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Prolonged bed rest causes a multitude of deleterious physiological changes in

the human body that require interventions even during immobilization to prevent

or minimize these negative effects. In addition to other interventions such as

physical and nutritional therapy, non-physical interventions such as cognitive

training, motor imagery, and action observation have demonstrated efficacy in

mitigating or improving not only cognitive but also motor outcomes in bedridden

patients. Recent technological advances have opened new opportunities

to implement such non-physical interventions in semi- or fully-immersive

environments to enable the development of bed rest countermeasures. Extended

Reality (XR), which covers augmented reality (AR), mixed reality (MR), and

virtual reality (VR), can enhance the training process by further engaging the

kinesthetic, visual, and auditory senses. XR-based enriched environments offer a

promising research avenue to investigate the effects of multisensory stimulation

on motor rehabilitation and to counteract dysfunctional brain mechanisms

that occur during prolonged bed rest. This review discussed the use of

enriched environment applications in bedridden patients as a promising tool

to improve patient rehabilitation outcomes and suggested their integration into

existing treatment protocols to improve patient care. Finally, the neurobiological

mechanisms associated with the positive cognitive and motor effects of an

enriched environment are highlighted.

KEYWORDS

physical inactivity, bed rest, disuse, mechanical unloading, non-physical interventions,
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Introduction

Prolonged bed rest has been identified as a risk factor for physiological deconditioning
since 1947. A seminal study entitled "The Dangers of Going to Bed," (Asher, 1947) called
attention to the risks it posed to older adults and the general population. Recent research
conducted on hospitalized older adults has revealed that these patients spend up to 86%
of their hospital days inactive, even though only a small percentage of cases, 5%, had a
medical indication for bed rest (Jasper et al., 2020). This type of behavior is detrimental to
both the physical and mental health of patients and poses a significant risk for functional
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independence and chronic disability, collectively referred to as
hospital-associated disability (Loyd et al., 2020).

Recent advances in the field of aerospace science and the
development of experimental models of forced bed rest in
healthy subjects provided a better physiological understanding
of immobilization and strategies to counteract immobilization-
induced functional deterioration. Prolonged immobilization can
lead to adverse consequences not only in older adults, but also
in younger individuals, affecting cardiovascular (Hoffmann et al.,
2022), endocrine (Belavy et al., 2012), immune (Hoff et al., 2015),
gastrointestinal (Iovino et al., 2013), vestibular (Dyckman et al.,
2012), and cognitive (Lipnicki et al., 2009) systems. An interesting
phenomena of non-uniform loss of muscle mass and strength
was recently systematically reviewed on 318 subjects exposed
to experimental bed rest (Marusic et al., 2021). After longer
periods of bed rest, such as 35 days, the decline in strength
was found to be two times higher compared to muscle atrophy.
In the early days of bed rest, such as 5 days, even higher
ratios were reported (Marusic et al., 2021). These findings raise
new questions about the underlying mechanisms responsible for
the disproportionate decline in strength compared with muscle
atrophy. They also highlight the importance of early interventions
to prevent or minimize the adverse effects of prolonged bed
rest.

Body posture and prolonged bed rest also directly affect the
brain, which was mainly studied with electroencephalography
(EEG) and functional magnetic resonance imaging (fMRI). One
of the first reviews to examine EEG dynamics under bed
rest conditions reported changes in the theta and alpha bands
suggestive of cortical inhibition, and highlighted the need for
further evidence in this area (Marušič et al., 2014). More
specifically, the 6◦ head-down tilt position (HDTP) during the
bed rest reduced the resting-state spectral power within the
delta, theta, alpha, and beta frequency bands (Brauns et al.,
2021b). Lower activity in alpha and beta frequency bands was
also observed in several sources within the centroparietal and
occipital regions. These effects occurred shortly after posture
establishment, remained stable during 60 days of bed rest, and
returned to baseline upon the end of the bed rest (Brauns
et al., 2021b). In addition to posture-specific changes in brain
activity, functional brain changes, such as decreased amplitudes
of P300 and late positive potential (LPP) of the event-related
potentials (ERPs) indicated that 30-day bed rest adversely affected
affective picture processing suggesting that physical inactivity
might play a role in emotion regulation. These effects were
localized in the insula, precuneus, and cingulate gyrus (Brauns
et al., 2019). Furthermore, the investigation into electrocortical
correlates of selective attention showed that a 60-day bed rest
negatively affected task performance and ERP potentials in fronto-
central and parietal brain regions. Importantly, these data did not
return to their baseline values after an eight-day recovery period
(Brauns et al., 2021a). A preliminary data on eight bedridden
healthy older adults showed increased P100 and P200 amplitudes
and decreased P100 latencies after being exposed to 14 days of
horizontal bed rest (Marušiè et al., 2021). Finally, Friedl-Werner
et al. (2020) used fMRI to show impaired memory formation
and associated dysfunctional mechanisms in the hippocampus and
parahippocampus after 60 days of continuous bed rest. Taken
together, these studies suggest that immobilization and inactivity

