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Featured Application: Bridge Weigh-in-motion for Railway bridges.

Abstract: This study describes the development and testing of a railway bridge weigh-in-motion
(RB-WIM) system. The traditional bridge WIM (B-WIM) system developed for road bridges
was extended here to calculate the weights of railway carriages. The system was tested using
the measured response from a test bridge in Poland, and the accuracy of the system was assessed
using statically-weighed trains. To accommodate variable velocity of the trains, the standard
B-WIM algorithm, which assumes a constant velocity during the passage of a vehicle, was adjusted
and the algorithm revised accordingly. The results showed that the vast majority of the calculated
carriage weights fell within ±5% of their true, statically-weighed values. The sensitivity of
the method to the calibration methods was then assessed using regression models, trained by
different combinations of calibration trains.
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1. Introduction

Today, with the general trend of increasing axle loads and operating speeds of trains, the condition
of railway bridges is of greater concern, which requires more detailed analyses. These detailed
assessments are even more important for old bridges, which are often subject to higher loads than
originally envisaged. Furthermore, as rail markets across Europe are deregulated, track owners will
have less control over train operations. To ensure compliance of train operators with the specified
weight limits, simple and efficient methods of calculating train weights are required. This has led to an
interest in methods of weighing trains in motion in recent years [1–4].

The accurate modelling of load in bridge assessments has been increasingly recognized in research
projects conducted in Europe [5–9], the USA [10], Canada [11–15], Japan [16,17], China [18,19],
and elsewhere. Inaudi [20] has conducted an overview of 40 bridge monitoring projects carried out
in the period, 1996–2010, in 13 different countries. Bridge weigh-in-motion (B-WIM), first proposed by
Moses in the 1970s [21], is a common technique used for road traffic load measurements in studies
of this kind. While weigh-in-motion (WIM) technology [22] refers generally to the various methods
of calculating axle and gross vehicle weights (GVW) of vehicles travelling at full speed, B-WIM is a
method of collecting such data using measurements taken from an instrumented bridge [23].

A large body of research has been carried generated in B-WIM, resulting in commercial systems
becoming available, notably the SiWIM system, adapted for use in this study [24]. Most research
has been focused on B-WIM for road bridges; railway bridges have received relatively little attention [25]

Appl. Sci. 2020, 10, 4708; doi:10.3390/app10144708 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-1526-2519
https://orcid.org/0000-0002-6867-1009
http://dx.doi.org/10.3390/app10144708
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/14/4708?type=check_update&version=2


Appl. Sci. 2020, 10, 4708 2 of 17

to date. Methods currently used for weighing trains in motion generally consist of either measuring
strains directly in the rail or measuring the vertical axle forces transmitted through the rail to the sleepers
and their supports. The first method allows trains to be weighed while travelling at speed. However,
the usual electrical resistance strain sensors are infeasible on electrified tracks due to electrical induction
surges. The second method is more accurate but requires the installation of a solid foundation under
the track and that trains travel at very low speeds during measurement.

The use of B-WIM technology allows for the large-scale collection of railway carriage weight data
while trains are in regular service. The extension of the B-WIM concept to railway bridges was first
proposed in Sweden [26]. Liljencrantz and Karoumi [27] then developed a toolbox, programmed
in MATLAB, for monitoring bridge behaviour during train passage based on the algorithm developed
in [26]. Carvalho Neto and Veloso [3] adopted B-WIM to weigh trains in motion on a reinforced
concrete railway viaduct near São Luís, Brazil. Gonzalez and Karoumi [28] implemented a B-WIM
system to monitor fatigue on the Söderström Railway Bridge in Sweden with a reported axle load
accuracy of ±15% and bogie load accuracy of ±8%, both with 95% confidence. Marques et al. [4]
proposed a method for traffic characterization, adopting techniques developed by others [21,26,29],
that describes the use of both WIM and B-WIM to estimate axle loads and the geometry of trains
crossing the old Portuguese Trezói Bridge, assuming a constant velocity during the passage of the train.

