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ABSTRACT: On supercooling a liquid, the viscosity rises rapidly
until at the glass transition it vitrifies into an amorphous solid
accompanied by a steep drop in the heat capacity. Therefore, a
pure homogeneous liquid is not expected to display more than one
glass transition. Here we show that a family of single-component
homogeneous molecular liquids, titanium tetraalkoxides, exhibit
two calorimetric glass transitions of comparable magnitude, one of
which is the conventional glass transition associated with dynamic
arrest of the bulk liquid properties, while the other is associated
with the freezing out of intramolecular degrees of freedom. Such
intramolecular vitrification is likely to be found in molecules in
which low-frequency terahertz intramolecular motion is coupled to
the surrounding liquid. These results imply that intramolecular
barrier-crossing processes, typically associated with chemical reactivity, do not necessarily follow the Arrhenius law but may freeze
out at a finite temperature.

■ INTRODUCTION
A glass transition is the kinetic arrest or freezing out of a
diffusive degree of freedom. Translational and rotational
molecular diffusion rates are inversely proportional to the
macroscopic shear viscosity constituting the primary or α
relaxation, with small deviations caused by the inhomogeneous
nature of the glassy state. The viscosity (η) becomes extremely
high (typically defined as η ∼ 1012 Pa·s when the primary
relaxation time is about 100 s) at a temperature very close to
the glass transition temperature (Tg), defined as the temper-
ature at which the heat capacity shows a steep drop in value. At
the glass transition, rotational and translational diffusion rates
may decouple, with the former remaining inversely propor-
tional to the viscosity and the latter decreasing to a lesser
extent.1 As both types of molecular diffusion and viscosity are
intimately tied up and only decouple at near glasslike
viscosities, one expects to observe only one glass transition.

Second glass transitions have been seen in binary glass-
forming systems such as methyltetrahydrofuran with tristyr-
ene,2 tripropyl phosphate with polystyrene,3 and aqueous citric
acid,4 and even a triple glass transition in the fluoroalumino-
silicate Fuji G338 ionomer glass system.5 However, in these
mixtures, the multiple glass transitions are associated with
inhomogeneities and the vitrification of chemically distinct
components of the mixture. Similarly, in ionomers consisting
of a neutral chain backbone and charged groups, ionic
clustering results in inhomogeneities and a broadened and

even a double glass transition.6 A similar example is the
apparent double glass transition observed in some polymers
caused by the emergence of partial crystallinity (for example, in
polyethylene).7 Finally, a double glass transition associated
with a liquid−liquid transition has been observed in yttrium−
aluminum oxide glasses.8,9

Here we show that homogeneous (pure) titanium alkoxide
liquids exhibit two calorimetric glass transitions of comparable
magnitude: that is, a comparable change in heat capacity. The
low-temperature calorimetric transition is a glass transition in
the classic sense associated with the freezing out of whole-
molecule translational motion (classic primary or α relaxation).
We will show that the high-temperature calorimetric glass
transition is caused by the freezing out of diffusive intra-
molecular motions. This effect can be applied to any molecule
with intramolecular motions coupled to the surrounding liquid.

■ RESULTS
The Alkoxides. A number of alkoxides based on silicon,

niobium, aluminum, and titanium were studied here (see
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Figure 1). Silicon tetraalkoxides are monomeric in both liquid
and crystalline phases. Short chain silicon alkoxides can

crystallize, while longer chain ones (e.g., silicon tetrabutoxide)
only vitrify into a glass and were recently studied to understand
the emergence of the boson peak in molecular glasses.10

Pentaalkoxides based on niobium and tantalum are typically
six-coordinated, dimeric in both liquid and crystalline phases,
and bioctahedral.

Titanium-based tetraalkoxides tend to form oligomeric
clusters with (imperfect; see below) octahedral and trigonal
bipyramidal symmetry. The titanium alkoxides are tetrameric
when a crystal can form (methoxide and ethoxide),11,12

monomeric when there is significant steric hindrance (e.g.,
isopropoxide), and trimeric in the typical liquid.13 Titanium
alkoxides with propoxide or longer chains do not crystallize at
all and are therefore “perfect” glass formers in that sense. All of
the alkoxides studied here are liquid at room temperature and
do not crystallize during the experiments.