resulting from prolonged bed rest induce functional brain changes
and cognitive impairments, the recovery of which may be longer
than the cessation of bed rest. To counteract the formation
of dysfunctional brain mechanisms and cognitive impairment,
appropriate intervention strategies must be implemented during
bed rest as part of a comprehensive recovery strategy. The
recovery process following prolonged bed rest deconditioning
is a complex and multifactorial process influenced by several
factors, including the duration of bed rest, age, overall health
status, and the degree of deconditioning. In older adults,
the detrimental effects of skeletal muscle deconditioning are
particularly pronounced and may even lead to catabolic changes
in muscle tissue that favor the development of sarcopenia, as
shown in a recent meta-analysis (Di Girolamo et al., 2021).
In addition to various countermeasures developed to alleviate
the deleterious effects of prolonged immobilization, such as
centrifugation (Kramer et al., 2020), nutritional support (Gao
and Chilibeck, 2020), and aerobic interventions (Holt et al.,
2016), non-physical rehabilitation interventions (Marusic and
Grosprêtre, 2018) administered during immobilization resulted
in significant improvements in cognitive (Marusic et al., 2018,
2019) as well as physical function (Marusic et al., 2015;
Paravlic et al., 2018). Non-physical rehabilitation encompasses
interventions that focus on cognitive and/or sensory stimulation
to improve cognitive and physical function rather than physical
exercise or movement. Interventions aimed at enhancing sensory
stimulation include multiple modalities, including visual, auditory,
and tactile stimulation, with the goal of promoting an engaging
and interactive experience for the individual. Virtual reality
(VR) as a form of enriched environment holds the potential
of a breakthrough technology for non-physical rehabilitation by
providing multisensory information and more realistic simulations
to improve patient rehabilitation outcomes. This paper reviewed
current non-physical rehabilitation practices, assessed the potential
impact of integrating VR systems in enhancing the recovery
process, and finally highlighted the implicated neurobiological
mechanisms associated with beneficial cognitive, and motor effects
of enriched environment exposure. The report provided a synthesis
of existing empirical evidence and suggested future avenues for
investigation in this field.

Non-physical rehabilitation
techniques

The frailty commonly experienced by bedridden patients
poses a challenge to the implementation of conventional physical
rehabilitation therapies in the early stages of hospitalization. The
resulting deprivation of sensory input, including somatosensory
and proprioceptive information, along with bed confinement,
leads to rapid alterations in the organization of the sensorimotor
system (Langer et al., 2012). These alterations revealed to have
detrimental effects on postural balance and mobility (Koppelmans
et al., 2017), movement duration and accuracy (Bassolino et al.,
2012), tactile acuity (Lissek et al., 2009), and muscle properties
(Clark et al., 2006). The decline in motor performance is attributed
to the lack of feedback and feedforward mechanisms of motor
control, which affects postural predictions and real-time movement
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adjustments (Scotto et al., 2020). To counteract immobilization-
induced functional decline, non-physical rehabilitation methods
such as cognitive interventions (CI), motor imagery (MI), action
observation (AO), and their combination, provide a valuable
compensatory strategy (Marusic and Grosprêtre, 2018). These types
of interventions can create an enriched environment in which
certain cognitive functions can be trained (Marusic and Grosprêtre,
2018) or even a neural resemblance to actual voluntary movement
can be established (Fox et al., 2016; Grosprêtre et al., 2016).

The field of CI encompasses various approaches, such as
cognitive stimulation, cognitive rehabilitation, and cognitive
training, as described by Marusic and Grosprêtre (2018). Briefly,
cognitive stimulation involves social and group cognitive activities,
including discussions and therapeutic conversations, with the
goal of improving social and cognitive functioning. Cognitive
rehabilitation uses personalized programs to improve activities
of daily living, with healthcare providers, patients, and families
working together to achieve goals primarily by improving cognitive
function. Cognitive training consists of personalized, guided
exercises tailored to individual abilities to improve cognitive
function and can be delivered in paper-pencil or computerized
versions (Marusic and Grosprêtre, 2018). As for the effects of bed
rest on cognitive function, the results are still controversial; some
studies indicated a positive (facilitating) effect, while others showed
the opposite (Lipnicki and Gunga, 2009). Although there is limited
literature on cognitive interventions during bed rest (Marusic et al.,
2019), it is reasonable to assume that cognition (such as working
memory, selective attention, inhibition, and cognitive flexibility)
forms the basis of any non-physical intervention.

MI in which movements are mentally rehearsed through a
kinesthetic experience or a visual representation with an internal
or external perspective (Decety, 1996) elicits intracortical and
corticospinal modulations that attenuate the deleterious effects of
immobilization (Rannaud Monany et al., 2022). The kinesthetic
experience, i.e., imagining the sensation experienced during the
action, showed to be more efficient in motor learning (Fontani
et al., 2014), in gaining (Yao et al., 2013), and in maintaining muscle
strength (Paravlic et al., 2018), thus being generally more successful
in activating sensorimotor representations (Meugnot et al., 2015;
Oldrati et al., 2021). At the neurological level, the use of kinesthetic
imagery resulted in greater similarity of activated brain networks to
actual motor execution compared to visual methods (Yang et al.,
2021). The results may be attributed to the insufficient sensory
information in visual MI, which negatively affects the individual’s
ability to form a vivid and detailed representation of the movement.
Studies employing a combination of AO and MI showed increased
effectiveness in motor learning and rehabilitation outcomes,
supporting to our hypothesis and demonstrating superiority over
the use of each method individually (Eaves et al., 2016; Marusic
and Grosprêtre, 2018). In this combined approach, the internally
generated kinesthetic representations of an action are synchronized
with the concurrent perception of the movement, augmenting
the sensory experience of individuals through the integration of
visual and auditory inputs, thereby enhancing the vividness of
the MI task and leading to an increased sense of embodiment
(Meers et al., 2020). With this in mind, the integration of enriched
environments such as VR, which create the illusion of physical
movement, has the potential to enhance the activation of motor-
related brain regions. As a result, specific neural circuits are further

activated, facilitating the desired neuroplastic adaptations (Slater,
2017).

Enriched environments: a
multisensory approach for
enhanced rehabilitation

In everyday life, people are typically exposed to variety
of multimodal experiences, from the sounds of nature to the
sights of the surrounding environment. However, in a hospital
setting, these experiences are often limited, leading to a more
restricted sensory experience. In addition, patients’ attention may
be disproportionately focused on their struggles, which may impair
their ability to participate effectively in the rehabilitation process.

Despite the effectiveness of MI and AO in mitigating the loss
of various physiological factors and facilitating motor recovery
in bedridden patients, the implementation of these practices is
generally limited to highly controlled and structured rehabilitation
environments with limited variability and complexity compared
with the unpredictable and dynamic nature of daily living.
Failure to consider the impact of broader contextual factors,
such as emotional and environmental influences, on real-world
performance will limit the rehabilitation experience and may
compromise the overall effectiveness of rehabilitation outcomes.
XR-based environmental enrichment systems, in contrast, allow
for the implementation of realistic scenarios engaging the patient’s
sensorimotor system (Brugada-Ramentol et al., 2022) due to the
enhanced simulation of the kinesthetic, visual, and auditory senses.
Moreover, the three-dimensionality (3D) of VR showed to elicit
stronger fronto-parietal activations compared to AO and its two-
dimensional (2D) representations (Jastorff et al., 2016).

Recent systematic reviews and meta-analyses have
demonstrated the efficacy of VR in the rehabilitation of various
conditions, including stroke (Leong et al., 2022), Parkinson’s
disease (Kashif et al., 2022), and cerebral palsy (Ziab et al., 2022),
with demonstrated functional improvements (Howard, 2017) and
structural changes in the brain (Feitosa et al., 2022). However,
according to Šlosar et al. (2022), a clearer terminology for the
variety of digital environments (see Figure 1 for an overview)
should be used to study the effects of interventions. Following this
terminology, we proposed to use such non-physical interventions
in conjunction with technological advances (Figure 1) in bedridden
patients to mitigate the deterioration caused by bed rest.

Personal computers and consoles
with displays and controlling
gadgets (PC)

In a 14-day bed rest study (Marusic et al., 2015), a
computer-assisted spatial navigation intervention consisting of
moving through virtual environments using a joystick controller
was used to counteract the adverse effects of immobilization
on gait performance in healthy older adults. Compared with
the control group (passive watching of TV), the intervention
group showed significant improvement in dual-task effects for
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FIGURE 1

Evolution of intervention systems for bedridden patients: from real environment to fully immersive technologies. Intervention systems for bedridden
patients have evolved over time, beginning with motor imagery (MI) and cognitive training (CT) in real environments (RE). These interventions have
been enhanced with the use of personal computers and consoles (PC), incorporating action observation (AO) and displaying images through various
screens. Advancements in technology have now made it possible to employ extended reality (XR) applications, such as virtual reality (VR),
augmented reality (AR), and mixed reality (MR), in combination with MI or CT. Future developments aim to create fully immersive technologies that
stimulate both the interoceptive and exteroceptive senses, a concept referred to as "Matrix-like" VR (MX).

self-selected and fast paced gait speed after bed rest. In the
same study, control subjects were found to have increased gait
variability under dual-task conditions (Marusic et al., 2015). The
effects of such an intervention are explained in more detail in
Marusic et al. (2019). In a usability study, Knols et al. (2017)
demonstrated high acceptance and adherence to a gaming console
adapted to be easily positioned at the patient bedside. Despite
lacking clinical validation, the COPHYCON prototype showed
significant short-term effects on measures of prefrontal cortex
function in healthy elderly participants. In a study with patients
with spinal cord injury (Villiger et al., 2013), an interactive
game was integrated into an AO plus execution protocol.
Wheelchair-bound participants were asked to observe an avatar
performing movements with the lower limbs, and then mimic
these movements by ankle flexion, hip extension, knee flexion,
and leg adduction/abduction to control the avatar and complete
gaming tasks. After a 4-week intervention period, assessments
of gait capacity, postural stability, and muscle strength showed
significant gains in lower extremity functionality. In addition,
50% of participants experienced reductions in both the intensity
and unpleasantness of neuropathic pain symptoms. A study by
Roosink et al. (2016) explored the use of a virtual feedback
mechanism in a MI intervention for patients with the same
pathology. The rehabilitation protocol consisted of performing
MI of walking while seated in a wheelchair in front of a
screen displaying an avatar walking through a forest. Participants
were asked to concentrate on the sensory experiences produced
by the interactive feedback, which was triggered by swinging
their arms equipped with inertial sensors to match the pace of
the imagined walking. The feasibility study reported improved
vividness of MI with minimal adverse effects, indicating promising
results for the response to MI interventions utilizing interactive

feedback. Im et al. (2016) investigated the effects of combining
MI (kinaestheic imagination of movements) with an interactive
feedback mechanism on corticomotor excitability in both healthy
older adults and stroke patients. They found that the combination
resulted in increased amplitudes of motor evoked potentials
compared to MI alone. This has significant implications for
rehabilitation and recovery during periods of immobilization, as
the combined approach can be utilized to target specific motor
functions and improve motor performance, aiding in the recovery
of lost motor abilities.

Virtual reality (VR)

In contrast to PC-assisted interventions, VR systems allow
users to experience a fully synthetic, computer-generated digital
environment that replaces the physical world (Šlosar et al.,
2022). The increased sense of embodiment that is perceived
positively influences the user’s perception of their own body
movements (Kong et al., 2017), leading to more accurate and
effective outcomes in physical therapy. At the neurophysiological
level, a study by Choi et al. (2020) demonstrated that event-
related desynchronizations exhibited greater amplitudes with more
distinct spatial features of the brain when MI is performed using
a VR headset, compared to the display of the same images on
a monitor. This modulation of neural activity by the degree
of immersion provides important evidence for the use of VR
technology in rehabilitation practice for bedridden patients (Xie
et al., 2022). A recent study by Köyağasıoğlu et al. (2022) found
that a 4-week intervention combining VR and MI significantly
improved balance skills in healthy adults. While no significant
differences were found in the center of pressure variable using a
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TABLE 1 Comparative overview of intervention approaches for
enriched environment.

