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Abstract. When optimization is applied in real-world applications, optimal solutions that
do not take into account uncertainty are of limited value, since changes or disturbances in
the input data may reduce the quality of the solution. One way to find a robust solution
and consider uncertainty is to formulate the problem as a min-max optimization problem.
Min-max optimization aims to identify solutions which remain feasible and of good quality
under even the worst possible scenarios, i.e., realizations of the uncertain data, formulating
a nested problem. Employing hierarchical evolutionary algorithms to solve the problem re-
quires numerous function evaluations. Nevertheless, Evolutionary Algorithms can be easily
parallelized. This work investigates a parallel model for differential evolution using SciPy, to
solve general unconstrained min-max problems. A differential evolution is applied for both the
design and scenario space optimization. To reduce the computational cost, the design level
optimization is parallelized. The performance of the algorithm is evaluated for a different
number of cores and different dimensionality of four benchmark test functions. The results
show that, when the right parameters of the algorithm are selected, the parallelization can
be of high benefit to a nested differential evolution.
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1 Introduction

Any kind of real-world optimization problem contains to a degree uncertainty in its data, be it
by inherent stochasticity or due to errors. One way to consider this uncertainty and find a robust
solution to the problem is to formulate it as a min-max optimization problem [8]. This formulation
aims to find the best worst-case solution and hence the most robust.

Numerous approaches have been developed to solve the min-max optimization problem. Among
the traditional ones -which require a specific mathematical formulation- one can find branch-and-
bound algorithms [16] or approximation methods [2]. When such a formulation is not applicable,
Evolutionary Algorithms (EA) can be used. One of the first such EAs can be found in [6}(7], where
a genetic algorithm is used in a coevolutionary fashion, successfully solving min-max problems
that hold specific conditions. Another EA approach is using the inherent hierarchical formulation,
leading to nested algorithms and such a nested Particle Swarm Optimization algorithm can be
found in [13]. What is common knowledge about the EAs though, is that they require numerous
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iterations and function evaluations, making the computational cost prohibitively high. A popular
way to mitigate this problem is the use of surrogates, as suggested in [24], with some cost in
the accuracy though. A surrogate-assisted min-max multifactorial EA is proposed in [23] employing
evolutionary multitasking optimization and surrogate techniques. A min-max Differential Evolution
(DE) is proposed in [18] with many improvements to the original DE, designed specially for min-
max problems. Another nested approach was presented in [5], where a DE with an estimation of
distribution algorithm is proposed and a priori knowledge of the previous generations is utilized to
reduce the computational expense.

When dealing with populations, parallelism is inherent since each of the individuals who make
up the population is an independent component |14]. There are numerous of studies that deal with
different parallelization of EAs [1},[3L/20]. More specifically for DE -a popular EA that we use in
this study- parallel models can be found in [12,17,21]. Most of them refer to EAs that deal with
single level or multiobjective problems. Two parallel models of bilevel DE are suggested in [15],
that reduced drastically the computational time in a number of test functions. There is a study of
a co-evolutionary DE algorithm in C-CUDA for solving min-max problems in [10]. To the best of
our knowledge, there is no study that researches a parallel model for a purely hierarchical (nested)
DE for min-max problems.

One popular and user-friendly implementation of DE is in the SciPy python package [22]. It
gives the users the option to use different workers and evaluate the population in parallel. Given
its popularity and simplicity, it is a suitable choice to use this framework for this work. We apply
a DE algorithm for both the design and scenario space, using the parallelization option for the
design space. In this way, the design space population is evaluated in parallel, meaning that the
second-level DE of the scenario space is run in parallel.

We then proceed to test the method in four benchmark test-functions with different properties,
known from the literature. To test the scalability of the results, we scaled the test-functions up to
10 dimensions.

Our research questions are the following:

RQ 1: What kind of speedup do we achieve for different test-functions and different dimension-
ality of the problem?

RQ 2: Does the population size of the design space affect the speedup and how?

RQ 3: Does the DE mutation strategy of the design space affect the runtime?

In this study, we approach the first question and scratch the surface for the other two.