Aluminum isopropoxide is distilled as a trimer but converts
to a tetramer and subsequently crystallizes over a period of
days to months depending on the storage temperature. It
converts back to the trimer upon heating above the crystal
melting temperature.14 The structure of the trimer is that of a
central five-coordinated Al atom with two tetrahedrally
coordinated Al atoms bound on either side via two bridging
alkoxides each.15

Two Calorimetric Glass Transitions. Monomeric silicon
tetrabutoxide has a (single) calorimetric glass transition at Tg =
120 K,10 and other silicon alkoxides also behave as expected. In
contrast, trimeric titanium alkoxides show two calorimetric
glass transitions (Figure 2) clearly identifiable by step changes
in the isobaric heat capacity. The low-temperature glass
transition is in all cases at Tg ≈ 175 K (−100 °C), varying
slightly (±15 K) with the alkoxide chain length. The high-
temperature glass transition is observed at Tg,intra ≈ 230 K
(−40 °C), again varying slightly (±5 K) with the alkoxide
chain length (see Tables S1 and S2). The high-temperature
glass transition (which could be studied using controlled
cooling and heating at 10 K/min) shows the characteristic
smooth transition on cooling. Both transitions show an
overshoot on heating, characteristic of a fragile glass
former.16,17 All the trimeric titanium alkoxides show a bump
in the heat capacity ∼15 K above Tg,intra, which in previous
work has been associated with a liquid−liquid transition.18,19

Trimeric aluminum isopropoxide also exhibits a glass transition
at Tg ≈ 206 K (−67 °C) and a weak high-temperature glass
transition at Tg,intra ≈ 333 K (60 °C) (see Figure S1).

To determine if the multiple calorimetric glass transitions
are caused by the non-monomeric nature of the titanium and
aluminum alkoxides, niobium ethoxide and butoxide were
investigated. While the former tends to crystallize, the latter
has a normal (single) glass transition. Similarly, monomeric
titanium 2-ethylhexanoate also has a single glass transition.
Thus, unusual double glass transitions are observed only in
trimeric alkoxides.

The changes in heat capacity at each glass transition are
surprisingly large (ΔCp‑glass and ΔCp‑intra, see Tables S1 and
S2), ranging from 100 to 900 J K−1 mol−1 at each step. The
expected value for ΔCp in a simple model of a nonspherical
incompressible particle is 6R ≈ 50 J K−1 mol−1,20 which is
indeed observed for many small-molecule glass-forming liquids
(for example, 1-propanol ΔCp ≈ 50 J K−1 mol−1,
methylpentane 70,21 1-butanol 48,22 toluene 60, and ethyl-
benzene 8023). The comparatively large values of ΔCp are

Figure 1. Cartoon structures of four transition-metal alkoxides. Only
the oxygen atoms of the alkoxide groups are shown here. Silicon
alkoxides have the formula Si(OR)4; silicon prefers tetrahedral
coordination and is therefore monomeric in the liquid and crystal.
Niobium alkoxides have the formula Nb(OR)5; niobium prefers
octahedral coordination and is therefore dimeric in the liquid and
crystal. Titanium alkoxides have the formula Ti(OR)4, while titanium
prefers octahedral coordination. Due to steric hindrance, these
typically form trimers in the liquid. If the alkoxide is short (methoxide
and ethoxide), it can crystallize in the tetrameric form. Aluminum
alkoxides have the formula Al(OR)3; aluminum prefers octahedral
coordination, resulting in trimers in the liquid and tetramers in the
crystal.

