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Abstract 

Efficient traffic management is essential in modern urban areas. The development of intelligent traffic flow predic-
tion systems can help to reduce travel times and maximize road capacity utilization. However, accurately modeling 
complex spatiotemporal dependencies can be a difficult task, especially when real-time data collection is not pos-
sible. This study aims to tackle this challenge by proposing a solution that incorporates extensive feature engineer-
ing to combine historical traffic patterns with covariates such as weather data and public holidays. The proposed 
approach is assessed using a new real-world data set of traffic patterns collected in Ljubljana, Slovenia. The con-
structed models are evaluated for their accuracy and hyperparameter sensitivity, providing insights into their perfor-
mance. By providing practical solutions for real-world scenarios, the proposed approach offers an effective means 
to improve traffic flow prediction without relying on real-time data.
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1  Introduction
Traffic estimation and prediction systems tend to 
improve traffic conditions and reduce travel delays while 
facilitating better utilization of available capacity [1, 2]. 
Travel information affects users’ route choice behavior 
by directing travelers to less congested routes and reduc-
ing congestion [3]. Traffic congestion is one of the most 
demanding transport problems in large urban environ-
ments [4], and therefore traffic flow prediction plays an 
essential role in today’s transportation systems. Accurate 
predictions of traffic flow can assist with route planning, 
guide vehicle dispatching, and mitigate traffic congestion 
[5]. This problem is challenging due to the complicated 
and dynamic spatiotemporal dependencies between dif-
ferent regions in the road network. In general, traffic flow 
prediction is the task of making accurate predictions 

of flow of vehicles within a specific area at a particular 
future time interval based on historical traffic data. Suc-
cessful traffic management is crucial in most modern 
urban areas. Therefore, predicting traffic flow and traffic 
patterns can provide some insight to traffic managers and 
is important to allow for the smooth flow of traffic and 
minimize congestion. In addition, the use of up-to-date 
traffic information can lead to a more reliable system as it 
helps to reduce the volatility of travel costs compared to a 
decision-making approach without information [6].

Many cities collect traffic data by various means, such 
as sensors and cameras. However, the availability of this 
data in real-time is often limited due to technical and 
logistical challenges. This severely limits the capabilities 
of existing traffic flow modeling methods that rely on 
up-to-date real-time data for prediction modeling. Most 
existing modeling methods require access to the latest 
traffic conditions that can be ingested into the model in 
real-time to produce new, up-to-date predictions. When 
this is not possible, finding alternative solutions that can 
accurately predict traffic flow without relying on real-
time data is crucial for effective traffic management in 
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urban areas where infrastructure does not support auto-
mated data collection.

The main objective of this paper is to propose a solu-
tion to the challenge of accurately predicting traffic flow 
in cities where real-time data collection is not feasible. In 
such scenarios, traffic flow prediction models cannot rely 
on the so-called “lag features” that capture the relation-
ship between the current traffic flow and its past values. 
Therefore, the objective of this paper is to develop mod-
els that can accurately predict traffic flow without relying 
on the latest real-time data and with no lag features. To 
achieve this, we propose to mitigate some of the limita-
tions through extensive feature engineering that does not 
require real-time traffic data. By developing models that 
do not rely on real-time data and using feature engineer-
ing techniques, we aim to develop practical solutions that 
can be used in real-world scenarios to improve traffic 
flow prediction.

Our contribution We introduce a new real-world data 
set of traffic patterns collected between the years 2013 
and 2020 in Ljubljana, Slovenia. Using this data set, we 
construct models that, taking into account the data 
acquisition constraints, can combine historical traffic 
patterns with covariates such as weather data and public 
holidays to obtain accurate and robust forecasts of traf-
fic patterns. The obtained models are further analyzed 
for their accuracy and hyperparameter sensitivity. We 
provide insight into when the models perform well and in 
which scenarios they become less reliable.

The rest of the paper is organized as follows. In Sect. 2 
a related literature review is presented. In Sect.  3 we 
introduce a newly acquired traffic flow data set and its 
properties. In Sect.  4 we outline the problem, describe 
the experimental methodology for fair model compari-
son, and outline the machine-learning methods applied 
to the problem. In Sect. 5, we present the results of the 
data analysis and model comparison, accompanied by a 
related discussion. Limitations are exposed in Sect.  6, 
and concluding remarks are given in Sect. 7, followed by 
future directions of work.

2 � Related work
The problem of traffic modeling has been extensively 
studied in the literature, and a wide range of approaches 
have been proposed to address this complex issue. It is a 
critical component of intelligent transportation systems 
and has been the subject of extensive research efforts. 
The main goal of traffic modeling is to accurately analyze 
various traffic characteristics, such as traffic flow, density, 
and speed, and leverage these properties and their inter-
actions to predict future traffic trends. The ultimate goal 
is to improve the efficiency of the traffic network, support 

the planning and design of road facilities, and optimize 
traffic operations.

Our paper primarily studies traffic flow using histori-
cal data, taking into account the complex temporal and 
spatial dependencies involved in traffic forecasting [7, 8]. 
Temporal dependencies relate to periodic trends, such 
as rush hours or seasonal changes, while spatial depend-
encies describe how changes in traffic on one road may 
affect adjacent roads due to the topological structure of 
the road network. Successful modeling of traffic patterns 
requires the inclusion of both types of dependencies 
along with various covariates to improve the predictive 
power of algorithms. It has also been shown that multi-
target models that capture dependencies between differ-
ent targets and transfer information between them can 
also improve generalization [9, 10].

In the past, the need for accurate modeling and predic-
tion of traffic flows encouraged the development of many 
different machine-learning approaches. The field of sta-
tistics, which focuses on univariate time series, offers a 
wide range of models such as the Moving Average (MA), 
the Auto-Regressive (AR), and the Auto-Regressive Inte-
grated Moving Average (ARIMA) [11]. These models 
can perform extremely well when only a small amount 
of data is available. Many of these approaches were later 
extended to handle multivariate data and covariates, such 
as VARIMA [12], ARMAX, and ARIMAX [13], and were 
successfully applied for traffic modeling [14].

