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Leave-one-problem-out (LOPO) performance prediction requires machine learning (ML) models to extrapolate
algorithms’ performance from a set of training problems to a previously unseen problem. LOPO is a very
challenging task even for state-of-the-art approaches. Models that work well in the easier leave-one-instance-
out scenario often fail to generalize well to the LOPO setting. To address the LOPO problem, recent work
suggested enriching standard random forest (RF) performance regression models with a weighted average of
algorithms’ performance on training problems that are considered similar to a test problem. More precisely,
in this RF+clust approach, the weights are chosen proportionally to the distances of the problems in some
feature space. Here in this work, we extend the RF+clust approach by adjusting the distance-based weights
with the importance of the features for performance regression. That is, instead of considering cosine distance
in the feature space, we consider a weighted distance measure, with weights depending on the relevance of
the feature for the regression model. Our empirical evaluation of the modified RF+clust approach on the CEC
2014 benchmark suite confirms its advantages over the naive distance measure. However, we also observe
room for improvement, in particular with respect to more expressive feature portfolios.

Additional Key Words and Phrases: Automated Performance Prediction, AutoML, Single-Objective Black-Box
Optimization, Zero-Shot Learning

1 INTRODUCTION
In black-box optimization, supervised machine learning (ML) models are commonly used for
automated algorithm selection [9]. The models use representations of the optimization problems in
terms of exploratory landscape analysis (ELA) features [15] to predict the algorithm performance
on the problems. Typically, regression models are used [10]. While promising results have been
achieved, the models may not make accurate predictions when they are trained on problems that
are not representative of the new problems, for which the best-performing algorithm shall be
selected.

In the majority of previous works, the predictive power of the ML models is evaluated in leave-
one-instance-out (LOIO) scenarios [6–8], where different instances from the same problem are
present in both, training and test data. The problem instances are obtained with transformations of
the same base problem class by using shifting, scaling, and/or rotation [22]. In such an evaluation
scenario there is a guarantee that the training data covers the feature space also of the unseen test
instances. As a result, the learned predictive model performs well on new problems.

The main challenge arises when the evaluation of the predictive model is performed in a leave-
one-problem-out (LOPO) manner. That is, all the instances of the same base problem are left out
for testing, and no instances of the problem are present during the training of the model. Recent
studies [11, 23] show that it is difficult to generalize a predictive model for automated algorithm
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performance prediction trained on problems from one benchmark suite to problems from another
benchmark suite.

The LOPO performance prediction can be stated as an ML task known as zero-shot learning [13,
20, 25]. Nikolikj et al. introduced RF+clust for LOPO algorithm performance prediction [18]. The
approach calibrates the prediction obtained by a Random Forest (RF) model [1] for a given test
problem with a weighted mean of the algorithm performance on problems from the training
data that are the most similar to the test problem, based on their feature representation. The
similarity between problems is measured using cosine similarity [21]. While RF+clust produces
promising results, it struggles when problems have very similar feature representations but there
is a large difference in algorithm performance on them. In addition, treating all features equally
when calculating the similarity between the problem representations can be a weak point of the
approach, resulting in similar problems from the training data which are not similar in reality to
the test problem.
Our contribution: In this study, we analyze how using a weighted similarity measure to find

similar problem instances affects the performance of RF+clust. We evaluate the performance of
two weighted RF+clust variants that incorporate feature importance in the similarity measure as
weights. We tested two methods for determining the feature importance: an unsupervised method,
based on clustering, and a supervised method based on feature permutation. The results obtained
on the CEC 2014 benchmark suite show that using a weighted cosine similarity measure with
feature importance as weights can improve the performance of the RF+clust approach. Most of the
problems for which new similar problems have been found with a weighted similarity measure and
the algorithm performance on them is similar yield better results. Previously for several problems
for which similar problems are not found, we can now identify them through the weighted similar
measure and improve the prediction. For some problems the approach leads to worse predictions,
indicating that the most important features are not expressive enough to distinguish between these
problems, with significantly different algorithm behavior. Comparing both weighted variants, it
follows that the one that uses the permutation feature importance provides close to the uniform
contribution of the features. This is the reason it has more similar prediction results to the standard
RF+clust approach.
Outline: The rest of the paper is organized as follows: Section 2 presents the overview of the

related work, Section 3 introduce the two variants of RF+clust approach, the experimental design
is explained in Section 4. Section 5 presents the results with discussion, and finally, the conclusions
are presented in Section 6.