Figure 2. Calorimetry of titanium-based alkoxides shows two calorimetric glass transitions. Heat capacity measurements of titanium ethoxide,
propoxide, butoxide, hexoxide, 2-ethylhexyloxide, and 2-ethylhexanoate as well as niobium butoxide. (a) Data obtained using quench cooling with
liquid nitrogen to ∼120 K and heating at 20 K/min. See also Table S1. Curves have been shifted vertically for improved visibility. (b) Data
obtained using controlled cooling to ∼190 K and heating at 10 K/min. See also Table S2. (c) The magnitude of the change in heat capacity at the
second glass transition, ΔCp‑intra, as a function of the volume fraction of titanium butoxide on mixing with silicon butoxide.
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observed here only for the trimeric titanium alkoxides. For
example, monomeric silicon tetrabutoxide has ΔCp = 206 J/(K
mol) at its (single) glass transition,10 similar to monomeric
titanium 2-ethylhexanoate (142 J/(K mol)) and dimeric
niobium butoxide (261 J/K/mol). A heat-capacity step at
the glass transition much larger than 6R implies the freezing
out of additional intramolecular diffusive motions or
alternatively can be related to the thermal expansion coefficient
and bulk modulus.24 One may speculate that low-frequency
(overdamped) vibrations such as alkoxide librations or twisting
of the Ti3O12 core contributes to the ΔCp.

The effect of mixing with monomeric alkoxides, such as
silicon butoxide, was investigated (Figure 2(c)). These
monomeric alkoxides are chemically stable due to favorable
coordination of the silicon atom. In these mixtures, the glass
transition temperature at Tg,intra remains largely unaltered;
however, the change in heat capacity, ΔCp‑intra, is linearly
proportional to the amount of titanium alkoxide present. As
these liquids mix well (and therefore do not phase separate),
this demonstrates that the second calorimetric glass transition
is an intramolecular effect.
Eliminating Partial Crystallization. Considering that in

titanium alkoxides the coordination is different between the
liquid and the crystal, it is imperative to determine that the
glass transitions are not associated with simple coordination
changes or partial crystallization events.

Stretch and bend modes associated with the Ti−O−R motif
are observed in the Raman spectrum between 500 and 1500
cm−1. In crystalline titanium methoxide, the titanium atom is
octahedrally coordinated, resulting in a very simple spectrum
in the fingerprint region (see Figure S2). This contrasts with
the much more complex spectra of titanium butoxide and 2-
ethylhexyloxide. Temperature-dependent Raman spectra of the
latter two taken throughout the liquid and glassy range show
no major spectral changes on cooling, demonstrating the
absence of significant titanium coordination changes (Figures
S3 and S4).

Stretch modes associated with CH bonds are observed
around 2900 cm−1. Subtle changes in the position and
amplitudes of these peaks are associated with a transformation
from a mixture of trans and gauche orientations at high
temperature to predominantly trans alkoxide at low temper-

ature.25 This transformation is gradual and does not show steps
near the glass transitions.
Low-Frequency Modes. The temperature-dependent low-

frequency Raman spectra of titanium butoxide and 2-
ethylhexyloxide, acquired using femtosecond optical Kerr-
effect spectroscopy (see Figure 3(a) and Figure S5(a)),10,19

also do not show any phonon bands associated with
crystallization. Instead, they show a broad band at 1 to 2
THz and a cluster of narrow vibrational bands at 6−11 THz.
The low-frequency band is strongly temperature dependent,
showing significant broadening at higher temperatures
extending all the way to the lowest accessible frequency of
10 GHz. In the ∼2 THz region, one would expect bands due to
the alkoxide intramolecular librations, which are not expected
to have a major temperature dependence. The strong
temperature dependence implies the presence of a diffusive
mode. To model this, the spectra were fitted with two
Brownian-oscillator functions�one for the alkoxide librations
and one for the vibrations�while the diffusive mode was
modeled with a Cole−Cole function (for fit parameters see
Tables S3 to S5).10 The inset of Figure 3(a) shows the
amplitude of the diffusive mode and the frequency of the
alkoxide libration, both of which show a large jump at 230 K.