The organization of this paper is as follows. Section [2 defines the min-max optimization problem
and Section [3] gives an overview of the Differential Evolution and its nested form for solving min-
max problems and explains how it is parallelized in this work. The experimental setup, the test
functions used, along with the performance of the method are described in Section[d] Finally, Section
summarizes the paper and gives some ideas for future work.

2 Definition of the Problem

The general unconstrained min-max problem can be described as:

i 1
min max f(z, s) (1)
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where x is a solution selected from search space X and s a scenario chosen from the scenario
space S. The objective is to locate a solution x* € X that minimizes the worst-case objective
maxses f(x,s). The problem is considered symmetrical when the following condition is true

min max f(x,s) = maxmin f(x,s

zeX s€S f( ’ ) se€S zeX f( )

Symmetrical problems have independent feasible regions of the search and scenario space, making
their solution more tractable.

3 Differential Evolution for MinMax Problems

3.1 Overview of Differential Evolution

The traditional definition of Differential Evolution can be found in [19]. Following the standard
evolutionary algorithm schema, a population of candidate solutions undergoes the operations of
mutation, crossover, and selection. There exist numerous strategies, that DE can apply to mutate the
individuals through a difference mechanism. The most regularly used variant is to select two random
individuals from the current population and add their scaled vector difference to the individual
vector to be mutated (rand/1/bin). Another popular variant is best/1/bin, where as base vector
the best vector in the population is used. The pseudocode of the DE algorithm can be seen in
Algorithm

Algorithm 1: Pseudocode of DE.

Input : Population Size (NP), Max Generations (MaxGen), CR, F, Dimension D
Output: Optimal Solution

//Initialization

Generate NP individuals randomly

while budget condition do

for k = 1 to NP do

| calculate fit(zy)

end

for Kk = 1 to NP do
//mutation
Generate three random indexes 71, 72 and r3, where ri # ro #rz #k
VE =XG + Fx(XF, — X)) /* rand/1/bin */
/% best/1/bin: Vi¥ = X{ 4+ Fx (X2 - X3) */
//crossover

for i = 1 ton do
if rand(0,1)< CR then

| Uli] = Vili]
else
| Uli] = Xk[d]
end
end
end
//selection

if fit(US) < fit(XS) then
| Xt =ug
end

end

3.2 Hierarchical (Nested) Differential Evolution and Parallel Model

The main steps of the nested algorithm can be seen in Figure[I] Each time a Design Space individual
has to be evaluated, the algorithm runs a nested DE in order to find the optimal maximization
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solution in the scenario space. This can be seen with red dotted lines in the figure, where in the
sequential manner, the algorithm has to wait till the nested DE is done to proceed and evaluate
the next individual.

==nn gequential
=== parallel

Design space
population

Scenario Space DE

Initialize population with Return: .
Design Space members % - max fX1,s")
Solve Scenario Space DE - 1 Tl = argmax f(X1,5")
optimization for each Design 3 ®) r
Space member e v
N Evolve and Generate Design
Space Offspring Population o
Solve Scenario Space DE 3 ’
optimization for each offspring
—
Update Design Space . 4
Population . \ 4
Scenario Space DE
£ - Return:
§ — max f(Xn,s*)
n

Fig. 1: Flowchart of nested Differential Evolution Algorithm (DE).

The model implemented in this work makes use of the workers argument in scipy.optimize.differential_evolution
of the optimization package. The population is subdivided into workers sections and evaluated in
parallel, by using Python multiprocessing.PoolEl It should be noted, that only the objective function
evaluations are carried out in parallel, after the new population has evolved.

The model focuses on parallelization of the design space population, and it is similar to the
parallel upper-level model for bilevel problems presented in [15] El The population is subdivided
into workers sections and evaluated in parallel. Denoting Npop the design space population size
and nproc the number of processes, each section handles Npop/nproc individuals. Each process
handles a section of the evolved population and solves the scenario space problem with DE in order
to evaluate the new individuals. In Figure [I} the procedure is shown with green lines, where the
population is divided into sections and evaluated in parallel.