Intervention
approach

Potential
benefits

Distinctive features

Personal
computers and
consoles (PC)

Provides interactive and
engaging activities to
stimulate cognitive
functions.

Familiar and widely
accessible technology.

Provides a diverse array
of games and
applications, fostering a
stimulating environment.

Suitable for patients with
varying levels of computer
experience.

Virtual reality
(VR)

Creates a fully immersive
and interactive digital
environment, enhancing
sensory experiences.

Greater sense of immersion,
leading to more effective
outcomes in rehabilitation.

Provides a more realistic
and vivid experience,
promoting a stronger
sense of presence.

Potentially better neuro-
physiological modulation
during tasks due to the
immersive nature.

Allows for realistic
simulations and
scenarios for therapeutic
purposes.

May facilitate improved body
movement perception during
virtual exercises.

Offers a more
stimulating and engaging
atmosphere compared to
traditional therapies.

Provides personalized and
tailored programs with
authentic scenarios for
effective MI and AO
practices.

stabilometry device compared to a group combining PC and MI,
the VR group demonstrated superior results on the Star Excursion
Balance Test, particularly in posteromedial and posterolateral reach
distances. In a similar experimental design, Bedir and Erhan
(2021) compared the effects of 2D vs. 3D MI intervention on
shot performances of archery, bowling, and curling athletes. Their
findings showed the advantages of VR mental training in terms
of shot performance after the 4-week training period. Yoshimura
et al. (2020) investigated the effects of a VR contribution to
the MI practice on the acquisition of prosthetic control using a
prosthetic simulator in healthy individuals. Although the study
was conducted with non-amputee participants, it yielded positive
results in terms of supporting the daily activities of amputees, as
evidenced by the enhancement in short-term prosthetic control
acquisition following the acute practice of VR plus MI. In addition,
self-assessed VR-based AO immersion level was found to have a
negative correlation with the execution time of the bilateral manual
dexterity task, supporting the idea that immersion is a crucial
modulator of experience (Cummings and Bailenson, 2016) and
thus has a positive influence on motor learning performance. See
Table 1 for an overview of the potential benefits and distinctive
features of different enriched environment approaches in long-term
immobilization.

In cases of functional decline due to immobilization, XR holds
the potential to mitigate the early stages of muscle disuse-related
declines in strength, which are attributed to loss of neuromuscular
function (Campbell et al., 2019). The central and peripheral neural
changes that occur can be effectively counteracted by corticospinal
excitability elicited by MI in combination with VR. To illustrate

the potential benefits of this approach, we adapted the figure from
Marusic et al. (2021) showing the effects of bed rest on muscle
atrophy and strength by adding a curve depicting the hypothetical
decline in muscle strength if a XR intervention were implemented
in conjunction with non-physical training interventions (Figure 2).

Despite the physical limitations imposed by illness or
postoperative conditions that prevent patients from participating in
conventional physical therapy, the psychosocial aspect of recovery
is often overlooked. Previous research has found an association
between the presence of anxiety and depressive symptoms and
prolonged bed rest after discharge from critical care (Peris et al.,
2011) and in experimental studies of bed rest (Ishizaki et al., 1994;
Dimec Èasar, 2015). Enriched environments have been shown to be
a critical tool in motivating patients to participate in rehabilitation
practices (Boiko et al., 2022). They provide a stimulating and
engaging atmosphere that promotes mental and emotional well-
being, thus addressing patients’ often neglected psychosocial needs,
resulting in better overall outcomes.

Neurobiological mechanisms
supporting beneficial effects of
enriched environments

Several enriched environments related neurobiological
mechanisms have thus far been recognized as neuroprotective and
their effectiveness was also demonstrated in neurodegenerative
disorders, such as in delaying the onset of Alzheimer’s disease (AD)
(Liew et al., 2022) and the progression of Parkinson’s Disease (PD)
(Alarcón et al., 2023). The following paragraphs highlight the most
commonly known mechanisms, however, are not meant to provide
an extensive overview (for this, see Liew et al., 2022; Alarcón et al.,
2023).