These experiments were repeated on dimeric niobium
ethoxide and butoxide (see Figure 3(b) and Figure S5(b)).
In this case, there is no jump in the value of any of the
parameters but just a gradual narrowing and blue shift on
cooling.
Rheology. The reduction in the heat capacity at the

(single) calorimetric glass transition is always associated with a
dramatic slowdown of the primary relaxation and hence a
dramatic increase in the viscosity.26 Given that the titanium
alkoxides have two glass transitions, it is of the utmost
importance to relate these changes to the rheological behavior.

The shear viscosities of titanium propoxide, butoxide,
hexoxide, and 2-ethylhexyloxide as well as niobium butoxide
were measured from 313 K (+40 °C) down to a few K above
their Tg (see Figure 4 and Figure S6). The data were fitted
with a Vogel−Fulcher−Tammann (VFT) expression, η(T) =
η0 exp(D/(T − T0)), where T0 is the temperature of apparent
divergence of the viscosity.26 However, none of the viscosities
for trimeric alkoxides can be fully modeled by a single VFT
function, as all show a clear switch in behavior around 230 K.

Figure 3. Optical Kerr-effect (OKE) spectra of supercooled and vitrified alkoxide liquids. (a) Data on titanium 2-ethylhexyloxide from 150 to 300
K (solid lines) and fit to a Cole−Cole function representing diffusive modes, a Brownian oscillator (∼1.3 THz) representing alkoxide librations,
and a single Brownian oscillator (∼7−8 THz) representing multiple intramolecular vibrational modes. The inset shows the temperature-dependent
librational frequency and amplitude of the diffusive mode. (b) Data on niobium ethoxide from 190 to 310 K with similar fits and parameter values
in the inset.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.3c07110
J. Am. Chem. Soc. 2023, 145, 26061−26067

26063

https://pubs.acs.org/doi/suppl/10.1021/jacs.3c07110/suppl_file/ja3c07110_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c07110/suppl_file/ja3c07110_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c07110/suppl_file/ja3c07110_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c07110/suppl_file/ja3c07110_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c07110/suppl_file/ja3c07110_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c07110/suppl_file/ja3c07110_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.3c07110/suppl_file/ja3c07110_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.3c07110?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c07110?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c07110?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c07110?fig=fig3&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.3c07110?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


High-quality fits could be obtained by fitting the low-
temperature range (Tg + 10 to 210 K) and high-temperature
range (240 to 300 K) separately (see Table S6 for fit
parameters). In all cases, D > T0, consistent with these liquids
being moderately fragile glass formers.27 The T0 parameters are
in all cases ∼10−60 K below the respective calorimetric Tg, i.e.,
for both the low (∼175 K) and the high (∼230 K) glass
transitions, as expected for glass formers with moderate
fragility. In contrast to the trimeric alkoxides, the measured
shear viscosity of dimeric niobium butoxide and monomeric
titanium 2-ethylhexanoate and silicon butoxide10 could be fit
well with a single VFT expression.

Temperature-dependent storage and loss moduli were
measured using oscillatory rheology for titanium butoxide
and titanium 2-ethylhexyloxide (Figure S7). The dynamic
viscosity calculated from these is consistent with the shear
viscosity. The loss tangent shows a drop from values consistent
with a viscous liquid at high temperature to values consistent
with an ultraviscous liquid at low temperature with a wide
viscoelastic range.
Isomerization Dynamics and Self-Diffusion. Earlier

studies of transition-metal alkoxides have reported “rapid”
exchange of terminal and bridging alkoxides.28 To establish the
temperature-dependent rate of isomerization through ligand
exchange, 13C magic-angle-spinning (MAS) solid-state NMR
was carried out on titanium ethoxide (Figure S8) and titanium

2-ethylhexyloxide (Figure S9). As the former gave the cleanest
spectra, we concentrate on these.

The 13C MAS NMR spectrum of titanium ethoxide shows
lines at ∼70 ppm due to the CH2 group next to the oxygen
atom and lines at ∼20 ppm due to the terminal CH3 group. At
low temperature, both are split into multiple lines due to the
presence of multiple isomers. At higher temperature these
coalesce into single lines due to fast exchange on the NMR
time scale.