In the context of B-WIM, there are significant differences between road and railway bridges.
Railway bridges have the advantages of:

• Trains being constrained to travel on the tracks—this eliminates problems that can arise due to
variation in the transverse vehicle position in the lane or vehicles changing lanes on road bridges.

• Railway tracks being smoother than road surfaces—trains tend to have less vehicle dynamic
excitation than trucks.

• Train configurations being less variable than road vehicles—making it easier to identify errors
in axle detection and calculated weights.

Disadvantages of railway bridges are that:

• The mass of a train often represents a larger proportion of the mass of the bridge—this can result
in changes in the dynamic behaviour of the system. Some of the more sophisticated B-WIM
algorithms use the dynamic equations of motion to solve for the dynamic forces applied by axles
to bridges [30,31]. However, even this advanced method makes the assumption of a moving
“force” on the bridge and neglects the dynamic interaction of the vehicle mass with the bridge.
This assumption is generally reasonable for road bridges, where the mass of the vehicle is typically
less than about 4% of the mass of the bridge. For railway bridges, the mass of the train may be 10%
or more of the bridge mass. The influence of the large mass of a train on the dynamic behaviour
of the system may cause inaccuracies in the calculated weights using standard B-WIM methods.
It may be necessary to develop new, more sophisticated algorithms that allow for the influence of
the train mass/bridge mass dynamic interaction.

• Trains have many more axles than do trucks—trains consist of numerous axles that are generally
in groups of two or three. Many closely spaced axles can lead to ill-conditioning of the equations
used in conventional B-WIM systems.

• Axle detection may be more difficult for railway bridges—train axles can easily be identified by
instrumenting the rails. However, it is not always feasible to instrument the rail, specifically on
busy lines where rail closure is not an option, or where the use of electrical resistance gauges
is infeasible on electrified systems. Where the rail cannot be instrumented, it may be difficult
to identify individual axles within groups, especially for ballasted tracks where the axle forces
are distributed through the sleepers and the ballast and measured signals do not show peaks for
individual axles.
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• In the light of the difficult and possibly erroneous axle detection, a general algorithm for rolling
stock identification would be very complex. The issue is further complicated by the presence of
Jacobs bogies, commonly found on articulated railcars.

Building on lessons learned in developing road B-WIM, this paper describes the development
and testing of a new railway bridge WIM system (RB-WIM). Unlike a previously reported study,
trains were weighed statically to provide an evidence base for accuracy assessment. Changing speed
was identified as a significant issue for trains and the algorithm was adapted to deal with it. To the best
of the authors’ knowledge, this is the first time that the constant velocity assumption has been replaced
with an assumption that each individual carriage may have a different velocity. Constant velocity is a
reasonable assumption for road vehicles but, given the length of a typical train, the velocity can change
significantly during the train passage. The following sections provide details on how relative carriage
velocity can impact the accuracy of the algorithm and how the algorithm was amended to account for
the non-constant velocity.

The system was developed as part of BridgeMon, a two-year research project funded under
the European Commission’s 7th Framework programme. A steel truss bridge at Nieporęt
in Poland was used as a case study and to test the accuracy of the system.

2. RB-WIM Algorithm

Most operational B-WIM algorithms work on the assumption of pseudo-static conditions (without
considering the dynamic effects), similar to that proposed by Moses [21]. This is built upon
the observation that, during the passage of a truck, the bridge oscillates about a static response.
The same concept is adopted here, using the well-established B-WIM approach, but allowing for
non-constant train speed during the bridge crossing event. Assuming strain transducers attached to
each bridge beam or strip of a slab at G measurement points, the average measured strain at time, t,
ε(t), can be found by averaging the individual values:

ε
(
t j
)
=

1
G

G∑
i

εi(t) = CF

G∑
i

εi(t) (1)

where εi(t) is the strain in the ith girder or section of slab at time t, and CF is a calibration factor.
The calibration factor CF can also incorporate strain transducer factors relating strain to voltage and is
obtained experimentally by correlating the B-WIM results for some vehicles with their true axle loads,
as measured on static scales.