4 Experimental setup and Results

All cases have been independently run 20 times for each test instance on an Intel(R) Xeon(R) with
2 CPU E5-2680 v3 @ 2.50GHz that have 12 cores each and the Ubuntu 21.04 operating system. The
algorithms are implemented in Python 3.7 (Python SciPy library [22]), using the parallelization of
differential evolution for SciPy. The relevant code can be found in [4].

3 lhttps://docs.scipy.org/doc/scipy /reference/generated /scipy.optimize.differential _evolution.html
4 The specific model uses the traditional synchronous parallelization of the DE, where also the operators
are applied in parallel to produce the population.
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4.1 Benchmark Test Functions

The performance of the proposed algorithm is tested on 4 benchmark problems of min-max opti-
mization, as found in . The functions are the following:

Test function f; :
: 2 2
= (21— 5)? — (s1 — 2
minmax f1(z, s) = (21— 5)° — (s1 — 5) (2)
with € [0,10],s € [0,10]. The known solution is #* = 5 and s* = 5 with an optimal value of
fi(x*,s*) = 0. This test function is a saddle point function. The function along with the known

optimum is plotted in Fig[2a] and it serves as an example of a symmetric function.
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Fig. 2: 3D mesh plots of the test functions. The black circle corresponds to the known optimum.

Test function fo:

néi)r(l meaéc fa(x,s) = min {3 — 0.221 + 0.3s1,3 + 0.227 — 0.1s1} (3)

with € [0,10],s € [0,10]. The optimal points are 2* = 0 and s* = 0 and the optimal value
is approximated at fo(z*,s*) = 3. It is a two-plane asymmetrical function. The 3-D plot of this
function, along with the known optima, are shown in Fig.

Test function f3:
sin (z1 — s1) @)

min max f3(x,s) =
ze€X s€S f3( ’ ) ,/x%-’-s%
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with z € [0,10], s € [0,10]. The known solution is * = 10 and s* = 2.1257 with an optimal value
of f5(z*,s*) =0.097794. It is a damped sinus asymmetrical function, as shown in Fig.

Test function fy:
cos (y/x3 + s7)

min max fy(x, s) = (5)

zeX seS N \/er 10

with « € [0,10],s € [0,10]. The known optimal solutions are z* = 7.0441 and s* = 10 or s* = 0
and the optimal value is fq(2*, s*) = 0.042488. Tt is a damped cosine wave asymmetrical function,

as shown in Fig.
To further evaluate the performance, the 4 test functions are modified to be scalable as follows

D
~ _ RV (e _E\2
min max fy(z, s) = ;(w‘n 5)° = (sn —5) (6)
D D
Jr;xéi)rgl max fa(x,s) = min { ; 3 — 0.2z, + 0.3sy, 7; 34 0.2z, — 0.1s,} (7)

D .
S _
min max f(x, s) = Y oy sin (z, — sp)

S N
D
., cos (/22 + 52
min max fy(x, s) = 2n=1 (Vx5 +57)

D
rEX s€S Zn:l 'r72L + S’?L + 10

where D is the dimensionality of the problem and with z € [0,10]”,s € [0,10]”. The first two
problems can also be found in [18|, while the other two are scaled for the first time. For all the
instances we test the following dimensionality: D=[1,2,5,10]. The dimensionality is scaled for both
the design and scenario space.

(8)

(9)

4.2 Parameter Settings

The control parameter values used are reported in Table [1} unless stated otherwise. We kept the
default SciPy crossover, mutation, and strategy values. The values of population and generation
size are selected to be close to the ones in similar experiments done in [9]. Note that to reach better
accuracy for the higher dimensionality, a larger number of population and/or generation sizes are
needed. Nevertheless, we kept the sizes the same for reasons of computational budget and clear
comparison in terms of running times. It is -in any case- not in the scope of this paper to examine
the accuracy.

4.3 Results and Discussion

4.3.1 Case study 1: Evaluation of different test functions and dimensionality
In Tables and 5] the statistical results for the test-functions are reported. More specifically,
we report the median and standard deviation of the runtime in seconds and the speedup. The
speedup measures the ratio between the sequential and the parallel execution times (runtime).
In Figure [3] the runtime and the speedup curve for each test function and instance with respect
to the different number of cores used are depicted. More specifically, the Figures 3B Bdl3] and [BL]
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Table 1: Selected control parameters.