This coalescence was modeled with a Bloch−McConnell
exchange model with the temperature-dependent ligand
exchange described by an Eyring equation with as the only
free parameter the activation energy (see Supplementary Note
1). This describes the data well for an activation energy of 52.3
kJ/mol for titanium ethoxide and an activation energy of 46 ±
2 kJ/mol for titanium 2-ethylhexyloxide. However, the data can
also be modeled with a Vogel−Fulcher−Tammann rate
equation with a divergence temperature of 230 K and fragility
parameter D = 200. The signal-to-noise ratio of a 13C NMR
experiment is insufficient to distinguish between these two
scenarios.
Structure and Dynamics of the Trimers. Calorimetry,

optical Kerr-effect, and rheology data show that the double
glass transition, and its ancillary effects, only occurs in trimeric
titanium alkoxides but not in dimeric or monomeric
equivalents. This suggests an additional quality that is present
only in these trimers.

Quantum chemistry calculations were carried out to
establish which trimeric isomers were most likely to be present
in the liquid (Supplementary Note 2). Out of a large range of
trial structures, five stable isomers were found (Figure 5(a)).
For isomers I−III, the coordination number of each titanium
atom is six, while the other structures have one or two titanium
atoms with a coordination of five. None of the TiO6 and TiO5
coordination geometries are perfectly octahedral nor trigonal-
bipyramidal or square-pyramidal, respectively, but they are
notably distorted. Isomers I, IV, and V are essentially linear,
whereas II and III are notably bent. As can be seen in Table S7,
the energy differences between the isomers range from 0.8 to
32 kJ/mol, and the most stable isomer is either II or III
depending on the length of the alkoxide used.

The barriers for isomerization between the five isomers were
calculated (for a single titanium ethoxide trimer, see
Supplementary Note 3). Unsurprisingly, the barriers for
isomerization between linear isomers are low (33−68 kJ/
mol), and those for isomerization between bent isomers are
also low (22−25 kJ/mol). Barriers for isomerization from bent
to linear are higher (74−135 kJ/mol). The predicted time scale
for isomerization at room temperature is 1−10 ns between like
isomers, which excludes isomerization as a source of the
diffusive motion observed experimentally on a time scale of ca.
1 ps.

Vibrational normal-mode analysis was carried out for each of
the five isomers. The lowest frequency modes (≤70 cm−1) are
mostly librational in character, with the Ti3O12 core librating as
a unit. Relatively high frequency modes (≥170 cm−1) have
significant TiO5/TiO6 (depending on coordination) stretch
character with very little displacement of the alkoxide side
chains, explaining why the Raman peaks at 6−11 THz are
relatively sharp. Intermediate frequency modes (80−150 cm−1

or 2.5−5 THz) involve twisting and bending of the Ti3O12
core accompanied by very large displacement of alkoxide side
chains (see Figure 5(b)). Coupling to the surrounding liquid

Figure 4. Viscosity measurements of titanium butoxide and titanium
2-ethylhexyloxide. Shear viscosity up to a maximum of ca. 1010 Pa·s
(green circles) for titanium butoxide (top) and titanium 2-
ethylhexyloxide (bottom). The lines are the fits of two separate
Vogel−Fulcher−Tammann (VFT) expressions (blue and red lines,
parameters in Table S6). The right axis shows the loss tangent.
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will cause all of these modes to be damped, with low-frequency
large-amplitude modes more likely to be overdamped (rate of
damping greater than the mode frequency). Such overdamped
modes will then be diffusive in nature; that is, they undergo
stochastic motions rather than deterministic vibrations.
Discussion and Conclusions. Here we have shown that

titanium alkoxide liquids exhibit two calorimetric glass
transitions with the transition temperatures weakly dependent
on the length of the alkoxide chain (2 to 8 carbon atoms). In
mixtures of titanium butoxide (Tg,intra = 234 K) with
monomeric and unreactive silicon butoxide (Tg = 120 K),
the second high-temperature glass transition does not change
significantly as expected for a normal (intermolecular) glass
transition,29 while the change in heat capacity scales linearly
with the titanium butoxide fraction. This demonstrates the
intramolecular character of the second glass transition.