Given the ever-increasing amount of data, traditional 
statistical approaches are sometimes insufficient to 
effectively model complex time-dependent interactions 
[15, 16]. As a result, recent methodologies are increas-
ingly turning towards more complex machine learning 
(ML) models. However, drawing a clear line of demar-
cation between statistical models and ML-based models 
is often vague and poorly-defined [17]. In our study, we 
establish a categorization scheme where methods are 
classified as statistical if they involve explicitly specifying 
the data-generating process. On the other hand, meth-
ods are considered ML-based if they allow learning data 
relationships.

The first approaches used classical machine learning 
methods where temporal dependencies were added by 
including lag features and treating problems as tabular 
problems [18–20]. Further improvements in accuracy 
have been achieved by incorporating more complex 
neural network-based models, such as RNN [21], where 
connections between neurons can be organized in a 
cycle. Such models are better suited for handling tem-
poral dependencies and have been successfully used for 
modeling traffic [22, 23]. Later improvements in mod-
eling temporal data, such as the introduction of LSTM 
cells [24], were also quickly adopted for the field of traffic 
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forecasting [25]. Almost in parallel with the advances in 
temporal modeling with LSTMs, convolutional neural 
networks (CNNs) [26] also became increasingly popular. 
Although originally developed for image classification, 
they were adapted for time series modelling [27] and 
successfully used for traffic forecasting [28–30]. More 
recently, there has been a focus on developing architec-
tures that are more specialized for time series modeling. 
One of the popular approaches for univariate time series 
point forecasting is the N- BEATS [31] architecture, 
which is well suited for forecasting problems where large 
amounts of data are available. Similarly, DeepAR [32] is a 
popular forecasting neural network that uses LSTM cells 
to predict parameters of a probabilistic distribution and 
provides more information about the uncertainty of the 
model. It can handle multivariate time series with future 
and past covariates. Lately, transformer-based [33] neu-
ral networks such as Temporal Fusion Transformers for 
Interpretable Multi-horizon Time Series Forecasting [34], 
have also been used for predicting freeway traffic speed 
[35]. Although deep learning techniques are widely used 
for forecasting, one should not ignore other approaches 
that have also been successfully used for accurate traffic 
forecasting [36, 37].

The previously mentioned related works focus on real-
time data or continuous data acquisition, which limits 
their applicability to ideal scenarios. In the real world, 
where real-time data acquisition is not possible, alterna-
tive modeling techniques are needed. In this study, we 
attempt to develop techniques for such challenging sce-
narios where traditional modeling methods that rely on 
temporal components may not work. To our knowledge, 
no previous work has attempted to predict traffic flow 
without using any lag features.

With the ever-growing number of forecasting algo-
rithms, it is crucial that they can be fairly compared in 
terms of performance. To achieve this, several data sets 
are available, with M Forecasting Competitions [38–40] 
being the most popular. If we focus specifically on traf-
fic forecasting, two of the most popular data sets/bench-
marks for evaluating and comparing traffic models are 
METR-LA and PEMS-BAY [28], which use loop detec-
tors to collect traffic statistics. These benchmarks have 
been used extensively for model evaluation and bench-
marking [41, 42]. With respect to our newly introduced 
data set, our data set covers a longer time period com-
pared to the existing data sets.

3 � Municipality of Ljubljana traffic data set 
(MOL‑TR)

In this section, we describe the Municipality of Lju-
bljana traffic data set (MOL-TR) used in this study. The 
city of Ljubljana, Slovenia, is equipped with several 

traffic counting stations that are embedded in the road-
way and detect vehicles as they pass over them. They are 
distributed throughout the city and are mainly located 
on roads/lanes with a high volume of vehicles. Over the 
years, the number of stations has changed from 57 at the 
beginning of 2013 to 47 at the end of 2020, mainly due 
to the reconstruction and merging. Figure 1 provides an 
overview of the locations within the city ring where the 
counters are placed.

The traffic recorder stores vehicle counts at 15-minute 
intervals (96 measurements per day for each individual 
measuring station). Vehicles that pass over the measuring 
station are assigned to one of 8 vehicle types (passenger 
car, motorcycle, bus, light/medium/heavy truck, semi-
trailer truck, and tractor unit ). The full data set contains 
2,0410,686 vehicle count measurements collected at 59 
stations during the 2013–2020 acquisition period. For a 
small glimpse of the data set, see Table 1. Each measure-
ment instance contains an integer type variable count 
representing a count of vehicles of type vehicle_type 
that passed the measurement station with ID station_
ID in the 15-minute time interval that ended at the time 
described by the timestamp.

To better understand traffic patterns, Fig. 2 shows the 
daily traffic distribution for the measuring station “1010-
188” (note that other traffic measuring stations may have 
different patterns). The traffic volume usually follows a 
periodic pattern. Most noticeable are the daily changes, 
where there are two peaks during the morning and after-
noon rush hour. Another pattern observed is a weekly 
periodicity, with less traffic on weekends compared to 
weekdays.

A similar breakdown is obtained when comparing vehi-
cle types. Figure 3 breaks down the frequency of vehicles, 
with some types being more common than others. Regu-
lar passenger cars are the most frequent, about 460 times 
more than semi-trailer trucks. Vehicle types also have 
different distribution patterns, with passenger cars hav-
ing distinct peaks in the morning and afternoon, while 
motorcycles typically only have a peak in the afternoon.

Missing data is a frequent occurrence in traffic mode-
ling. If the measuring station fails, shuts down, or fails to 
collect data, there can be large gaps (even a few weeks or 
more) in data acquisition. Due to the design of measuring 
stations where two lanes are collected simultaneously, the 
failure of one measuring station usually means missing 
data for two lanes. Figure 4 shows the periods for which 
data are not available. For most periods between 2013 
and 2020, the majority of stations are continuously oper-
ating and counting vehicles. The only exception is the 
year 2014, for which no data is available. There are a few 
stations that existed early on and were discontinued at 
some point, or stations that did not exist at the beginning 
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and became operational later. Taking measurements is 
also an error-prone process. Measurement stations may 
encounter problems such as reporting incorrect values 
due to a disturbance, or they may even stop reporting 
values if the disturbance is large enough or if a station is 
shut down for a period of time.