2 RELATEDWORK
2.1 Common ML approaches for automated algorithm performance prediction
In the black-box optimization context, most of the studies performed in the direction of supervised
automated algorithm performance prediction use Exploratory Landscape Analysis (ELA) [15] for
calculation of the feature representation of problems. The ELA features are used as input data for
the ML models. The ELA features are calculated by using mathematical and statistical techniques on
a set of candidate solutions sampled from the problem decision space. Further, they are combined
with different supervised ML models (e.g., Random Forest, XGBoost, Neural Networks, etc.) to
predict the performance of an algorithm [8, 10, 24]. However, the evaluation of the predictive
models in almost all studies on this topic is evaluated in the LOIO scenario.
Few studies that have been published in 2022, analyze models’ generalization power in the

LOPO scenario. Škvorc et al. [23] showed that a predictive model has lower generalization in
such evaluation scenario. They have analyzed this on the real-parameter black-box optimization
benchmarking (BBOB) benchmark suite [5]. In addition, they have shown that a model trained
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on the BBOB benchmark suite provides poor predictive results when it is used to predict the
performance of a benchmark suite of artificially generated problems. Kostovska et al. have analyzed
a “per-run” algorithm selection scheme [11] by using trajectory-calculated ELA features (i.e., the
samples for calculating them are the samples observed by the algorithm during its run) as input
data to predict the performance. They have shown that a model learned on the BBOB benchmark
suite has poor predictive results for the Nevergad benchmark suite [19] and vice versa.

2.2 RF+clust for leave-one-problem-out (LOPO) performance prediction
RF+clust is a recently proposed approach for LOPO algorithm performance prediction. The idea
behind the approach is to improve the predictions of a standard supervised model when the test
problem landscape representation is not present in the training set. The approach consists of the
following three steps:

• Training a regression model on a set of training problems represented by their landscape
features. As the name suggests, the RF+clust approach uses random forest (RF) regression
models to obtain the predicted algorithm performance 𝑦𝑞 for the test problem.

• The second step consists of setting a predefined similarity threshold for problem similarity.
Based on the feature representation of the problems, the 𝑘-nearest problems from the training
set whose similarity 𝑠 with the test problem is greater or equal to the predefined threshold
are selected. The number 𝑘 can be different for different problems and it depends on the
predefined threshold. The approach uses cosine similarity as a similarity measure. For the
selected problems, the actual performance of the algorithm on them is retrieved, 𝑦1, 𝑦2, . . . , 𝑦𝑘 .

• The last step is calibrating the RF prediction 𝑦𝑞 with the performance of the algorithm on the
selected training problems from the previous step and obtaining the final prediction for the test
problem. This is performed by the following aggregation: 𝑦𝑞,final =

(
𝑦𝑖𝑞 + 𝐹 (𝑦1, 𝑦2, . . . , 𝑦𝑘 )

)
/2,

where 𝐹 (. . . ) = ∑𝑘
𝑖=1𝑤𝑖𝑦𝑖 . The weight indicates how much each of the selected problems

contributes to the calibration and it is calculated based on its similarity to the test problem,
𝑤𝑖 = 𝑠𝑖/

∑𝑘
𝑖=1 𝑠𝑖 . In cases where there are no similar problems for the predefined threshold

from the training set, the prediction is only based on the RF prediction 𝑦𝑞,final = 𝑦𝑞 .

3 SENSITIVITY ANALYSIS OF RF+CLUST FOR LOPO PERFORMANCE PREDICTION
In this paper, we perform a sensitivity analysis of RF+clust, where the main difference with the
original RF+clust, is to learn the importance of each feature and further incorporate it in the
procedure for finding the 𝑘-nearest problems from the training set, that are used to calibrate the
prediction obtained by the RF model on the test set. The main motivation behind this is, the more
important features to have more influence in the similarity score. Let us assume that we have 𝑝
features.

Here, we use and compare two different methods for learning feature importance, one unsuper-
vised (proposed by us) and one supervised (that is a well-established approach). Details about the
approaches are provided below:

• Unsupervised learning - the problems from the training set are clustered with the full feature
portfolio into𝑚 clusters. Further, the same clustering is performed 𝑝 times, each time remov-
ing one feature and clustering the problems using the 𝑝 − 1 features into the same number of
previous estimated𝑚 clusters. At the same time, we are counting on how many problems
the obtained clusters with the full portfolio differ from the new clusters. The cumulative
number of problems in which the clustering differs (𝑛diff) is used to calculate the weight of the
omitted feature. A larger number of problems indicates higher importance since omitting the
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feature places the problems all around the problem landscape space, while a smaller number
indicates that this feature is not important in distributing the problems. After we obtain the
number of problems that change their placement in the problem landscape space for each
feature, we calculate their weight by using𝑤𝑖 = 𝑛diff𝑖/

∑𝑝

𝑖=1 𝑛diff𝑖 .
• Permutation feature importance - The permutation feature importance, perm, is defined
to be the amount by which a model’s performance drops when single feature values are
randomly shuffled [2]. The main notion behind this procedure is that it breaks the relationship
between the feature and the target, thus the drop in the model performance is an indication
of how much the model depends on the feature. This technique benefits from being model
agnostic and usually, the final feature importance is calculated by shuffling the feature
multiple times with different permutations of the feature. The weights are then calculated as
𝑤𝑖 = perm𝑖/

∑𝑝

𝑖=1 perm𝑖 .

After obtaining the weights for each feature, the similarity of the test problem with the training
problems is calculated using a weighted cosine similarity

cosine(𝑢, 𝑣) =
∑𝑝

𝑖=1𝑤
2
𝑖 𝑢𝑖𝑣𝑖√︃∑𝑝

𝑖=1 (𝑤𝑖𝑢𝑖 )2
√︃∑𝑝

𝑖=1 (𝑤𝑖𝑣𝑖 )2
, (1)

where 𝑢 = (𝑢1, . . . , 𝑢𝑝 ) and 𝑣 = (𝑣1, . . . , 𝑣𝑝 ) are the feature representations of the problems with 𝑝

ELA features.
The 𝑘-nearest problems that are selected by applying the similarity threshold to the weighted

cosine similarity measure, are the ones used to calibrate the RF prediction.

4 EXPERIMENTAL DESIGN
For better comparison, we build our experiments on the same data as [18].
Problem portfolio. The proposed approach is evaluated on the 2014 CEC Special Sessions &

Competitions (CEC 2014) benchmark suite [14]. It consists of 30 benchmark problems. The problem
dimension 𝐷 is set to 10.

Algorithm portfolio. Three randomly selected Differential Evolution (DE) configurations are
included in the analysis. Their hyper-parameters are set as presented in [18]. The population size of
the algorithm is set equal to the problem dimension (10). Each configuration is run 30 times on each
CEC problem and the precision after a budget of 500𝐷 = 5000 function evaluations has been stored.
Finally, we report the median precision over all 30 runs for each pair of an algorithm configuration
and a CEC problem. In the ML task, we consider the logarithm (log10) of the median precision as
a target for prediction. Figure 1 presents 𝐷𝐸1 performance (log-scale) obtained per benchmark
problem on the CEC 2014 benchmark suite. The random selection of the DE configurations is
because we focus on presenting the utility of the methodology, which is a method that can be used
for any choice of algorithms and their hyperparameters.

Fig. 1. Best solution precision (log-scale) obtained by DE1, for a budget of 5000 function evaluations, per
problem instance in the CEC 2014 benchmark suite.
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Exploratory Landscape Analysis (ELA). To extract features that describe the properties
of each CEC problem, we utilize the ELA technique which is the most commonly used meta-
representation for continuous single-objective optimization problems [15]. 64 ELA features are
taken from a previous study [12], where they are calculated using Improved Latin Hypercube
Sampling (ILHS) [26] with a sample size of 800𝐷 (8000) and 30 runs. The large sample size can be
at a high cost, however, this was performed to reduce the randomness in the feature extraction
process.
For the final analysis, as a feature portfolio, we have selected only the uncorrelated features.