Several animal studies have demonstrated that exposure to
enriched environments led to beneficial effects on hippocampal
structures, such as promoting hippocampal neurogenesis (Garthe
et al., 2016), as well as increasing proliferation of progenitor
cells and hippocampal cell survival (Olson et al., 2006; Ramírez-
Rodríguez et al., 2014; Grońska-Pęski et al., 2021). Furthermore,
the enriched environments exposure also restored the impaired
neurogenesis in adult transgenic rodent models of AD after the
deposition of Aβ plaques (Rodriguez et al., 2011; Valero et al., 2011;
Llorens-Martín et al., 2013). The structural changes increasing the
volume of the hippocampus may result in improved cognitive
function (Hüttenrauch et al., 2016), while the hippocampal activity
of the excitatory neurons could promote learning and memory
formation (Stuchlik, 2014). Furthermore, enriched environments
revealed to promote the expression of neurotrophins, such as the
brain-derived neurotrophic factor (BDNF) (Kazlauckas et al., 2011;
Kondo et al., 2012; Xu et al., 2015; Dandi et al., 2018), and nerve
growth factors (NGF) (Torasdotter et al., 1998; Gelfo et al., 2011),
which induce the differentiation and survival of neurons (Miranda
et al., 2019), and regulate the excitatory and inhibitory transmission
in the adult brain.

The dopaminergic system plays a central role in the pathology
of PD and its dysfunction was implicated in movement and
coordination difficulties (Glenthøj and Fibiger, 2019). Rodent
models of PD mimic the neurodegeneration of the nigral
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FIGURE 2

Speculative decline in muscle strength following XR intervention in conjunction with non-physical intervention: Adapted from Marusic et al. (2021).

dopaminergic system by inducing lesions and these studies
have demonstrated that exposure to enriched environments
beneficially affected the dopaminergic system including dopamine
metabolism, the enzymes implicated in both dopamine synthesis
and degradation, dopamine receptors, and its storage into
vesicles (Jungling et al., 2017). The beneficial effects of enriched
environments were also demonstrated in other neurotransmitter
systems affected by PD, namely cholinergic, glutamatergic, and
GABAergic (Alarcón et al., 2023).

Taken together, the neurobiological mechanisms supporting
enriched environments, indicate that interventions combining
sensory, cognitive, and physical stimulation at a heightened level
could be used as a strategy for preventing cognitive/motor decline,
but also as an approach or supporting treatment in managing
aspects of complex neurodegenerative disorders.

Conclusions and future perspectives

From a neurophysiological standpoint, observing movements
promotes the development of motor skills (Ferrari, 1996). Among
cutting-edge technologies, XR presents a viable way to activate the
sensorimotor system and consequently boosting cognitive abilities
and adaptability. XR in combination with MI can serve as a tool
for enhanced sensorimotor feedback that promotes procedural
learning. The use of 3D visualization systems that provide real-time
360-degree visual scanning can enhance the effectiveness of MI by
allowing participants to rely on relevant stimuli and cues in a way
that mimics real-world scenarios, thus overcoming the limitations
of conventional 2D display methods used in AO. The enhanced
proprioception, i.e., the sense of the position and movement of the

body and its parts, and the vestibular system that arise from the
user’s head movements while using a VR device (Michalski et al.,
2019) provide a more interactive experience.

VR systems allow precise control of rehabilitation treatment,
including manipulation of stimuli and distractors, so therapy
sessions can be tailored to each individual’s needs. In this regard,
the sensory information delivered through head-mounted displays
goes beyond visual data, incorporating synchronized auditory
information to further immerse the participant in the desired
virtual environment. Current research focuses on incorporating
haptic stimuli into VR-assisted MI to enhance the illusion of
body ownership and the overall experience (Du et al., 2021).
In addition, studies showed that the use of synchronized visual-
haptic neurofeedback during MI can lead to improved outcomes in
traditional neurofeedback training with brain-computer interfaces,
particularly with respect to sensorimotor cortical activation (Wang
et al., 2019).

Emerging evidence suggests that XR-based enriched
environments may offer superior multisensory stimulation
than traditional approaches, such as AO techniques combined
with MI. However, the use of XR in bedridden patients is an
area that requires further investigation, as most studies were
limited to feasibility and usability assessments in symptomatic
patients. In the absence of randomized controlled trials of the
efficacy of XR in bedridden patients, it is difficult to draw definitive
conclusions about its effectiveness. Future research is needed to
fully understand the potential benefits and limitations of using
XR-based enriched environments for bedridden patients and
to explore how this technology can be integrated into existing
treatment protocols to improve patient outcomes.
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