Relocations of measuring stations can cause some prob-
lems in predicting traffic. During the presented period, 
some of the measuring stations were temporarily or per-
manently relocated due to changes in road layouts and/or 
construction works. An example of this is transforming 
a specific lane that is only available for busses and pro-
hibited for general traffic. This type of event completely 
changes the number of vehicles passing a measuring sta-
tion and the distribution of traffic types.

Errors in the data acquisition process can cause 
problems in traffic modeling. Examples of such errors 
are values that cannot be stored due to an extremely 

Fig. 1  Location of inductive loop traffic counters in the municipality of Ljubljana (MOL)

Table 1  A glimpse of the Ljubljana traffic flow data set shown as 
a four-column table with time variable timestamp, categorical 
variable station_ID of cardinality 59, categorical variable 
vehicle_type of cardinality 8 and integer type variable 
count 

Timestamp Station_ID Vehicle_type Count

.

.

.

.

.

.

.

.

.

.

.

.

2019-08-19 16:00 1019-186 Passenger car 95

2019-08-19 16:00 1019-186 Motorcycle 12

2019-08-19 16:15 1019-186 Passenger car 72

2019-08-19 16:15 1019-186 Motorcycle 16

2019-08-19 16:30 1019-186 Passenger car 57

2019-08-19 16:30 1019-186 Motorcycle 10
.
.
.

.

.

.

.

.

.

.

.

.
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high traffic volume (overflowing values). Such meas-
urements are ignored and not considered in further 
modeling. Similarly, some measuring stations can 
automatically switch between standard and daylight 
saving time, while others cannot. This means that 
some measuring stations are effectively shifted in time 
by one hour. Unfortunately, it is not always clear which 
stations can automatically switch to daylight saving 
time.

Weather data is a factor that has to be considered 
when modeling traffic. Changes in weather can affect 
travel patterns, the types of vehicles used for trans-
portation, and potential accidents. For this reason, 
weather information was added to the traffic data. 
The weather data consists of the daily average of the 
following: temperature, wind speed, cloud coverage, 
humidity, air pressure, precipitation, snowfall, sun-
shine, dew, glaze ice, and icy ground. While this daily 
resolution of coverage data may be too sparse for suc-
cessful modeling of events such as sudden heavy rain 
that slows traffic, it can help capture impacts on a 
larger time scale. An example of such an event would 
be a multi-day snowstorm that can significantly alter 
traffic patterns.

Public holidays are another important factor affect-
ing traffic patterns. During holidays, there is usually a 
significant decrease in traffic volume as well as a shift 
in traffic peaks. Additional data on public holidays is 
used, which includes all holidays between 2013 and 
2020.

4 � Methods
In this section, we first give a detailed description of the 
modeling framework and error metrics used to evalu-
ate the prediction. Then we describe a method for mak-
ing predictions with details on feature engineering and 
machine learning models.

4.1 � Data acquisition process
In a problem where multiple predictions are required 
on related tasks, such as traffic flow prediction, selecting 
the right approach to accurately model traffic patterns is 
crucial. This section presents the modeling framework 
used for traffic forecasting. Figure 5 shows an overview of 
how data are collected and models are trained. Success-
fully collected measurements are stored in the measuring 
station. Since not all stations have an online connection 
to the traffic center, some stations have to be visited to 
manually transfer the data. This has a significant impact 
on how traffic modeling can be performed at this time, 
as the latest historical data patterns are not available. For 
example, when predicting traffic volumes, we cannot rely 
on traffic information from the most recent 15-minute 
interval.

Suppose there are three measuring stations where data 
acquisition occurs at time points C1, C2, and C3 for sta-
tions 1, 2, and 3, respectively. At that moment, we obtain 
all traffic data before the acquisition points. For some 
other stations, traffic data acquisition may occur at a dif-
ferent time point. This period of time when data is avail-
able and stored at a measuring station but has not yet been 

Fig. 2  Daily distribution in a number of vehicles for each 15-minute interval (green) for measuring station ID 1010-188. Additionally, colored lines 
show the mean traffic aggregated over the weekday, saturday, and sunday



Page 6 of 20Petelin et al. European Transport Research Review           (2023) 15:30 

transmitted is symbolized by the gap between C1, C2, C3, 
and the model building phase. At a certain point in time, a 
model is constructed that attempts to model traffic behav-
ior in the future based on the data collected up to that 
point. At the present time, predictions can be made about 
traffic patterns, for the next day. Note that besides missing 

data due to delayed acquisition, data may also be missing 
due to a malfunctioned measuring station. These missing 
data are indicated by the gaps in the red and green lines for 
the first two stations. Such a modeling framework also has 
some limitations. Due to delayed (e.g., manual) data trans-
fer, the most recent data may be missing at the time the 

Fig. 3  Average number of vehicles (for 15-minute intervals) grouped by type and measuring station. Aggregation is performed over all the years 
of data acquisition
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model is created. For this reason, it is not possible to use 
methods commonly used for forecasting, since the recent 
past is rarely available. In a typical forecasting framework, 
forecasts are made in real time based on the up-to-date 
data, C1, C2, C3, and model building is also done at the 
present time.

4.2 � Error metric
Choosing a metric to optimize the prediction of the num-
ber of vehicles can be challenging, as it must be aligned 
with our desired predictions and goals [43]. The mean 
absolute error (MAE) [44], was selected and is used to 
report all results. The metric is defined as:

(1)MAE =

1

C
c

y
forecast
c − ytruec

where yforecastc  and ytruec  are the predicted and measured 
number of vehicles passing measuring station c in a given 
time interval. Note that the sum is not applied over miss-
ing values. C represents the total number of measur-
ing stations. The MAE described in Eq. 1 has numerous 
advantages over similar metrics such as mean squared 
error (MSE) [45, 46] and mean absolute percentage error 
(MAPE) [47]. This MAE is not as sensitive to the outli-
ers [48], which are common due to inconsistencies in the 
data and can significantly affect the performance of some 
models. The MSE can often heavily penalize the models 
when the prediction errors are large. This behavior may 
be desirable in some cases, but results in degraded per-
formance due to problems with the data (e.g., corrupted 
data, changed traffic patterns due to rare events). Another 
commonly used metric that minimizes percentage error 

Fig. 4  The percentage of available data over the years for each measuring station. The color indicates the percentage of the data that is available 
and what percentage is missing
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is MAPE. However, it can significantly penalize an incor-
rect prediction when the measured number of vehicles 
is relatively small. An example of this situation is night 
traffic, when there are few vehicles on the road and the 
actual number of vehicles could be zero or close to zero. 
In such cases, MAPE assigns a large error to the predic-
tions, even if they differ by only a few vehicles. Also, note 
the difference between the error metrics used to indicate 
the quality of the predictions and the loss functions used 
by the models to minimize the errors. In our study, we 
try to ensure that the machine learning models use a loss 
function that is identical to the error metric to ensure a 
fair comparison between models.