Pearson correlation coefficient [3] of 0.9 is used as a threshold to retrieve the highly correlated
feature pairs. Next, the correlated features are divided into groups of correlated features, where
all the features in the group have been highly correlated with each other. This problem can be
translated into a graph problem where all the features are nodes and pairs of features satisfying
correlation > 0.9 are edges. The task of finding all “correlated groups" translates into finding all
complete sub-graphs in the graph with more than 2 nodes. The implementation is done with the
Python package NetworkX v.2.8.4 [4]. Then the RF model with default parameters was evaluated
against every single feature from the group, the feature that resulted with the lowest mean absolute
error (MAE) was chosen to be kept and the others were discarded. We need to point out here that
the selected feature portfolio is different for different algorithms and even for different folds of the
same algorithm.

Table 1 shows the ML model performance aggregated over all folds, when all features available
have been used and when only the uncorrelated features (around 30 depending on the fold) have
been used. Comparing the train and test errors for the different feature portfolios, we can see
that the performance is only slightly degraded for the uncorrelated feature portfolio, for all the
algorithms. For further experiments, we have selected the uncorrelated feature set. Performing this
selection we have reduced the risk of overfitting the prediction models.

Table 1. Mean absolute error (MAE) obtained by the RF models when predicting the performance of the
three DE configurations, using all and the uncorrelated features. The values in the table represent the MAE
over 30 folds.

features algorithm MAE_train MAE_test
uncorrelated DE1 0.448384 1.267805

all DE1 0.453909 1.208038
uncorrelated DE2 0.384077 1.077129

all DE2 0.392174 1.054833
uncorrelated DE3 0.375334 1.023077

all DE3 0.376666 1.018123

Feature importance. To learn the weights of the features required to perform the sensitivity
analysis of the RF+clust approach, we use i) hierarchical clustering and ii) permutation feature
importance. Both methods have been selected to test different variants of RF+clust methodology.
In the case of the hierarchical clustering, the number of clusters together with the selected hyper-
parameters has been estimated using hierarchical clustering [16] which is often the first option for
very small data sets such as the 29 training problems used in this case. Sub-figures in Figure 2 show
clustering performance (y-axis) with standard deviation over folds, for different numbers of clusters
(x-axis), when using different parameters for the clustering algorithm. The implementation has
been done using the scipy v.1.9.3 Python package with𝑚𝑒𝑡𝑟𝑖𝑐 set to cosine similarity as a distance
measure,𝑚𝑒𝑡ℎ𝑜𝑑 set to “average" and the number of clusters𝑚 set to 4. For the permutation feature
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importance, the implementation has been done using the scikit-learn v.1.0.2 package in Python by
setting the number of permutations, 𝑛_𝑟𝑒𝑝𝑒𝑎𝑡𝑠 , to 15 and 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 to one for reproducibility
of the results.

Fig. 2. Estimating the number of clusters and tuning of clustering hyper-parameters for algorithm DE1.

RF+clust model training and evaluation. We follow the previously introduced RF+clust
variant, where the RF model (from the scikit-learn package in Python) is trained in an STR learning
scenario for each algorithm configuration separately. The evaluation is performed in the LOPO
scenario (i.e., 29 problems are used for training and one for testing), where the prediction errors are
the absolute distances of the prediction of the precision to the true precision value of the algorithm.
Since we have 30 problems, the learning process is repeated 30 times, each time one problem is out,
so all steps are repeated including feature importance learning and training a regression model
only on the training set.

5 RESULTS AND DISCUSSION
We apply the approach to three random DE configurations on the CEC 2014 benchmark suite. Due
to space limitations, we present here some selected results for algorithm DE1 in more detail, while
for the other results, similar findings were noticed and are available at [17].

5.1 Sensitivity analysis
Figure 3 presents the box plots of the distribution of the weights for each of the features obtained
for DE1 across all 30 folds. The weights are calculated with the unsupervised feature importance
approach. On the x-axis, we have all the selected features and for each one in brackets, we present
in how many folds it has been selected as an uncorrelated feature. The y-axis (i.e., value) represents
the calculated weight. The figure shows that half of the features selected in the uncorrelated feature
portfolio for each fold are not important since they have weights equal to zero in almost all of the
folds, which means that they are not used to find similar problems used for the calibration.
Figure 4 presents the comparison of prediction errors between RF and the initial RF+clust

approach for similarity thresholds of 0.5, 0.7, and 0.9 in a LOPO scenario. The first row shows the
errors obtained by a standard RF model trained in the LOPO scenario. Each cell of the heatmap
represents the mean absolute error obtained by the models on the test set. The numbers under
the model error indicate the number of similar problems above the corresponding threshold that
have been selected from the training set for the calibration of the prediction. The blank cells in
the heatmap are problems for which RF+clust provides the same result as the standard RF model
because for those problems we could not find similar problems from the training data to calibrate
the prediction. The column names in the heatmap presented below are the problems from the CEC
2014 suite (i.e., f_id).
Figures 5 and 6 demonstrate the results obtained with the weighted RF+clust approach which

uses the unsupervised feature importance or permutation feature importance respectively as
feature weights to find similar problems used for calibration. The weighted approach calculates
the weighted cosine similarity of the problem representations. We can notice in both figures that
the similarity between the problems can be influenced by the weighting, as the number of similar
problems changes in many cases as compared to Figure 4.
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Fig. 3. Feature weights box-plot over all folds for algorithm DE1 obtained with the unsupervised feature
importance. The numbers in brackets indicate in how many folds the feature was selected in the feature
selection process.

Fig. 4. Error comparison between RF and RF+clust (with cosine similarity and similarity threshold of 0.5,
0.7, and 0.9) in predicting the performance of DE1 for each problem instance in the CEC 2014 suite.

5.2 In-depth analysis
The heatmap of the weighted RF+clust approach with weights learned by the unsupervised feature
importance (see Figure 5), shows lower errors for the following problems: 2, 5, 9, 10, 12, 19, and 24,
for all similarity thresholds compared to the initial RF+clust approach. To provide an explanation
of why this happens, the 19th problem is analyzed in more detail. With the initial RF+clust, there
are no similar problems found above similarity thresholds of 0.7 and 0.9 (see Figure 4). With the
weighted RF+clust, we can detect three similar problems from the training data above > 0.9. The
result is visible in more detail in Figures 7a and 7b, which show the relationship between the
pairwise similarity of the ELA features representation (x-axis) and the absolute pairwise difference
in the (ground truth) performance of the optimization algorithm (y-axis) of the 19th problem (as
indicated in the plot’s title) with the other problems. Figure 7a presents results of using the cosine
similarity between the ELA representations, while Figure 7b uses the weighted cosine similarity.
Comparing the two plots, the left one shows the initial RF+clust results where it is visible that
there are no similar problems with similarity above 0.9, and the right one shows the weighted
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Fig. 5. Error comparison between RF and RF+clust (with weighted cosine similarity with weights calcu-
lated by the unsupervised approach for feature importance and similarity threshold of 0.5, 0.7, and 0.9)
in predicting the performance of DE1 for each problem instance in the CEC 2014 suite

Fig. 6. Error comparison between RF and RF+clust (with weighted cosine similarity with weights calcu-
lated by the with weights calculated by the permutation feature importance and similarity threshold
of 0.5, 0.7, and 0.9) in predicting the performance of DE1 for each problem instance in the CEC 2014 suite.

RF+clust results from which it is visible that three problems have been found as similar with a
weighted cosine similarity of above 0.9. In addition, we can see that the difference in ground truth
performance of the algorithm on the 19th problem and the three selected similar problems is low.
The algorithm has similar behavior on these problems in reality (see also Figure 1), and using them
for the calibration helps to obtain lower predictive errors. The same conclusion can be drawn for
the 24th problem presented in Figures 7c and 7d with a similarity threshold of 0.7. This result
indicates that using the weighted approach can help us to identify and use problems that are more
effective in the calibration step.
There are also problems such as the 18th and 25th for which there are no similar problems

found using cosine similarity (see Figure 8a and 8c accordingly). In this case, the initial RF+clust
has the same prediction error as the standard RF model for all similarity thresholds (0.5, 0.7, 0.9).
By applying the weighted RF+clust with the unsupervised feature importance, the 18th and 25th
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(a) cosine similarity (b) weighted

(c) cosine similarity (d) weighted

Fig. 7. The relationship between the pairwise cosine and weighted cosine similarity by unsupervised feature
importance of the feature representations (x-axis) and the difference in DE1 performance (y-axis), for the
19th and 24th problem accordingly, with other problems in the CEC 2014 suite.

problems are brought closer to some similar problems from the training data in the feature space
as demonstrated in Figures 8b and 8d. This helps to reduce the model error for these problems as
visible in Figure 5.

For the 20th problem and similarity threshold 0.5 we seem to detect five similar problems (see
Figure 5) with weighted cosine similarity and improve the model performance prediction quite a
lot, compared to the case when weights are not used and only two problems are there (see Figure 4).
From the figures, it is visible that with the weighted approach, three problems (the 15th, 18th,
and 22nd) enriched the previous two (the 3rd and 17th) which helped the calibration process. The
algorithm has very similar behavior on three problems that are brought closer with the weighted
approach, as on the 20th problem. However, on the remaining two problems (3rd and 17th), we can
see that even with high similarity in the landscape space, the difference in algorithm performance
is larger in reality, so using their performance to calibrate the prediction yields a larger error. This
indicates that there are problems for which even the most important ELA features are not expressive
enough (i.e., very similar ELA landscape representation but different algorithm performance).
Figures 9a and 9b show another downside of using feature importance as weights for finding

similar problems. In cases when all the features have an equal contribution to the cosine simi-
larity, RF+clust provides better prediction than a standard RF model. Here, it is visible that two
problems (the 4th and the 13th) help the calibration for a similarity threshold over 0.7, for which
the performance of the algorithm is similar to the performance achieved on the 7th problem (see
Figure 4). In the case of the weighted variant of RF+clust, the prediction is worse even than a
standard RF prediction. This happens since the learned weights by the unsupervised approach
for feature importance brought a lot of similar problems (the 1st, 2nd, 8th, 30th) with similarity
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10 A. Nikolikj et al.

(a) cosine similarity (b) weighted

(c) cosine similarity (d) weighted

Fig. 8. The relationship between the pairwise cosine and weighted cosine similarity by unsupervised feature
importance of the feature representations (x-axis) and the difference in DE1 performance (y-axis), for the
18th and 25th problem accordingly, with other problems in the CEC 2014 suite.

over 0.7, however, the difference in the performance of the algorithm on those problems with
the performance achieved on the 7th problem is higher. This result again points out that similar
landscape representation may not always be a guarantee of similar performance, which opens a
new research direction of inventing new more robust problem representations that will catch the
relation between the feature landscape space and the performance space of the algorithm.
Figure 6 presents the results of the RF+clust variant which uses the permutation importance

as weights. We can see that using these weights also changes the number of similar problems
retrieved, however the results are similar with the initial RF+clust, with slight changes. Analyzing
the weights that were obtained by this approach it seems that they are close to uniform for most of
the features, with only a few features showing bigger importance as shown in Figure 10. However,
those features are selected as uncorrelated in the feature portfolio only for around half of the folds.
Table 2 provides the mean absolute prediction error across all 30 problems for a standard RF

model and all variants of the RF+clust model for different similarity threshold values (0.5, 0.7,
and 0.9) when they are used to predict the performance of three different DE configurations. The
RF+clust approach provides better errors (i.e., bold values in Table 2) than a standard RF model.
Even if there are small improvements on average, from Figures 4, 5, 6, it is obvious that for some
problems big improvements are obtained. For DE1, all variants of RF+clust provide a better result
than the standard RF model for all similarity thresholds. For DE2, all variants with a similarity of
0.9 provide better prediction results than a standard RF model with the best result achieved when
the weights are learned by permutation feature importance. In the case of DE3, the best result has
been achieved for the variant when all features have the same contribution. Here, it is obvious
that the result is similar to the result achieved by a standard RF model and all RF+clust variants
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(a) cosine similarity (b) weighted

(c) cosine similarity (d) weighted

Fig. 9. The relationship between the pairwise a) cosine and b) weighted cosine similarity by unsupervised
feature importance of the feature representations (x-axis) and the difference in DE1 performance (y-axis), for
the 7th and 20th problem accordingly, with other problems in the CEC 2014 suite.

Fig. 10. Feature weights box-plot over all folds for algorithm DE1 obtained with permutation feature impor-
tance. The numbers in brackets indicate in how many folds the feature was selected in the feature selection
process.

and thresholds. To investigate why this happens, Figure 11 presents the distribution of weights for
each feature in the case of DE3. From it, we can see that most of the features have weight zero, so
when similar problems are searched for we are deciding only based on a few features. From the
results, it follows using a 0.9 similarity threshold can provide better results for all DE configurations.
The red values reported in Table 2 are the models with the smallest MAE for predicting each DE
configuration.
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Table 2. MAE for the three DE configurations, where the bold values represent cases when the RF+clust is
better than the RF model and the values in red represent the best model.

s DE1 DE2 DE3

RF 1.267805 1.077129 1.023077

3*RF + clust 0.9 1.199533 1.042411 1.004657
0.7 1.245611 1.106662 1.063595
0.5 1.209003 1.128300 1.059814

3*RF + clust (unsup.) 0.9 1.223082 1.072002 1.025545
0.7 1.217473 1.120936 1.078338
0.5 1.221436 1.078583 1.078182

3*RF + clust (perm.) 0.9 1.194667 0.971472 1.023077
0.7 1.218578 1.099617 1.048660
0.5 1.180002 1.052838 1.106005

Fig. 11. Feature weights box-plot over all folds for algorithm DE3 obtained by the unsupervised feature
importance.

6 CONCLUSION
In this study, we performed a sensitivity analysis of RF+clust, a method for leave-one-problem-out
(LOPO) performance prediction for black-box optimization algorithms. The main idea behind the
RF+clust approach is to calibrate the prediction of a standard RF model with the performance
achieved by the algorithm on similar problems in the training data. In the original RF+clust approach,
the similarity between problems is measured by the cosine similarity of the problem landscape
features, with all features contributing equally to the similarity measure. For our sensitivity analysis,
we tested two new weighted RF+clust variants that use a weighted contribution of each feature to
the distance measure. The weights are calculated using a feature importance method. We evaluated
two feature-importance approaches: an unsupervised one, based on clustering, and a supervised
one, based on permutation. In the future, other feature importance measures can be included in the
analysis.
The results performed on the CEC 2014 benchmark suite indicate that RF+clust performance

can be further improved by using feature importance as weights. Better results are achieved for
problems for which more or new problems (compared to the original RF+clust) were found similar
based on the most important features for which also the algorithm behaves similarly. For problems
for which there were no similar problems, we could now successfully find problems with similar
feature representations. However, there are also problems for which the proposed approach led

, Vol. 1, No. 1, Article . Publication date: August 2023.



Sensitivity Analysis of RF+clust for Leave-one-problem-out Performance Prediction 13

to worse prediction results. Such results indicate that even the most important features were not
expressive enough to discriminate between these problems on which the algorithm the behavior of
the algorithm significantly differs.

Our results open several directions for future research. First, we are going to focus on selecting
different feature portfolios for different sets of problems that can lead to robust landscape repre-
sentation. Next, we are going to test problem representations that are learned by the algorithm
behavior and capture the relation between the problem and the performance space. Last, but not
least, we are going to test the approach using different ML models. That is, we plan to evaluate the
advantage of the RF+clust approach when combined with different regression models (as opposed
to the random forest models considered so far).
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