Design Space Scenario Space

Crossover rate 0.7 0.7
Mutation rate U(0.5, 1) U(0.5, 1)
Population size 20 10
Number of generations 5 10
Strategy best1bin best1bin

show the speedup curve for the test functions under analysis and the different dimensionality. It
is noticed that for fi,fs and f4 the speedup considering up to 16 processors is increasing for each
dimensionality. Same for fs, but only for 2/2D,5/5D, and 10/10D. A different behavior is spotted
for fo and 1/1D, as already for 2 cores, the speedup is decreasing, only to start improving again
till we reach the 8 cores. For all test functions, for the 1 dimension case, the speedup decreases
after the 16 processors. In general, the speedup increases with the increase of the dimension as it is
expected, since calculating the objective function is more expensive. This can also be seen in Figures
and showing the running times in seconds for each function and each dimensionality
with respect to the number of cores used. It is clear the required running times are also ”scaled”
to the dimension for all the test functions.

For the higher dimension of the problems, meaning 5/5D and 10/10D, the speedup is always
increasing, except for f4 and 10/10D, which decreases slightly for 24 cores. It is worth noting that
for 5/5D and 10/10D dimensionality, there is almost a 10 times speedup when using 24 processors
for f. For example, in the sequential case for f; and 10/10D, the algorithm needs 111.7 seconds
or almost 2 minutes to run, while after the parallelization needs only 10 seconds. For the rest of
the test functions the speedup for 5/5D and 10/10D ranges around 4-5. As an example, for f4 and
10/10D, the sequential algorithm needs around 260 seconds or almost 4 minutes to run, while after
the parallelization needs almost 1 minute. This indicates the positive effects of parallelization on
the min-max problem especially when the dimension is higher.

For f3 and fy, 5/5D shows greater improvement with respect to the number of cores used than
10/10D. These results are very close though, and more experiments and sample runs are needed
to correct the accuracy. For lower dimensions, especially for 1/1D, the performance drops and the
speedup is worsening with the number of cores.

To show that the parallelization has little effect on the accuracy of the results found, in Tables
and We report the median accuracy in % for all the test functions and instances. We calculate
the error rate as the absolute differences between the best objective function values provided by
the algorithm and the known global optimal objective values of each test function. The accuracy
formula provides accuracy as a difference of error rate from 100%. This is expressed as

Acc% =100 — |f — f*[«100/f* (10)

where f  and f* are the best found and the true optimal values, respectively. As is expected, the
accuracy achieved in all cases does not significantly fluctuate among different cores. The accuracy
for fy and for 10/10D is in general lower (almost half). Asymmetrical test functions constitute a
more complicated problem and a different parametrization of the DE might be needed (eg. larger
population size, more generations, etc.) Nevertheless, the algorithm yields to the known global op-
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tima in the other cases, meaning the nested approach can solve both symmetrical and asymmetrical
problems.
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Fig. 3: Runtime and speedup plots of the test-functions.
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Table 2: Running Time Results in seconds and Median Accuracy for the fi.

Dimension Cores Median Std.dev. Speedup | Median Acc %
1 1.030820 0.104606 - 99.99
2 0.730346  0.124426 1.411412 99.99
1 4 0.592372  0.097924 1.740156 99.99
8 0.531529 0.116901 1.939347 99.99
16 0.412243 0.082602 2.500514 99.99
24 0.549554  0.104442 1.875738 99.99
1 3.876020  0.038887 - 100.0
2 2.277507  0.044546 1.701870 100.0
2 4 1.464805 0.048612 2.646099 100.0
8 0.962618 0.189352 4.026541 100.0
16 0.664449 0.039447 5.833436 100.0
24 0.706010 0.086775 5.490039 100.0
1 24.739887 0.136860 - 99.99
2 13.712247 0.146743 1.804218 99.99
5 4 8.226063 0.114659 3.007500 99.99
8 5.129729  0.109766 4.822844 100.0
16 3.207961  0.146968 7.712028 99.99
24 2.811062 0.128049 8.800903 99.99
1 111.715032 1.033029 - 99.99
2 59.729019 0.520408 1.870364 99.99
10 4 34.562721 0.520408 3.232241 99.99
8 20.576803 0.492896 5.429174 99.99
16 13.552745 0.520146 8.242982 99.99
24 10.929520 0.637464 10.221403 99.99

Table 3: Running Time Results in seconds and Median Accuracy for the fs.

Dimension Cores Median Std.dev. Speedup|Median Acc %

1 1.596429  0.204669 - 100.0

2 1.584016  0.300120 1.007836 99.96

1 4 0.658811 0.278364 2.423197 100.0
8 0.441545  0.269987 3.615554 100.0

16 0.496514  0.329453 3.215277 99.99

24 0.450400 0.268212 3.544468 100.0

1 6.620913  1.047487 - 98.88

2 4.412415 0.717296 1.500519 98.90

2 4 3.308857  0.868970 2.000967 98.76
8 2.593604  0.842654 2.552785 98.76

16 2.137756  0.640007 3.097133 99.17

24 2.051248  0.961823 3.227749 99.21

1 38.835937  2.556689 - 85.28

23.445822 3.648188 1.656412 83.84

5 4 16.113869 1.323346 2.410094 85.42
8 12.053100 1.986224 3.222070 85.08

16 9.801519  1.462326 3.962236 85.07

24 9.129921  2.965911 4.253699 83.98

1 152.548321 3.390158 - 39.78

2 95.240152 9.687155 1.601723 42.61

10 4 64.895123 10.153455 2.350690 41.13
8 44.688494 5.504860 3.413593 44.40

16 36.344648 7.485144 4.197271 41.55

24 33.554359 5.100844 4.546304 45.15




Table 4: Running Time Results in seconds and Median Accuracy for the fs.
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Dimension Cores Median Std.dev. Speedup|Median Acc %
1 1.066014  0.111083 - 99.99
2 0.751404 0.059305 1.418697 99.99
1 4 0.488195 0.061816 2.183584 99.99
8 0.385446  0.087810 2.765667 99.99
16 0.368403 0.063252 2.893611 99.99
24 0.423447  0.14840 2.517468 99.97
1 5.818274  0.672975 - 96.86
2 3.851147  0.495885 1.510790 98.08
2 4 2.861794  0.544807 2.033086 97.97
8 2.196644  0.623258 2.648710 97.12
16 1.784786  0.588991 3.259928 97.14
24 1.860299  0.584155 3.127601 97.00
1 39.398736 1.696303 - 98.20
2 25.141406 1.523187 1.567086 97.97
5 4 17.753222 1.242934 2.219244 97.68
8 12.665715 1.918927 3.110660 98.52
16 11.165424 1.870048 3.528638 97.44
24 9.216848  1.711269 4.274643 97.08
1 197.311041 12.023453 - 97.91
2 122.471174 8.766168 1.611081 97.60
10 4 78.167577 10.112983 2.524206 97.87
8 63.370734 5.421352 3.113599 97.41
16 56.940333 7.925534 3.465225 98.21
24 54.158177 7.496917 3.643236 97.64

Table 5: Running Time Results in seconds and Median Accuracy for the fy.

Dimension Cores Median Std.dev. Speedup|Median Acc %
1 1.398317 0.171784 - 94.14
2 1.246892  0.255854 1.121442 93.94
1 4 0.913910 0.189214 1.530038 97.63
8 0.680622  0.194613 2.054470 97.19
16 0.659713  0.161889 2.119585 97.53
24 0.785280  0.204446 1.780661 97.86
1 6.071163  0.607564 - 96.89
2 4.111252  0.752849 1.476719 97.67
2 4 3.060104 0.416516 1.983972 97.57
8 2.269734  0.754214 2.674834 98.52
16 1.748137 0.437059 3.472932 97.68
24 1.926225 0.412750 3.151845 97.31
1 45.444606 2.641320 - 96.83
2 28.333389 3.517377 1.603924 98.03
5 4 20.544451 2.007804 2.212014 97.92
8 15.674804 2.192337 2.899214 97.79
16 12.987283 2.854605 3.499162 96.18
24 10.972779 2.310476 4.141577 97.86
1 260.356936 14.329717 - 94.35
2 157.981917 11.599310 1.648017 93.44
10 4 108.636768 14.879940 2.396582 95.48
8 80.369076 10.209701 3.239516 95.98
16 67.907552 7.578134 3.833991 94.72
24 64.801424 8.651000 4.017766 96.68