4.3 � Feature engineering
In constructing time-dependent models, it is a common 
practice to create domain-specific features from times-
tamp data to improve predictive performance [49, 50]. 
Since the data set consists only of the timestamp, the 
weather on the day of measurement, and the presence 
of a public holiday, it is important to engineer features 
that can be correctly interpreted by machine learn-
ing algorithms. Features constructed from timestamp 
data must capture information that can be effectively 
used by machine learning models to generalize learned 
knowledge to previously unseen instances. A common 
approach for time-series-based feature engineering is 
the encoding of cyclic features [51], in which time-based 
features are encoded with cosine and sine functions such 

that they periodically repeat with some frequency. In 
such coding, periodic/cyclic events are preserved and 
events that are close in time have similar embeddings. 
In addition, one-hot encoded time features are also used 
to improve the performance of the algorithm. This helps 
in modeling independent influences between events 
that are close in time but not similar [52]. This encod-
ing captures additional information that is not available 
by using just cyclic features encoding. Table 2 shows fea-
tures constructed from the date and time information of 
the 15-minute measuring interval along with weather-
dependent features that we use to make predictions 
based on weather over the past five days. All generated 
features are scaled with a zero mean and a standard devi-
ation of one, which helps the convergence of some algo-
rithms (e.g., neural networks) but does not affect others 
(e.g., tree-based algorithms).

4.4 � Models
To successfully model traffic, based on the features con-
structed from timestamps and weather data, is a chal-
lenging task. This section describes the models that have 
been used for traffic modeling and lists some advantages 
and disadvantages of each model. It is important to note 
that for real-time traffic forecasting, one can use more 
advanced machine learning methods, such as those 
described in Sect.  2, which take into account temporal 
dependencies (commonly known as lag features). Unfor-
tunately, such approaches are not relevant in our case 

Fig. 5  Modeling framework used to make future forecasts with data collected from three measuring stations together with known past covariates 
such as weather data and future covariates indicating public holidays
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due to the current data acquisition process described 
in  Sect.  4.1. When making a prediction, one does not 
have the latest data on traffic conditions, so one cannot 
rely on temporal data to make the prediction.

The used machine learning models can be roughly 
described as single-target learning (STL) models or 
multi-target learning (MTL) models. The STL approach 
assumes that the targets are independent, meaning that 
traffic flow from one station does not affect traffic flow at 
other stations. If measuring stations are considered inde-
pendent, multiple models must be constructed, with each 
model predicting traffic for only one specific measuring 
station. Unlike STL, MTL models are trained to predict 
multiple targets simultaneously, allowing them to exploit 
potential dependencies between targets that aid in model 
generalization. In this approach, only one model is con-
structed that can model traffic at all measuring stations 
simultaneously. In our paper, we use models in the MTL 
configuration, where construction and training can be 
much more efficient because it is not necessary to create 
multiple separate models for each of the traffic measur-
ing stations.

When choosing models, it is necessary to pay attention 
to all constraints. For this reason, we focus on the models 

that meet the following criteria: a) training a model is 
efficient and can be done in a reasonable time (e.g., up to 
a few hours), b) models must be easily updated when new 
data are available. Due to these limitations, we exclude 
some of the popular machine learning algorithms such as 
XGBoost and Random Forest, models that are commonly 
used for tabular data. Both techniques are somewhat 
limited when it comes to i) selecting objective to opti-
mize (degraded performance when using MAE), ii) pre-
dicting multiple values simultaneously (some XGBoost 
implementations do not support multi-target learning 
(at least not at the time of experimentation and writing 
this paper), and thus are not able to predict traffic at mul-
tiple stations), iii) not able to handle missing outputs in 
a multi-target scenario, iv) require rebuilding the model 
without support for partial updating as new data become 
available.

4.4.1 � Baseline mean
A simple model for traffic flow on a road segment pre-
dicts the average traffic volume for a given measuring sta-
tion regardless of time and weather conditions. It cannot 
capture periodic changes in traffic volume, but serves as a 
baseline for comparing more advanced models.

Table 2  Feature type, their dimension and description

Features are divided according to their source. Features on the top are obtained from the timestamp of the measurement, the holiday feature comes from an eternal 
source and indicates if a given day is a public holiday. Lastly, weather features describe the statistics from the previous few days. Note, ∗ indicates that we can include 
features from a more distant past. If more than one day is included, the number of weather features is subsequently proportional to the number of days that are 
included

Feature type Count Description

One_hot_months 12 Binary vector of the month

One_hot_day_of_week 7 Binary vector of the day of the week

One_hot_minute 96 Binary vector of the 15-minute interval in a day

Sin_cos_day 2 Cyclic time coordinates with a period of one day

Sin_cos_week 2 Cyclic time coordinates with a period of one week

Sin_cos_year 2 Cyclic time coordinates with a period of one year

Linear_year_timespan 1 Time form 2013 to 2020 normalized to [0, 1]

Is_dst_feature 1 Indicator of a daylight saving time

 Holiday 1 Indicator of a public holiday

Temperature 1∗ Average daily temperature

Wind_speed 1∗ Average daily wind speed

Cloud_coverage 1∗ Average daily cloud coverage

Humidity 1∗ Average daily humidity

Air_pressure 1∗ Average daily air pressure

Rainfall 1∗ Average daily rainfall

Snowfall 1∗ Average daily snowfall

Sunshine 1∗ Average daily sunshine duration

Dew 1∗ Presence of dew

Glaze_ice 1∗ Presence of glaze ice as a result of a freezing rain

Icy_ground 1∗ Presence of ice on the ground due to refreezing
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4.4.2 � Linear regression
Linear regression (LR) models linear relationships 
between dependent and independent variables using 
learned coefficients. LR provides good interpretability 
and easy/fast optimization. For traffic flow prediction, we 
create one LR model per station and train with MAE loss 
instead of MSE loss to better meet the problem objec-
tives. Stochastic gradient descent is used to iteratively 
update the LR weights during training so that it is not 
deterministic. One could also consider LR as a baseline 
model that can be achieved if only linear relations are 
modeled.