In the B-WIM algorithm, the number of unknowns for each vehicle is equal to the number of axles,
N, and these are determined by at least N different measurements recorded for different longitudinal
positions of the vehicle along the bridge. Setting up the equations requires the strain influence lines, I(x).
The procedures to calculate a bridge influence line based on measurements are described in Section 2.2.
Taking the origin at the peak of the influence line and letting the first axle arrive at this point at time
zero, the first axle is at x = vt at time t, where v is velocity. Hence, the ith axle is at x = v(t – ti) at time t,
where ti is the time interval between the arrivals of the 1st and ith axles. The B-WIM weighing challenge
is then to minimise the sum of squares of differences between the measured strains of Equation (1)
and the theoretical equivalents, given as the sum of contributions from each axle:

min
∑ε(t) − N∑

i=1

AiI[v(t− ti)]


2

(2)

where summation is over the number of scans (each corresponding to a different point in time), Ai is
the weight of axle i, N is the number of axles, and I(x) is the influence line value. With a scan rate of 512
samples per second and vehicle passage duration of the order of seconds, the number of equations is
typically one or two orders of magnitude greater than the number of unknowns. This over-determined
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system of equations is solved for Ai, in the least-square sense, with the use of the singular value
decomposition algorithm [32].

2.1. Train Velocity and Axle Determination

Commercial B-WIM for road vehicles breaks the continuous strain signal into segments of
data known as bridge loading “events”. The settings for the splitting algorithm are chosen so that
the segments contain enough data to ensure that the influence of the vehicles within each event
do not extend beyond event boundaries. The weighing algorithm uses these events as basic units
of information.

In addition to the signals from the strain transducers, two additional classes of signal need to
be acquired in order to solve the system of equations: signals from which the axles are detected
and the vehicle velocity is computed. The requirements for these classes of signals are different.
Calculating the vehicle velocity requires at least two sensors mounted at so-called speed measurement
points (SMPs), which need to be located at different longitudinal locations along the bridge. The exact
shapes of these signals are not crucial, as long as the vehicle can be clearly identified in the signals.
While sharper and more symmetrical peaks will give better speed accuracy, relatively smooth signals
have been found to be sufficient.

In contrast to SMPs, sensors located at the axle detection measurement points (ADMPs) need
to have pronounced peaks in order to accurately determine the axle positions. It is possible to use
advanced filtering and vehicle reconstruction algorithms to partially mitigate this [33], but it is much
better to start with good signals. Depending on the details of the installation, a sensor may play more
than one role. For example, on a typical road installation, one of the SMPs may be used as an ADMP.
In the case of the tested railway bridge in Poland, a separate sensor, dedicated to axle detection, needed
to be installed, as explained below.

The correlation between two signals from SMPs defines the time shift of one signal relative to
the other and hence is used to find the speed. An example for a one-carriage passenger train is
presented in Figure 1. The solid and dashed traces of Figure 1a represent the signals measured at
the first and the second SMP, respectively; Figure 1b shows the correlation. The location of the peak
in the correlation is used to determine the time shift, 2.475 s in this case. The calculated time shift
and the known distance between the SMPs are used to determine the speed of the vehicle.
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Once the vehicle speed is known, the axles of a train are detected using the same algorithm used
for road bridges [33]. The signal from the sensor is conditioned by applying two moving average filters
with different averaging lengths. The moving average with the shorter length is used to smooth out
the high-frequency noise; the other is used to determine the general shape of the response. The two
filtered signals are subtracted, and the resulting difference is examined to identify all peaks above a
specified threshold level. These peaks correspond to the passing of individual axles. Figure 2 shows
the axle detection signal and the conditioned signal for a one-carriage passenger train. The conditioned
signals can be seen to have clear peaks corresponding to the four passing axles.
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Figure 2. Raw axle detection measurement point (ADMP) signal and conditioned signal for a
one-carriage passenger train.