Temperature-dependent Raman spectroscopy confirms that
the transitions are not related to any changes in the
coordination of the titanium atoms, ruling out partial
crystallization. Rheology shows that on cooling from room
temperature, the shear viscosity increases in a VFT-like fashion
down to Tg,intra and then continues to rise in a different VFT-
like fashion down to Tg. The relatively low viscosity at Tg,intra
(as compared to that at Tg) for the trimeric liquids rules out a
decoupling of translational and rotational diffusion as the cause

for the second calorimetric glass transition. Although double
VFT behavior has been observed previously,30 here it is seen in
the trimeric alkoxide liquids but not in monomeric (e.g.,
silicon)10 or dimeric (niobium) alkoxides. The latter also does
not exhibit the double calorimetric glass transition. This
demonstrates that the unusual behavior is not due to just the
alkoxide side chains but intrinsic to the trimeric nature of the
titanium alkoxides. Given the similarities in mass and size of
the dimeric and trimeric molecules, it is highly unlikely that
rotational diffusion will freeze out only in the trimeric liquids.
It also shows that the low-temperature glass transition at Tg is
the “normal” glass transition at which macroscopic transport
ceases.

Unlike monomers and dimers, trimers can bend. Quantum
chemistry calculations show that the trimeric titanium
alkoxides have twisting and bending modes of the Ti3O12
core in the 2.5−5 THz range, which are associated with large
displacement of the alkoxide side chains. Exactly in this
frequency range, optical Kerr-effect experiments find a band
that is diffusive at high temperatures and that freezes out on
cooling below Tg,intra. We therefore propose that the large
displacement of the side chains causes a coupling to the
surrounding liquid whose viscosity controls the damping of the
diffusive Ti3O12-core twisting and bending modes.

The standard assumption for intramolecular processes is that
any barrier-crossing process follows the Arrhenius law k ∼
exp(−Eb/kBT). Here we have shown that this is not always the
case, as an intramolecular diffusive process associated with the
Ti3O12-core modes is shown to freeze out at a finite
temperature, implying that it follows a VFT-type law, k ∼
exp(−D/(T − Tv), where Tv is the intramolecular vitrification
temperature.

There are numerous reports of calorimetric anomalies that
have been associated with liquid−liquid transitions in
molecular liquids.31 We surmise that some of these, for
example, those involving large flexible molecules,18,32,33 may
find their origin in intramolecular vitrification. Additionally a
number of glass-forming metal−organic framework (MOF)
liquids containing bulky ligands, such as certain zeolithic
imidazolate frameworks (ZIFs)34,35 and coordination poly-
mers,36,37 have been shown to exhibit calorimetric anomalies at
temperatures above the glass transition that may well be
related to intramolecular vitrification. The general principle of
intramolecular vitrification is the coupling of low-frequency
intramolecular modes with large-amplitude motions of parts of
the molecule in contact with the surrounding liquid, which is
itself vitrifying. This suggests that the effect will be observed
much more widely and has a general bearing on material and
chemical properties.
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Figure 5. Structure and dynamics of the trimeric alkoxides. (a)
Molecular models of the titanium cores of trimeric titanium alkoxides.
The five clusters shown have similar energies with the lowest-energy
isomer dependent on the alkoxide chain length. Only the titanium
(gray) and oxygen atoms (red) are shown. (b) Titanium-core bending
modes are strongly coupled to the liquid. Normal-mode calculations
show that most vibrational modes between ca. 80 and 150 cm−1 (2.5−
5 THz) involve Ti3-core bending and twisting motions with
significant displacement of the terminal carbons of alkoxide side
chains causing strong coupling to the surrounding liquid. Shown here
is mode 31 (89 cm−1/3 THz) in isomer IV as a typical example of this
effect.
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