As a consequence of Theorems 1.1 and 1.2, we have the following result which characterizes the connected cubic graphs 
G of order n satisfying γ (G) = 3 n.
8
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(a) G14.3 (b) G14.2

(c) G14.1 (d) P (7,2)

Fig. 9. The four connected cubic graphs G of order n = 14 satisfying γ (G) = 5

Corollary 5.1. ([17,25]) If G is a connected cubic graph of order n, then γ (G) ≤ 3
8 n, with equality if and only if G is one of the two 

graphs A1 and A2 shown in Fig. 1.

A natural problem is to characterize the graphs that achieve equality in the Kostochka-Stocker Theorem 1.2, that is, to 
characterize the connected cubic graphs G of order n satisfying γ (G) = 5

14 n. Necessarily, for such graphs we have n = 14k
for some k ≥ 1.

We show next that there are exactly four such graphs of order n = 14. We remark that the proof of Theorem 3.1 gave rise 
to two connected cubic graphs of order n satisfying γ (G) = 5 = 5

14 n, namely the graphs G14.1 and G14.2 shown in Figs. 4(d) 
and 7(d), respectively. (These two graphs are redrawn in Fig. 9(c) and 9(b), respectively.) With a bit more work, one can 
readily establish two additional such graphs.

In the second paragraph of the proof of Theorem 3.1, we consider the case when ρ(G) = 3. In this case, adding a vertex 
at distance 3 to a maximum packing immediately yielded an 7

8 -partial dominating set of G of cardinality 4, and therefore 
we assumed that ρ(G) = 2. However a more detailed analysis of the case when ρ(G) = 3 yields the generalized Petersen 
graph P (7, 2) shown in Fig. 9(d).

In the fourth paragraph of the proof of Theorem 3.1, we considered the case when the set X = V (G) \ NG [P ] contains 
a vertex adjacent to two other vertices in X . Since this case immediately yielded an 7

8 -partial dominating set of G of 
cardinality 4, we therefore assumed that this case does not occur. However a more detailed analysis of the case when a 
vertex in X has two neighbors in X yields the graph G14.3 shown in Fig. 9(a). The proof details giving rise to these two 
additional graphs, namely P (7, 2) and G14.3, are similar to our proof of Theorem 3.1, and are not given here. Moreover, the 
result was also verified by computer.

Theorem 5.2. If G is a connected cubic graph of order n = 14 satisfying γ (G) = 5 = 5
14 n, then G ∈ {G14.1, G14.2, G14.3, P (7, 2)}.

It is not known if the 5
14 -upper bound on the domination number of a connected cubic graph of order n given by 

Kostochka and Stocker [17] is achievable when n is large. We pose the following conjecture.

Conjecture 5.3. If G is a connected cubic graph of order n satisfying γ (G) = 5
14 n, then G ∈ {G14.1, G14.2, G14.3, P (7, 2)}.

The authors in [17] remark that the bound γ (G) ≤ � 5
14 n� for a connected cubic graph of order n ≥ 14 is achievable 

for n ∈ {14, 16, 18}. It would be interesting to find graphs of orders n ≥ 20 that achieve equality in this bound. Natural 
candidates are the generalized Petersen graphs P (p, 2) of order n = 2p whose domination numbers are known (see, [10]).

Theorem 5.4. ([10]) γ (P (p, 2)) = p − ⌊ p
5

⌋ −
⌊

p+2
5

⌋
for all p ≥ 3.

For p ∈ {3, 5, 6, 7, 8, 9, 11, 12}, we have p − � p
5 � − � p+2

5 � = � 5
7 p�. Hence as a consequence of Theorem 5.4, we have the 

following result.
10
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Corollary 5.5. For n ∈ {6, 10, 12, 14, 16, 18, 22, 24}, there exist connected cubic graphs G of order n satisfying γ (G) = � 5
14 n�.

As far as we are aware, P (12, 2) is the largest currently known connected cubic graph of order n satisfying γ (G) = � 5
14 n�. 

In addition, γ (P (12, 2)) = 8 = 1
3 n. We close with the following question, for which we suspect the answer is no.

Question 5.6. Are there infinitely many connected cubic graphs G of order n satisfying γ (G) = � 5
14 n�?
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