Skip to main content

Evaluation of Parallel Hierarchical Differential Evolution for Min-Max Optimization Problems Using SciPy

  • Conference paper
  • First Online:
Bioinspired Optimization Methods and Their Applications (BIOMA 2022)

Abstract

When optimization is applied in real-world applications, optimal solutions that do not take into account uncertainty are of limited value, since changes or disturbances in the input data may reduce the quality of the solution. One way to find a robust solution and consider uncertainty is to formulate the problem as a min-max optimization problem. Min-max optimization aims to identify solutions which remain feasible and of good quality under even the worst possible scenarios, i.e., realizations of the uncertain data, formulating a nested problem. Employing hierarchical evolutionary algorithms to solve the problem requires numerous function evaluations. Nevertheless, Evolutionary Algorithms can be easily parallelized. This work investigates a parallel model for differential evolution using SciPy, to solve general unconstrained min-max problems. A differential evolution is applied for both the design and scenario space optimization. To reduce the computational cost, the design level optimization is parallelized. The performance of the algorithm is evaluated for a different number of cores and different dimensionality of four benchmark test functions. The results show that, when the right parameters of the algorithm are selected, the parallelization can be of high benefit to a nested differential evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html.

  2. 2.

    The specific model uses the traditional synchronous parallelization of the DE, where also the operators are applied in parallel to produce the population.

References

  1. Adamidis, P.: Parallel evolutionary algorithms: a review. In: Proceedings of the 4th Hellenic-European Conference on Computer Mathematics and its Applications (HERCMA 1998), Athens, Greece. Citeseer (1998)

    Google Scholar 

  2. Aissi, H., Bazgan, C., Vanderpooten, D.: Min-max and min-max regret versions of combinatorial optimization problems: a survey. Eur. J. Oper. Res. 197(2), 427–438 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alba, E.: Parallel evolutionary algorithms can achieve super-linear performance. Inf. Process. Lett. 82(1), 7–13 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Antoniou, M. (2022). https://github.com/MargAnt0/ParallelMinMax_Scipy

  5. Antoniou, M., Papa, G.: Differential evolution with estimation of distribution for worst-case scenario optimization. Mathematics 9(17), 2137 (2021)

    Article  Google Scholar 

  6. Barbosa, H.J.: A genetic algorithm for min-max problems. In: Goodman, E.D. (ed.) Proceedings of the First International Conference on Evolutionary Computation and Its Applications, pp. 99–109 (1996)

    Google Scholar 

  7. Barbosa, H.J.: A coevolutionary genetic algorithm for constrained optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3, pp. 1605–1611. IEEE (1999)

    Google Scholar 

  8. Beyer, H.G., Sendhoff, B.: Robust optimization-a comprehensive survey. Comput. Methods Appl. Mech. Eng. 196(33–34), 3190–3218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cramer, A.M., Sudhoff, S.D., Zivi, E.L.: Evolutionary algorithms for minimax problems in robust design. IEEE Trans. Evol. Comput. 13(2), 444–453 (2008)

    Article  Google Scholar 

  10. Fabris, F., Krohling, R.A.: A co-evolutionary differential evolution algorithm for solving min-max optimization problems implemented on GPU using C-CUDA. Expert Syst. Appl. 39(12), 10324–10333 (2012)

    Article  Google Scholar 

  11. Jensen, M.T.: A new look at solving minimax problems with coevolutionary genetic algorithms. In: Metaheuristics: Computer Decision-Making, pp. 369–384. Springer, Boston (2003). https://doi.org/10.1007/978-1-4757-4137-7_17

  12. Kozlov, K., Samsonov, A.: New migration scheme for parallel differential evolution. In: Proceedings of the International Conference on Bioinformatics of Genome Regulation and Structure, pp. 141–144 (2006)

    Google Scholar 

  13. Laskari, E.C., Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization for minimax problems. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002 (Cat. No. 02TH8600), vol. 2, pp. 1576–1581. IEEE (2002)

    Google Scholar 

  14. Luong, T.V., Melab, N., Talbi, E.G.: GPU-based island model for evolutionary algorithms. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO 2010, pp. 1089–1096. Association for Computing Machinery, New York (2010). https://doi.org/10.1145/1830483.1830685

  15. Magalhães, T., Krempser, E., Barbosa, H.: Parallel models of differential evolution for bilevel programming. In: Proceedings of the 2018 International Conference on Artificial Intelligence (2018)

    Google Scholar 

  16. Montemanni, R., Gambardella, L.M., Donati, A.V.: A branch and bound algorithm for the robust shortest path problem with interval data. Oper. Res. Lett. 32(3), 225–232 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pedroso, D.M., Bonyadi, M.R., Gallagher, M.: Parallel evolutionary algorithm for single and multi-objective optimisation: differential evolution and constraints handling. Appl. Soft Comput. 61, 995–1012 (2017)

    Article  Google Scholar 

  18. Qiu, X., Xu, J.X., Xu, Y., Tan, K.C.: A new differential evolution algorithm for minimax optimization in robust design. IEEE Trans. Cybern. 48(5), 1355–1368 (2017)

    Article  Google Scholar 

  19. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sudholt, D.: Parallel evolutionary algorithms. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 929–959. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2_46

    Chapter  Google Scholar 

  21. Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Parallel differential evolution. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), vol. 2, pp. 2023–2029. IEEE (2004)

    Google Scholar 

  22. Virtanen, P., et al.: SciPy 1.0 contributors: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2

  23. Wang, H., Feng, L., Jin, Y., Doherty, J.: Surrogate-assisted evolutionary multitasking for expensive minimax optimization in multiple scenarios. IEEE Comput. Intell. Mag. 16(1), 34–48 (2021)

    Article  Google Scholar 

  24. Zhou, A., Zhang, Q.: A surrogate-assisted evolutionary algorithm for minimax optimization. In: IEEE Congress on Evolutionary Computation, pp. 1–7. IEEE (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission’s H2020 program under the Marie Skłodowska-Curie grant agreement No. 722734 (UTOPIAE) and by the Slovenian Research Agency (research core funding No. P2-0098). The authors would like to thank Peter Korošec and Gašper Petelin for interesting discussions regarding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Antoniou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antoniou, M., Papa, G. (2022). Evaluation of Parallel Hierarchical Differential Evolution for Min-Max Optimization Problems Using SciPy. In: Mernik, M., Eftimov, T., Črepinšek, M. (eds) Bioinspired Optimization Methods and Their Applications. BIOMA 2022. Lecture Notes in Computer Science, vol 13627. Springer, Cham. https://doi.org/10.1007/978-3-031-21094-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21094-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21093-8

  • Online ISBN: 978-3-031-21094-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics