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Abstract: The hot deformation of metal as a nonlinear system is mathematically described by a local
linear model associated with the working conditions using a transfer function (TF) in the Laplace
domain. Experimental data (true stress vs. true strain curves) are obtained using the established
compressive uniaxial deformation test, where experimental conditions (strain rate and temperature)
define the working conditions of the local linear TF model, which is intrinsically a function of strain.
Based on the TF model, three important physical quantities of the tested metal are determined
exactly: the work done per unit deformation, the average flow stress, and the flow-stress derivative
with respect to the strain based on a particular TF. The exactly determined quantities, determined
as a function of strain, can replace the previously used approximations in some rolling force and
torque calculations.

Keywords: true stress vs. true strain; transfer function; average flow stress; flow-stress derivative;
work done per unit deformation

1. Introduction

For accurate dimensional control of a hot-rolling process, the roll-separation force and
the torque are the most important quantities for both forward production planning and
real-time process control. Additionally, the roll-separation force and the torque during hot
rolling are limited by the equipment of the rolling mill. Both quantities depend heavily
on the nonlinear flow of the rolled metal as well as the geometrical setup. An accurate
description of the flow rule is, therefore, of paramount importance.

Published reviews on the roll-separation force and the torque can be found in [1]
and more extensively in [2]. The main problem when solving the roll-separation force
and the torque is to calculate the roll-pressure distribution along the angle on the roll,
where the rolled steel is in contact. The names of the variables follow the notation of [3].
Simple models for calculating the roll-separation force and the torque need one or more
of the following quantities: average stress σFM, strain-dependent flow rule σ(ε), strain
rate for a given strain

.
ε(ε), derivative of the strain-dependent flow rule with respect to

angle ∅, dσ/d∅ (or with respect to x, depending on the geometry defined for the normal
roll-pressure distribution), where ∅ is the local angle at the roll/slab contact. The derivative
of flow dependent with respect to angle ∅ is obtained using the chain rule of differentiation
through the intermediate variable strain ε and is

dσ/d∅ = dσ/dε ∗ dε/d∅. (1)

Simple models employ explicit equations for the average pressure per unit width of
Schey and Sims [2,4], which require σFM as a multiplier. A more complex model developed
firstly by Karman [5] (Karman equation) and later improved by Orowan [6] derives the
roll-pressure distribution by solving a differential equation for the equilibrium of forces
acting on a deformed slab. A crucial improvement to Orowan’s solution of Karman’s is

Materials 2023, 16, 2787. https://doi.org/10.3390/ma16072787 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16072787
https://doi.org/10.3390/ma16072787
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://doi.org/10.3390/ma16072787
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16072787?type=check_update&version=2


Materials 2023, 16, 2787 2 of 9

the consideration of the mixed boundary condition at the roll/slab interface τ = µs and
τ = k, where µs > k, with s being the local pressure, µ is the coefficient of friction, and
k is the yield/flow stress of the rolled slab. In the solution procedure, a general flow-
stress distribution k(∅) along the contact arc and its derivative and the general coefficient of
friction along the contact arc are considered. Orowan’s method includes a graphical solution
of the differential equation. A simplified Orowan’s model is obtained in [7,8] by eliminating
the yield-stress derivative and reformulating Orowan’s method just for a numerical solution.
Freshwater employs Swift’s stress-strain hardening law Y = Y0 (1 + Bε)n. Alexander [3,8]
numerically solved Orowan’s equation for an arbitrary variable-yield stress along the
contact arc and also considered the flow-stress approximation based on Swift’s stress-strain
hardening law. Bland and Ford [9] generally considered the strain-dependent flow stress
and evaluated the error introduced by replacing it with the average flow stress σFM. There
are also other strain-dependent flow models describing, specifically, strain hardening which
is the research by Holomon, Ludwik, and Voce [10]. Other flow models describe only the
strain softening or mixed strain hardening/softening above a certain strain [10]. Note
that the above-mentioned models are approximative. On the other hand, an exact strain-
dependent flow rule σ(ε) enables an exact description of the strain-dependent flow rule,
regardless of the strain hardening, softening, or any mixed modes. Thus, using a single
function (TF) that accurately describes the flow stress as a function of strain can, in some
situations, be an advantage. Additionally, using the same TF for an exact calculation of
other statistical values, such as the average flow stress σFM, brings additional benefits.