4.4.3 � Decision trees
Decision tree learning [53] is a simple machine learning 
approach for creating explainable predictive models. It 
automatically constructs a decision tree from data, where 
each branch represents a test for an attribute and the tar-
get value for the prediction. There are several approaches 
to building decision trees [54], such as ID3, C4.5, CART, 
CHAID, and MARS, which differ in how they handle 
numerical and discrete data and create branches. Most 
of these algorithms are deterministic, but randomness 
can be introduced if the features have the same impor-
tance. While the construction of decision trees is usually 
quick, determining how to create branches can be time-
consuming, especially when using loss functions such as 
MAE that require sorting of node values.

4.4.4 � Tree‑specific ensembles
A popular approach for increasing the prediction accu-
racy of a single decision tree is to train multiple trees and 
combine their predictions [55]. Such a procedure is often 
referred to as a random forest. The individual trees in a 
Random Forest are trained on randomly drawn training 
data with replacement, known as bootstrap aggregation 
[56]. Thus, a Random Forest is an ensemble of a large 
number of decision trees. The algorithms used to build 
trees are generally deterministic and therefore often cre-
ate exactly the same tree. For this reason, the individual 
trees that are part of the ensemble are usually trained on 
a random subset of the data or with a random subset of 
the features to ensure that the ensemble consists of dif-
ferent trees. A similar technique of tree ensembling is 
Extremely Randomized Trees [57], where the attribute 
splits are randomly selected. The main advantage of such 
an approach is computational efficiency due to the sim-
plified criteria for splitting the nodes.

4.4.5 � Neural networks
Artificial neural networks (ANN) are mathematical 
models typically used to discover complex and nonlin-
ear relationships between dependent and independent 

variables. A neural network consists of neurons organ-
ized into individual layers of a certain size. The layers can 
then be stacked to form a more complex network capable 
of approximating complex nonlinear functions. Once a 
neural network is created, it must be trained to learn the 
mapping between input and output data. The most com-
mon technique for this is backpropagation [58] where 
gradient descent is used and weights of individual lay-
ers are iteratively adjusted to minimize the loss function. 
Although neural networks exist in many different con-
figurations, often tailored to specific domains [59, 60], we 
focus here only on fully connected neural networks.

4.4.6 � Model‑agnostic ensembles
Model-agnostic ensembles [61–63] are sets of various 
machine-learning models that use different techniques to 
combine their knowledge to get more reliable and more 
accurate predictions. Depending on the type of prob-
lem, such as regression or classification, there are dif-
ferent ways in which predictions can be combined. For 
regression problems, a popular technique is to combine 
weighted predictions to obtain a new, more reliable esti-
mate. The weights between the different models can be 
based on the performance of the algorithms that are part 
of the ensemble, or all predictions can have the same 
weight. In the latter case, the final prediction is calculated 
as the average of the individual model predictions. Due to 
its simplicity, we use the second approach by simply aver-
aging the predictions. In our study, model-agnostic meth-
ods are used only in combination with neural networks.

5 � Results and discussion
In this section, we first present the models with their con-
figurations and hyperparameters, and show how different 
hyperparameters affect the prediction accuracy. We then 
select the model that performs best in the validation set 
and examine its performance on the test set. We analyze 
the performance of the model for each measuring station 
and assess the impact of different events. We also exam-
ine how the performance changes over time. It should be 
noted that some measuring stations and time periods are 
selectively chosen to highlight interesting patterns in the 
data, such as the effects of rush hour and public holidays. 
However, not all measuring stations exhibit these distinct 
patterns.

5.1 � Experimental setup and implementation details
To evaluate the models and their performance on pre-
viously unseen examples, the data are split into a train-
ing set and a test set that are used to train the model 
and measure performance, respectively. When splitting 
the data into two parts, it is important to maintain the 
temporal order of the data and ensure that the test set 
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contains the most recent observations and does not 
overlap with the training data [64]. For this reason, 
time-series cross-validation with four splits is used. 
Figure 6 shows more details on how the data was split 
for evaluation. Note that all presented models are sto-
chastic in their nature, and for each train/test split and 
hyperparameter combination, the models are repeat-
edly trained 20 times to obtain a better and more relia-
ble estimate of their performance on different data sets 
and with different parameters.

When selecting and evaluating models, one must 
simultaneously select the best model and the best set 
of hyperparameters for the selected model. In order 
to evaluate the models properly, test data must never 
be used during the tuning of the hyperparameters to 
avoid overly optimistic performance of the model. 
For model construction and selection, we used nested 
cross-validation [65] where each training set was split 
into two sets, one of which trains algorithms with dif-
ferent hyperparameters and the other serves as a vali-
dation set from which the best hyperparameters are 
determined.

In general, finding the optimal neural network archi-
tecture can be a complex task that requires a lot of 
computation time and different tuning techniques [66–
68] to find optimal hyperparameters. Table 3 describes 
the hyperparameters that were explored during model 
building. A simple grid search was performed over all 
combinations of parameter values, which means that 
20 models are constructed for each train/test split and 
hyperparameter combination. In the following sec-
tion, we show how different hyperparameters of certain 
models affect the performance and report the perfor-
mance of all hyperparameter combinations. In real 
applications, e.g., daily use, one would select only the 
model and hyperparameters that achieve the best vali-
dation set accuracy.