11
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4.3.2 Case study 2: Influence of the population size

To evaluate the effect of the design space population size on the speedup of the algorithm, test
function f; with 1/1D is run for different population sizes for 20 independent runs. The population
size = 4,8,16,24,48 were selected to match the number of cores, as the design space population is
the one that is divided into a number of processes and then calculated in parallel and might give
some insight. Also, the population sizes of 5,10,20, and 30 are tested, as they are more commonly
selected values.

In Figure [4] the speedup is reported. Also, in Figure [f] the stacked bar charts of speedup for
the different population sizes and the number of cores are shown. In this graph, each value of the
different population size speedup is placed after the previous one and the total value of each bar
is all the segment values added together. As is expected, the higher the population size, the higher
the speedup achieved by adding cores. Moreover, in most cases, as the number of cores exceeds
the population size, the speedup is worsened. This can be specifically noted for npop = 8 and the
number of cores > 8, as well as for npop = 20 and the number of cores > 16. The combination
of the number of cores and the population size of the design space is affecting the speedup of the
parallel model. There is a significant decrease in the speedup for npop = 48 and cores = 24, which
might be due to the communication costs. More experiments along with profiling tools are needed to
showcase the exact influence of selecting population size in analogy to the available cores, especially
to higher dimensionality and larger population sizes, which are expected to show larger differences
in the runtimes and are the cases that will be most benefit by parallelization.

Speedup for function f1

4.5 A
4.0
—— npop =4
3.5 1 ~—— npop =5
—— npop = 8
3.0 1 —— npop = 10
—— npop = 16
2.5 1 —— npop = 20
2.0 1 npop = 24
—— npop = 30
1.5 npop = 48
1.0 1

No of Cores

Fig. 4: Speedup plots of the function f; for dim=1 and different design space population size.

4.3.3 Case study 3: Influence of the strategy

Since the implementation of the parallelization is synchronous, it would be interesting to see if
there is any influence of the design space strategy. Therefore, we tested the algorithm by changing
the strategy to rand1bin - the most commonly used. The runs refer to function f; and 1/1D. In
Figure [6] the speedup bar chart is shown for the different strategies and dimensionality with respect
to the number of cores. In the cases that there is a difference, rand1bin shows a larger speedup.
There is an inherent sequential operation of finding the best individual of the current generation,
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Speedup for function f1
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Fig. 5: Speedup stacked bar charts of the function f; for dim=1 and different design space population
size (npop).

and this result agrees with what was noted also in . More experiments are needed to reach safe
conclusions and are in our future steps.

5 Conclusion and Future Work

In this work, the parallel model for solving min-max optimization problems via the user-friendly
Python SciPy library was evaluated. The approach was tested for a nested DE and on four test
functions from the literature. The four test functions were symmetrical and asymmetrical to test
the behavior of the model on different min-max problems. Moreover, the problems were scaled to
test the effect of the model also on different dimensions of the problems. In addition, a first insight
was given about the effect of the population size and the strategy used on the speedup. The results
show that the model is drastically reducing the computational time when the correct combination
of the number of cores and population size of the design space is selected. The results especially
indicated the large decrease of computational time on problems of higher dimensionality and when
a larger population size is needed. This can motivate research of large-scale min-max problems via
metaheuristics.

As noted above, the effect of the population size and the strategy on the speedup is our ongoing
research. Though SciPy is used in this work, other more sophisticated parallel frameworks, such as
CUDA with multi-CPU and multi-GPU can be used to further take advantage of the natural par-
allelization of DE of both levels. Finally, it would be interesting to test the current implementation
on engineering applications and real-world problems.
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