Two similar models that are able to analytically calculate the roll-separation force
are based on the total energy minimization principle, employing a constant flow-stress
formulation [11,12].

Another important variable during hot rolling is the rolled metal’s temperature, where
any change during hot rolling greatly depends on the energy introduced through the defor-
mation work. The temperature increase caused by the deformation work can be estimated
by dividing

∫
σ(ε)dε by the specific heat and the density of the deformed material [2,13,14].

To summarize the rolling force and torque problems, the strain-dependent flow rule,
the average flow stress, the flow-stress derivative with respect to angle ∅, and the work
done per unit deformation are quantities that appear in many (mostly simple) rolling force
and torque calculation methods, but their calculations are mostly simplified. Here we show
how these quantities can be accurately calculated.

In [15], it was shown that for a uniaxial compressive hot-deformation experiment, the
stress response under a constant strain rate could be very accurately modeled (note the
hardly visible difference between the measured and calculated stresses–Figure 1) using a
third-order TF and slightly less accurately using a 2nd-order TF. In a configuration with the
strain rate as input and the stress σ(ε) = h

( .
ε(ε)

)
as output, optimization as a method for

determining the transfer-function coefficients converges more easily compared to the strain-
for-input approach. This is due to the coefficients for various strain rates and temperatures
being closer to each other. Such a configuration reduces optimization efforts but is not as
general as the strain-for-input configuration σ(ε) = g(ε(ε)) [15]. However, in both cases,
the Laplace transformation is used along the strain ε axis.

The configuration of strain as input and stress as output along the time axis σ(t) = h(ε(t))
is more general and offers conditional swapping between the time and the deformation.
Under a constant strain-rate assumption, σ(t) = h(ε(t)) can be transformed in the Laplace
domain into a form describing it along the strain axis; σ(ε) = f (ε(ε)), as well as back in
the time domain. Mathematically, in the Laplace domain, this transform is a division of TF
zeros and poles by a constant (in this case, the constant is the strain rate

.
ε). Swapping the

t-ε space is essential for later calculations presented here.
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Figure 1. Tightly matching measured and calculated true stress vs. true strain curves for temperatures
(1000, 1050, 1100, 1150, and 1200 ◦C) and strain rates (0.01, 0.1, 1, and 10 s−1).

In the paper, the presented approach follows that of a local linear model for a descrip-
tion of the nonlinear system around the working point or equilibrium [16–20], where the
TF model is dynamic in its nature and should therefore be clearly different to any kind
static system [21].

In the article, we demonstrate that by describing the true stress vs. true strain relation
using a transfer function, three important quantities in the field of hot deformation for
metals can be calculated as a continuous function of time (or deformation): the work done
per unit deformation, the average flow stress and the flow-stress derivative with respect to
strain. Furthermore, an accurate true stress vs. true strain relation described by the TF as an
intrinsic function of strain might, in some situations, accurately replace multiple separate
approximative models describing the strain hardening and/or the softening of the metal as
a function of strain.

2. Materials and Methods
2.1. Experimental

The material used in this investigation was spring steel grade 51CrV4, with the
chemical composition given in Table 1. The steel was produced in a laboratory-scale
induction furnace (capacity 20 l, max. power on inductor 100 kW), cast into ingots of
60 × 60 mm cross-section, hot rolled to a bar thickness of 22 mm in seven passes using
a Schmitz two high rolling mill with a 95 kW electrical motor. The diameter of the rolls
and the rotation speed were 296 mm and 27 min−1, respectively. From the resulting
bars, cylindrical samples of 5 × 10 mm were machined, with the cylinder axis in the
rolling direction. A deformational dilatometer apparatus, TA Instruments 805A/D (TA
Instruments, New Castle, PA, USA), was used for the determination of the true stress
vs. true strain curves, shown in Figure 1. The compression tests were performed with a
constant strain rate to obtain the material behavior at a specified strain rate. Outside of
compressive tests, tensile and torsion tests were used [2]. The experiments were performed
at different temperatures (1000, 1050, 1100, 1150, and 1200 ◦C) and strain rates (0.01, 0.1,
1, and 10 s−1), with the original results being presented in earlier published work [15].
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Standard, non-lubricated 0.1 mm thick Mo plates were placed on the sample contact
surfaces. The experimentally obtained true stress vs. true strain curves were not friction
corrected. Numerical optimizations were performed in Octave [22], while some other
computations used MATLAB [23].

Table 1. Chemical composition of 51CrV4 steel in wt.%.

C Si Mn Cr V

0.5 0.30 0.95 1.00 0.15

2.2. Transfer Function and Differential Equation

A transfer function (TF) of the third order is defined as a quotient of the Laplace
transform [24] of the output signal and the input signal, where the Laplace transform
of both output and input signals is a polynomial form of the power of s, as defined in
Equation (2):

L(y(t))
L(x(t))

=
Y(s)
X(s)

= G(s) =
a3s3 + a2s2 + a1s + a0

b3s3 + b2s2 + b1s + b0
(2)

where s is the Laplace parameter, a3 . . . a0 are coefficients of the numerator polynomial,
b3 . . . b0 are coefficients of the denominator polynomial, and TF (s) is defined in the
Laplace domain. The independent variable in the Laplace transform is usually time. For a
visualization, Equation (2) is transformed in the time domain by recalling the relation

d f
dt

(t) L,L−1
⇔ sF(s)− f (0)

The relation for the n-th order time derivatives and supposing zero initial conditions
f (0) = 0 yields

b3
...
y + b3

..
y + b3

.
y + bo = b3

...
x + b3

..
x + b3

.
x + ao (3)

where
.
x is the first-time derivative and

..
x is the second-time derivative of x(t), etc. Equation (3)

is a linear, ordinary differential equation of the third order. The second-order G(s) (a3 = 0
and b3 = 0) similarly leads to a second-order ordinary differential equation. TFs in the
Laplace domain of form (2) are, therefore, in the time domain, equivalent to the linear
ordinary differential Equation (3).

2.3. Replacing Time with Strain in the Laplace Transform

The transformation of the time-based G(s) into the strain-based G(s) can be performed
under a constant strain rate assumption, under which the relation between the strain and
the stress is ε =

.
εt.

The following pair between the time domain and the Laplace domain function
holds [24]:

f (ct) L,L−1
⇔ 1

c
F
( s

c

)
(4)

where c is a constant. Using the strain rate as c =
.
ε and the relation ε =

.
εt leads to

f (ε) L,L−1
⇔ 1

.
ε

F
(

s
.
ε

)
(5)

Strain-based or time-based defined TFs are required, depending on the requirements.
The latter form of TF (strain-based) in the Laplace domain enables a calculation of the
average stress per unit width during hot rolling.

2.4. Identification of G(s) Parameters by Optimization

Equation (2) can be used to identify the parameters of G(s). The usually measured data
of the uniaxial compressive or tensile stress vs. strain relation provide both the measured
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stress and strain in the time domain. Let us provide some details about the identification
of G(s) using Equation (2). Identification is based on time-domain measurements of the
stress σ(t) and strain ε(t). According to Equation (2), we need to transform the time-based
measurements of stress σ(t) and strain ε(t) into Laplace-domain measurements of the stress
σ(s) and strain ε(s). This is, however, not analytically possible. A more feasible path is
to form an optimization problem, where six parameters {a3, a2, a1, a0, b3, b2, b1, b0} are
determined so that the difference between the measured stress σm(t) and the calculated
stress σc(t) along the whole σ(t) curve is minimized. The calculated σc(t) stress can be
defined as σc(t) = L−1{G(s)L(εm(t)) .

At this point, the established numerical methods for the calculation of the Laplace
and the inverse-Laplace transform can be used for a single-function calculation of the σc(t)
curve according to selected set of parameters {a3, a2, a1, a0, b3, b2, b1, b0}. The procedure
should be performed for each call during the optimization with a varying set of parameters
{a3, a2, a1, a0, b3, b2, b1, b0}. The optimization procedure is more problematic. In this case, the
‘lsqnonlin’ optimization function in Octave is used. Several initialization options offered
by ‘lsqnonlin’ are applied, while neither the upper nor the lower bounds are used. In
most cases, no stable convergence towards the measured stress curve can be observed,
thus requiring many trials with various settings and initial optimization points. When the
TF parameters are determined for one temperature vs. strain rate condition (T,

.
ε), the TF

parameters of (T,
.
ε) might be a very good initial value of the TF parameters for neighboring

pairs (T1,
.
ε1), although unfortunately, it may not necessarily be so.

When σm(t)-σc(t) is sufficiently low along the whole curve, the optimization converges
towards an approximate solution of the kernel G(s) in the Laplace domain.

Excitation with a unit step function or ramp function, as in this case of a linearly in-
creasing deformation ε, is among the less desired [20,21,25], while among the most desirable
excitations are waveforms covering a wider frequency spectrum, e.g., a pseudo-random
binary signal. Bearing in mind the limitation of the monotonic deformation process, as used
in this case, considering the strain as the input and the strain-rate sensitivity/dependency
of the system, very prohibitive options remain regarding the system-excitation signal type.
These are only monotonically increasing deformations with variable inclinations combined
with intermediate pauses in the deformations being possible.

3. Results

Once the G(s) parameters are identified as described above, the stress curve σc(t)
can be calculated and compared to the experimentally obtained σm(t) stress curve. This
comparison for a set of different temperatures and strain rates (T,

.
ε) is shown in Figure 1.

Note the tightly matching measured and calculated strains. The obtained TFs–G(s) for each
temperature and strain rate are used for the calculations shown below.

3.1. Calculation of Average Stress σFM during Hot Rolling and Work Done per Unit Deformation

The work done per unit of deformation is a calculation of integral [26]:

w(ε) =
∫ εmax

0
σ(ε)dε (6)

Equation (6) in the Laplace domain reads as w(s) = Gε(s)1/s and its solution is
obtained by performing an inverse Laplace of w(ε) = L−1(Gε∗1/s). The values of w(ε) and
its Laplace domain equivalent W(s) are shown in Figure 2B, with the original flow-stress
curve and its TF Gε(s) in the Laplace domain shown in Figure 2A.

Similarly, the average flow stress σFM is defined as

σFM(ε) =
1

εmax

∫ εmax

0
σ(ε)dε (7)
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where εmax = ln
(
hentry/hexit

)
is the maximum true strain defined by the entry and exit

rolling piece height during a hot-rolling pass. However, the average flow stress cannot be
easily defined in the Laplace domain, since TF Gε(s) is obtained by performing a Laplace
transform along the strain axis, with the equation for σFM (7) following a time-domain

Laplace transform pair: 1/t ∗ f (t) L,L−1
↔

∫ ∞
s F(u)du. To obtain a Laplace-domain equivalent

of σFM(ε), we should calculate the integral of the expression Gε(s) in the Laplace domain. A
way around this is to use values of w(ε) (6) in the strain domain and divide the temporary
values of w(ε) via the temporary deformation (ε). In this way, the calculated values of
σFM(ε) for the values of 0 < εmax < 0.7 are shown in Figure 2C.
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Figure 2. True stress vs. true strain curve Gε(ε) (A) for 1000 ◦C and a strain rate 0.01 s−1, work done
per unit deformation (B) and calculated average flow stress σFM (C).

3.2. Calculation of Flow Stress Derivative

The expression for the flow-stress derivative dσ/dε in the Laplace domain using the
same order of numerator and denominator in the TF leads to a non-causal system, although
it can be simply expressed in the Laplace s-domain by TF multiplication with s and is useless
for a real-time application. The flow-stress derivative in the Laplace domain can, however,
be evaluated in real time (causal) for TFs, where the order of the numerator polynomial is at
least one less than the order of the denominator polynomial. Fortunately, the stress-strain
relation can be expressed with similar accuracy using TF with a 4th-order denominator
and a 3rd-order numerator (thereafter assigned as G’(s)), as shown in Figure 3. The G′(s)
presented in Figure 3 are identified using experimental data for 1000 ◦C and a strain
rate = 0.01 s−1 and represent G′(s) (σ(ε)), the derivative of G′(s) (dσ/dε), and the curve of
mean flow stress as a function of strain σFM. Based on distinct G′(s), we can obtain an exact
and causal expression of (1) the derivative of the flow stress, (2) the average flow stress
σFM, and (3) the work done per unit deformation based on a single G′(s) expression and as
continuous functions along the whole deformation range. The same procedure can be used
for the determination of these quantities at the remaining strain rates and temperatures.
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strain dσ/dε(ε) and average flow stress σFM(ε). All three quantities are determined along whole
deformation range as continuous functions of strain ε based on G′(s).

4. Discussion

Maybe the most important property of the TFs application for a description of the true
stress vs. true strain relation is that the notation opens the path for exact calculations of (a)
the strain-dependent flow stress, (b) the average flow stress, (c) the flow-stress derivative
with respect to angle ∅, and the work done per unit deformation.

Some additional notification regarding the expression for the flow-stress derivative
dσ/dε using TFs. The inversion of G(s) is possible only if the order of the numerator and
the denominator in G(s) is the same. The expression of the flow-stress derivative leading
to a causal expression requires the order of the numerator to be at least one less than the
denominator in G(s). In other words, for invertible G(s), the flow-stress derivative cannot
be expressed as a causal system. While for G′(s), for which the flow-stress derivative can
be expressed, inversion is not possible (as it leads to a non-causal system). The same G(s)
is either not invertible or leads to a non-causal expression of the flow-stress derivative.
Two distinctive G(s) and G′(s), where the first is reversible and the second leads to a causal
flow-stress derivative, seem to coexist for the same stress-strain relation. Currently, it is
unclear whether some transformation or algebraic operation exists to convert G(s) to G′(s).

The TF formulation of the true stress vs. true strain relation may appear to some
readers as a complicated formulation and/or computationally demanding formulation.
Fortunately, the TF formulation of dynamical systems is in daily use in industrial implemen-
tations of programmable logical controllers (PLCs) and other control devices [15], where
PLC scan times are typically below 100 ms. The computation time for the calculation of the
TF response on PCs and other more computationally powerful platforms is accordingly
shorter. So, applications of the stress-strain description using TFs could, due to computa-
tional bounds, be used in various time-non-critical applications, while the use of TFs-based
stress-strain relations in time-critical high-speed loops of automatic gauge control might be
limited or inappropriate [8]. The use of TFs for various offline calculations for a description
of the stress-strain relation for rolling pass schedule optimization tasks [27] with under-
lying roll force and torque calculations is a minor computational burden compared to all
remaining calculations needed for a determination of roll force and torque [3,5,6].
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Additional remarks regarding the locality of TF models: nonlinear system identifi-
cation by local linear models is a viable and most frequently used method for nonlinear
system description in the vicinity of the working conditions [20]. An individual compres-
sive deformation test performed under a constant strain rate and temperature, as used in
this article, is deformed to deformation, e.g., εmax = 0.7. An equivalent test under constant
stress (creep) resulting in only εmax = 0.1 leads to entirely different TFs. Thus, the system is
inherently nonlinear. For accurate model predictions, the proposed TF model should be
used around working conditions.

5. Conclusions

An accurate description of hot-compressive true stress vs. true strain curves us-
ing TFs as a function of strain enables an accurate description of a metal’s response to
deformation/strain, having a strain-hardening, softening, or mixed-mode response to
deformation/strain. Besides this, three additional quantities commonly used in the cal-
culation of the roll-separation force and torque can be exactly calculated as a function of
deformation/strain: (1) the work done per unit deformation, (2) the average flow stress,
and (3) the flow-stress derivative based on distinct G′(s).

Supplementary Materials: The following supporting information can be downloaded at: https:
//data.mendeley.com/datasets/xm85449wg5/1. Experimental true stress vs. true strain measured
data for all temperatures and strain rates are provided on Mendeley data. Optimization scripts for
the identification of G(s) and G′(s), including simulation and figure generation of the obtained TFs.
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