All algorithms were run independently 20 times 
for each pair of train/test split and hyperparameter 

combination on an Intel(R) Xeon(R) CPU E5-2680 v3 
@ 2.50GHz, 1 TB of RAM, and the Ubuntu operating 
system. The algorithms are implemented in Python 3.7. 
Training was performed using the frameworks PyTorch 
[69] and PyTorch Lightning [70]. Analysis was per-
formed using Snakemake [71] and scikit-learn [72].

5.2 � Model selection
When building and evaluating models, one has to find a 
trade-off between multiple constraints. Some of these are 
the time required to build/train a model, optimization of 
hyperparameters, complexity of the model, and perfor-
mance at inference, as well as other limitations such as 
the difficulty of retraining models when new data become 
available. The models described in Sect.  4.4 are trained 
and evaluated on four train/test splits of the data, as 
described in Sect. 5.1. With this in mind, we first focused 
on different model types such as decision trees, random 
forests, and neural networks, and performed hyperpa-
rameter tuning for each model. Figure  7 compares the 
different model types in terms of MAE between the pre-
dicted and measured number of vehicles. Shown are the 
models with the optimal hyperparameter values deter-
mined using the validation set. The gray bars represent 
the standard deviation of performance over 20 repeated 
runs. The analysis shows that all models outperform the 
simple baseline model, which always predicts the mean, 
obtaining an MAE error of about 40.

Focusing first on the tree-based models, we see that 
they achieve good predictive performance and that their 
error is about half that of a naive baseline. For both meth-
ods, the optimal hyperparameters obtained on validation 
data are obtained when the tree depth is not limited and 
each leaf contains at least two samples. An interesting 
observation is also that their performance varies greatly 
across the years considered, with one year having a sig-
nificantly higher error than the others. Since both tree 
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Fig. 6  Temporal split of the data into four train (green) and test (red) 
data sets obtained with 4-fold cross-validation. Data from the year 
2014 is not available and is thus not used

Table 3  Hyperparameter ranges where grid search was 
performed

Model type Hyperparameter Values

Neural network Depth {1,2,3,4,5}

Layer size {128, 256, 512}

Dropout {0, 0.2}

Early stopping patience {5}

Optimizer {Adam}

Decision tree Maximum depth {2, 4, 6, 8, 10, None}

Minimum samples in leaf {1, 2, 3, 4, 5}

Extremely randomized 
trees

Maximum depth {2, 4, 6, 8, 10, None}

Minimum samples in leaf {1, 2, 3, 4, 5}

Linear regression Optimizer {SGD}



Page 12 of 20Petelin et al. European Transport Research Review           (2023) 15:30 

models are stochastic models, they also exhibit a large 
variation in performance between runs of the same data 
set. For linear regression, the accuracy is also about twice 
that of the baseline. Compared to the tree-based model, 
the performance of the linear regression is much more 
stable across the years considered, with no large drops 
in performance for certain years. Linear regression is 
also much more consistent when trained repeatedly on 
the same data, with minimal differences between runs. 
Finally, the best-performing models are neural networks, 
which can significantly outperform other models, with 
the prediction being relatively stable across the years 
considered and between different runs. In this case, the 
optimal number of hidden layers is three, with each layer 
having 512 neurons. Even with non-optimal hyperparam-
eters, neural networks almost always outperform all other 
models. The reason why neural networks perform better 
than regular tree-based models has not been explored in 
detail, but could be due to the relatively large number of 
training instances and the ability of neural networks to 
model complex decision boundaries. Since neural net-
works perform significantly better than other models 
even when hyperparameters are not optimal, empha-
sis has been placed on the use of neural network-based 
models for traffic modeling. One of the hyperparameters 
of neural networks that is not shown is the Dropout rate 
[73]. In the models, we investigated that the dropout rate 
did not improve the performance in any of the cases and 
therefore it is not shown.

Since in our case neural networks are better suited for 
traffic flow prediction than other methods, we further 
explore how their hyperparameters affect training. Fig-
ure 8 shows various hyperparameters and how they affect 
traffic flow prediction performance. We find that the 
choice of parameters has a large impact on performance. 
Networks with only one hidden layer generally cannot 
capture all the information and therefore perform poorly 
with MAE at around 15. Increasing the number of hid-
den layers and thus parameters can help neural networks 
make better predictions. The best-performing neural net-
work is the one with three hidden layers with 512 neu-
rons each. This is true for both the validation set (this was 
therefore selected as the best performing in the previous 
section) and the test set.

5.3 � Neural network ensembles
We now focus specifically on neural network ensembles. 
When building machine learning models used for fore-
casting, it is often the case that combining predictions 
from multiple machine learning models can improve 
performance. Figure 9 compares regular neural network 
models with ensembles of neural networks combined 
into an ensemble of size 10. The neural networks within 
the ensemble are initialized and trained independently, 
and thus learn different knowledge. We can observe 
that forming an ensemble is always beneficial and can 
further improve the prediction performance. As before, 
the ensemble that achieves the best performance is one 

Fig. 7  MAE between measured and predicted number of vehicles for different machine learning models when evaluated on previously unseen 
year. Each model was trained and evaluated 20 times on 4 train/test splits. Grey bars show standard deviation in performance
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that consists of neural networks with three hidden lay-
ers of width 512. Further increasing the complexity of 
the models within the ensemble does not lead to better 
performance.