Once the speed of the vehicle and the times of passage of individual axles have been obtained,
the intra- and inter-bogie spacings are calculated.

2.2. Influence Lines

Influence lines (IL) are key properties of a bridge, defining how it responds to loading at a
given measurement point [24]. It has been shown that influence lines should be calculated directly
from measurements [34] since theoretical influence lines rarely provide an accurate description of
bridge behaviour. Two methods of “measuring” influence lines for bridges are known, the SiWIM
approach [33] and the Matrix Method [35]. The Matrix Method uses vehicles of known axle loads
and spacings and an inverse Moses algorithm to derive the experimental influence lines. This method
is more straightforward and less time-consuming but requires vehicles of known weight, which are
not always available at the time of setting-up the B-WIM system. More recently, a variation on
this approach addresses the issue of requiring a vehicle of known weight [36].

The SiWIM system, used here, calculates the influence lines for the bridge using selected vehicles
with unknown axle loads. Numerous evaluations of influence lines can be averaged to improve
accuracy. Such ILs are normalised and require a scalar calibration factor to convert relative axle weights
to actual weights (the CF parameter in Equation (1)). A detailed explanation of this general procedure
of IL calculation can be found in [33]. Briefly, the system models the IL with a cubic spline, chosen
because its general characteristics match well with real influence lines—it is a curve of third order,
continuous and smooth in first and second derivatives [32]. Some of the spline knots, representing
supports and endpoints, are fixed, while some are allowed to vary. In order to determine the values
and thus the shape of the IL, Equation (2) is used. Contrary to its use in weighing, where the only
unknowns are axle loads, Ai, the function I(x) is unknown when calculating the IL. Since the system is
no longer a linear function of all unknowns, Powell’s minimisation [32] is used to solve the problem.
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Figure 3 shows the IL calculated for the Nieporęt Bridge, for sensors mounted at the base of
the truss at mid-span. The white points represent the fixed knots, while the ordinates of the two grey
points were varied in order to obtain the best fit. For this bridge, local bending of the stringer beams
dominated over global truss bending, making the influence line similar to that for a continuous beam
with supports at truss chord locations. This effect was accentuated by setting the fixed knots to zero at
the chord locations (Figure 3).
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Figure 3. Influence line for the Nieporęt Bridge.

A theoretical influence line for an infinitely thin bridge (Euler Bernoulli beam) has a sharp peak at
mid-span where the derivative is discontinuous. In contrast, the peak of the influence line for a real
bridge has a rounded peak, which is approximated by a circular portion, whose radius corresponds
roughly to the superstructure thickness. This peaked section is drawn in bold in Figure 3 and the radius
was also varied to obtain the best fit.