5.4 � Training time
Minimizing the time required to build the model is 
critical because traffic data may need to be updated fre-
quently and it may be time consuming to train or build 
a new model from scratch each time. See Table 4 for the 
training and prediction times of each model. Since the 

models are trained on different sized train/test splits, as 
described in Sect.  5.1, comparing the models across all 
folds is not useful. For this reason, we focus only on one 

Fig. 8  MAE between measured and predicted number of vehicles for neural network-based models when evaluated on the previously unseen 
years with different hyperparameters for a number of hidden layers and their size. Each model was trained and evaluated 20 times on 4 train/test 
splits. Gray bars show standard deviation in performance

Fig. 9  Effects of neural network architecture on the MAE 
with changing number of hidden layers (1–5) and width of those 
layers (128, 256, 512) for regular neural networks and ensembles

Table 4  Training time for different types of models

Obtained values are averaged over 20 runs for train test split 2018

Model type Train time [s] Inference 
time [s]

Mean 0.19 0.01

Regressor model 125.68 0.16

Decision tree (None, 2) 23.79 0.06

Extremely randomized trees 
(None, 2)

145.51 0.57

Neural network (128, 1) 229.69 0.30

Neural network (256, 1) 236.93 0.31

Neural network (512, 1) 266.45 0.32

Neural network (128, 2) 655.69 0.52

Neural network (256, 2) 655.69 0.57

Neural network (512, 2) 642.70 0.59

Neural network (128, 3) 819.35 0.74

Neural network (256, 3) 820.70 0.87

Neural network (512, 3) 899.02 1.86

Neural network (128, 4) 930.53 1.47

Neural network (256, 4) 1080.80 2.08

Neural network (512, 4) 1293.85 2.64

Neural network (128, 5) 1263.38 1.54

Neural network (256, 5) 1486.36 2.45

Neural network (512, 5) 1510.61 3.40
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train/test split that occurred in 2018. All the reported 
values are averages across all 20 runs. We can observe 
that the different model types have significantly different 
training times. Training a baseline model that always pre-
dicts the mean traffic of a given station is incredibly fast, 
but does not provide great accuracy. On the other hand, 
tree-based models provide better accuracy at a higher 
computational cost. Also, comparing one decision tree to 
extreme trees, one can observe that training an ensem-
ble of trees is more computationally expensive. The most 
computationally expensive models are neural networks 
and ensembles built on top of them. The time required 
to build them depends heavily on the size of the network 
and its architecture. As might be expected, deeper and 
wider networks tend to be slower to train and slower 
to make predictions. The most computationally expen-
sive network to train consists of five hidden layers, each 
with 512 neurons. Note that the time required to train 
ensembles is usually proportional to their size, so we do 
not include their training times in the Table  4. Ensem-
bles consisting of 10 neural networks require on average 
10 times more time to train if the training is performed 
sequentially. Note that neural networks that use Dropout 
were excluded from the list because their training time is 
similar to that of networks without Dropout.

5.5 � Exploring predictions
Based on the accuracies reported in the previous sec-
tions, an ensemble of 10 neural networks with three hid-
den layers and a width of 512 was selected as the best 
model for the validation and test set. Figure  10 shows 
the distribution of prediction errors (subtracting the true 
value from the predicted one) for individual measuring 
stations with the selected models. Two important obser-
vations can be derived from the figure. It is more difficult 
to predict traffic volumes for certain measuring stations 
than for others. This is mainly because they are located 
on busy roads, where daily traffic variations are greater 
than on less busy roads. The figure illustrates the pres-
ence of outliers in the prediction errors. Most forecasts 
are accurate, but errors of magnitude 100 or greater are 
common. These errors usually result from extreme events 
that existing models struggle to capture accurately.

Figure 11 shows a more detailed comparison between 
the actual data and the predictions of the selected model. 
Each point represents the traffic flow at either 6 AM or 8 
AM. The first pattern that can be observed are clear dif-
ferences between weekdays and weekends. Weekend traf-
fic is less frequent and with less variability than weekday 
traffic, so weekend forecast errors tend to be lower. The 
other distinct change in patterns that can be observed is 
the change between standard time and daylight saving 
time, as shown in Fig.  11. This change will significantly 

alter vehicle frequency when it occurs. The selected 
model can account for this and predict the change in traf-
fic distribution.

Figure  12 shows a small example of predicted versus 
actual traffic for measuring station 1021-156 for two 
weeks in February and March. Although this is a hand-
picked sample, some interesting observations can be 
made. First, the model can accurately learn to model daily 
patterns, such as morning rush hours and low traffic flow 
during nights and weekends. This suggests that it is pos-
sible to learn predictable periodic patterns that appear in 
the train data and use them to predict future traffic vol-
umes. A more problematic pattern that cannot be easily 
captured by the model is the shift in traffic volumes. We 
can observe that in the example shown, the model con-
sistently underestimates traffic volumes in the test group. 
This is consistent with the idea that traffic volumes at a 
given measuring station have increased over time. There-
fore, the most recent test data, containing only the most 
recent measurements, may have a different distribution 
than the training data. The consistent overestimation 
or underestimation of traffic flow by the model implies 
that traffic volumes can change suddenly, but the models 
consistently produce biased predictions due to a lack of 
real-time information. Recent traffic count values would 
likely allow the models to account for this shift and make 
more accurate forecasts. Unfortunately, the current data 
transfer scheme does not provide the model with these 
features.

To get a more detailed look at the errors, Fig. 13 shows 
the predicted values and the actual measured values for 
station 1021-156 over the four-day period. We can see 
that in this case the actual observations are relatively 
noisy between the 15-minute intervals and that the pre-
dicted values can capture the overall traffic patterns 
without overfitting to the noise. While we do not include 
visualizations for all stations and all time periods, the pat-
tern of the models being able to accurately estimate the 
distribution without predicting the noise can be observed 
for other stations and time periods as well.

Data drift on test data is further analyzed in Fig.  14, 
where we show how the prediction error changes over 
the one-year period without updates to the model (no 
retraining). We present MAE between the measured 
and predicted number of vehicles, aggregated across all 
measuring stations for which data are available for each 
day, one year into the future. Note that measuring sta-
tions with missing data were not included, which means 
that MAE in this figure cannot be directly compared to 
MAE in other figures. While the single aggregated daily 
error is noisy, the linear line reveals a trend that is pre-
sent over time. This shows an important pattern that traf-
fic patterns change over time and that if the model is not 
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updated regularly, a performance drop can be expected. 
In addition, a distinct jagged line can be observed over 
the course of the year. This pattern is a result of higher 
traffic volumes and weekday variability. Therefore, the 
predictions made for weekdays carry a larger MAE.

Finally, we provide important insights into the meaning 
of various feature types used for predictive purposes. As 
outlined in Sect. 4.3, three different feature categories are 
introduced. These categories are derived from dates and 
times, the presence of public holidays, and past weather 
descriptions. In Sect. 5.3, the best ensembles have a MAE 
between 10 and 12 when all three feature categories are 
used. However, not all feature groups have the same 

importance. The most important are the features formed 
by date and time, while the features indicating holidays 
and weather features contribute much less to the predic-
tion. If you take the best ensemble and retrain it without 
the weather features, the MAE increases by only about 
3%. Similarly, if the ensemble is trained with only date/
time and weather features without holidays data. Then 
the MAE increases by about 3.5%. But even if the overall 
MAE without holidays or weather features only decreases 
by a few percent, these features are still extremely impor-
tant. When holidays or severe weather events occur, 
these features greatly improve the predictions. In other 
words: Weather and vacation features can significantly 

Fig. 10  Prediction errors made with a neural network with 3 hidden layers and 512 neurons per layer for 10 individual measuring stations 
with largest and smallest errors
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increase model accuracy for rare events, but since such 
events are rare, this is not reflected in the overall MAE 
summary.

6 � Limitations
This section describes some of the limitations and trade-
offs of the study. The MOL-TR data set has some missing 
data and data that may have been recorded incorrectly. 
To mitigate the missing data problem, we manually 
merged some stations that represent the same station 
but were moved or assigned to a different ID during the 
data acquisition period. The process of combining the 
data from stations with different IDs is human-made 

and therefore prone to error. Also, when modeling traf-
fic volumes, we decided to forecast only the total number 
of vehicles and not their exact type. Thus, we aggregated 
vehicle types and did not distinguish between individual 
vehicle types, which could contain additional informa-
tion not captured by the models.

When splitting the data for training and validating the 
models, we perform only four splits. The reason for this 
is the computational complexity of repeating the training 
20 times and optimizing the hyperparameters for each 
fold. We chose to perform at least 20 runs to find out how 
independent model-building procedures affect model 
performance. The hyperparameter tuning in this study 

Fig. 11  A small subset of test data showing actual traffic vs prediction using model Neural network(3, 512) for station 1006-22a and period 
of 4 months from the beginning of March to end of July at 6.00 AM (top) and 8.00 AM (bottom). The orange line shows the predicted number 
of vehicles for 15-minute intervals while the blue line shows the actual amount of vehicles

Fig. 12  A small subset of test data showing actual traffic (blue) vs prediction (orange) using model Neural network (3, 512) for station 1021-156 
and period of two weeks. Each prediction is made for the number of vehicles that will drive over the measuring station in 15-minute intervals
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Fig. 13  A small subset of test data showing actual traffic (blue) vs prediction (orange) using model Neural network (3, 512) for station 1021-156 
over a period of four days for individual 15-minute periods

Fig. 14  The MAE is calculated daily for 365 days into the future, comparing the measured and predicted number of vehicles across all stations. The 
line reveals an interpolated linear trend, demonstrating a gradual decline in predictive accuracy as time progresses
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was done in two steps. First, we examined the hyperpa-
rameters for a number of different learning algorithms. 
Once it was clear that neural networks outperform other 
models, we performed additional hyperparameter tun-
ing for neural networks only. This was necessary to avoid 
extensive parameter tuning for all models and the associ-
ated high computational costs. Similarly, when selecting 
models to evaluate, we primarily looked for models that 
inherently support the minimization of the MAE metric 
and can do that efficiently. When used with MAE, some 
tree-based methods search for median values when split-
ting on a feature, which slows down the whole process. 
Finally, some of the machine learning methods may have 
problems with feature representation. This is especially 
true for many one-hot coded features, which can have a 
negative impact on tree construction [74].

7 � Conclusion
In this paper, we first introduce a new MOL-TR data set 
that tracks traffic flow for several vehicle types on dif-
ferent road sections between the years 2013 and 2020 
in Ljubljana, Slovenia. Using inductive loop measuring 
stations located under the roads, vehicles are counted 
and classified at 15-minute intervals. To the best of our 
knowledge, this is one of the larger traffic data sets that 
spans multiple years or different vehicles in multiple 
locations.

With this data set, we build models that are able to 
incorporate traffic data together with additional weather 
data and data on public holidays without using temporal 
dependencies in making predictions. This requirement is 
crucial because the data is not always collected in real-
time and the most recent past is not available to pro-
vide accurate predictions of vehicle flows. We show that, 
despite existing limitations, useful models can be created 
with sufficient feature engineering. These models are par-
ticularly useful for traffic forecasting because they can 
capture and account for various factors and trends that 
may affect traffic patterns, providing valuable insights 
for short-term planning and decision-making in traffic 
management. We compare the models and the impact of 
hyperparameters on model performance and conclude 
that neural networks offer the best trade-off between 
accuracy, training/inference time, and the simplicity of 
incremental updating compared to other linear and tree-
based models. In addition, we analyze the advantages of 
combining multiple models, which can lead to higher 
accuracy, but also have the disadvantage of increased 
computational complexity.

Finally, we analyze the best-performing model to 
gain further insight into when it works well and where 
it does not provide accurate predictions of traffic flow. 
We show that the predictions obtained are usually 

relatively accurate for the majority of measuring sta-
tions. However, there are some scenarios that are more 
difficult to model. Such examples are holidays when 
traffic volumes can change significantly, and the switch 
to daylight saving time. We also show that the models 
can consistently underestimate or overestimate traf-
fic flow and that the performance of the model can 
decrease over time due to data drift. Therefore, it is 
important that the models are updated regularly as new 
data become available.

The direction of future work concerns the deeper anal-
ysis of features, their construction, and the quantification 
of their importance. The focus should be on, first, improv-
ing current features to achieve better performance, and 
second, quantifying their importance to make the mod-
els more explainable. A large part of the paper deals 
with parameter tuning. Given the growing popularity of 
AutoML techniques, finding a framework that meets all 
requirements (i.e., speed of training and inference, incre-
mental updates) and produces good results is desirable. 
In modeling time-dependent problems, a common tech-
nique is to assign higher weights to more recent samples. 
Further analysis should be performed if assigning weights 
can increase performance and reduce problems such as 
drift. Finally, efforts should be made to detect and miti-
gate drift caused by ever-changing traffic flows.
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