3. RB-WIM Installation and Testing

A single-track truss bridge in Poland was selected for testing of the RB-WIM system (Figure 4).
The bridge is located in Nieporęt, near Warsaw. Constructed in the 1970s, it is one of over one
thousand similar bridges in Poland [37]. It spans 40 m and consists of five 8 m long bays. The bridge
has deteriorated significantly since first constructed. As a result, it does not carry heavy traffic load
and the velocity of the crossing trains is limited to 20 km/h (considerably lower than the average
train speed of 160 km/h in Poland) [38]. The speed restriction at the test bridge may raise a concern
regarding the applicability of the study for higher traveling speeds. However, previous studies
in road and railway B-WIM [26] have shown that there is no obvious correlation between accuracy
and the speed of the vehicle. The application of the B-WIM system in weighting vehicles at full
highway speed (checked against static weights) is demonstrated in several studies [25,39].
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The bridge is supported on four steel bearings, illustrated in Figure 5, two at each end. It carries a
single unballasted railway track that runs along the centre. The structure of the bridge consists of two
main vertical trusses, one at either side. The trusses are connected along the bottom by six cross beams
that are located at the node points of the bottom chord.
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The Nieporęt Bridge has been studied since mid-2007 due to interest from Polish Railways
in the development of structural health monitoring (SHM) systems for railway bridges [40]. The bridge
has been instrumented with a number of sensors, data from which are in the literature [40]. Prior to
installation of the RB-WIM system, some of these published results were used to confirm the accuracy of
the static model. For this purpose, a finite element model of the bridge was created using the Midas finite
element software package. The bridge was modelled using beam elements, with full fixity assumed
at node points. The design drawings were used to calculate cross sectional properties. A Young’s
Modulus of E = 210 × 106 kN/m2 was assumed throughout [41]. Figure 6 shows the MIDAS model of
the bridge, identifying some of the main structural elements. The rail and sleepers have been omitted
for clarity. The numerical model of the bridge was validated at a number of important measurement
locations using recordings from a previous measurement campaign [40]. Having established a good
match between the response of the model and the measurements collected by Kołakowski et al. [40],
it was used to develop the instrumentation strategy for the in-field testing of the RB-WIM concept.
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Strain transducers were installed on the longitudinal trusses, on the stringers, and on the cross
beams to provide full coverage in the central part of the truss. Sensors were also located on one stringer
beam in the bays on either side of the centre (i.e., sensors 1 and 8 shown in Figure 7). The locations of
the sensors are marked with grey squares in Figure 7. The numbers represent the data acquisition
channels. To avoid welding or drilling, steel mounting plates were used as interfaces. They were
bonded to the structure with epoxy and, after hardening, the strain sensors were fastened with nuts.
Additionally, strain gauges were bonded directly to the bridge at locations 3 through 6.
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A desirable characteristic of a B-WIM installation is that any intervention on the track side is avoided,
an important advantage from a safety and maintenance perspective. Therefore, it was envisaged that
the sensors on the stringer beams, right under the sleepers, would be used for axle detection. However,
signals from the passing trains revealed that the axle loads distributed over the entire rail-sleeper-bridge
system did not provide sharp peaks to identify individual axles in a bogie (double or triple axles,
Figure 8). Thus, the sensors were moved from their initial locations to the bottom flange of the rail
between two sleepers.
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Field testing was performed between 20th May and 25th May 2013. Over the first two days,
the sensors and the system were installed. On 22nd May, the first of four calibration/test trains, which
were weighed off-site, passed over the bridge. Signals from three other pre-weighed trains were also
captured; two on 24th May and one on 25th May.

The four calibration/test trains were weighed on a low-speed weigh-in-motion scale in a railway
yard in Warsaw that operates at speeds of up to 5 km/h. All of these trains consisted of a 6-axle locomotive
and 25 to 38 carriages of different length, axle configuration, and loading. Due to the limitations of
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the low-speed device, only gross weights of carriages, without individual axle loads, were available for
comparison with the B-WIM results.

4. Results and Discussion

Figure 9 summarises the initial results for all four pre-weighed trains in a spider chart.
The solid black line represents the error in GVW estimated using the RB-WIM algorithm applied
to the 35 locomotives/individual carriages. The dashed grey line represents the relative velocity of
individual carriages, calculated as the ratio of the individual carriage velocity to the average velocity
of the entire train, as described in Section 2.1. While the train speed can be assumed to be constant
at any point in time, it varies through time. The speed limit on the bridge was 20 km/h. It appears
that this was not adhered to precisely by the drivers, but its presence resulted in significant braking
and acceleration as the trains crossed.
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It can be seen that the carriage accuracy for Train 2 represents the best match with maximum weight
error of 2% and standard deviation of 0.64%. The maximum error in GVW estimation occurs in Train 4
with an error of up to 28%. The obvious reason for this error is the assumption of constant velocity for
all carriages in an event where it is varying quite significantly about the mean. The assumption of
constant velocity is reasonable on roads, as trucks typically cross a short-span bridge in one or two
seconds, but trains are too long for such an assumption.

The speed variation was more pronounced for longer trains, some of which exceeded 500 m
in length. As the variation in measured speed in the worst case (Train 4) surpassed 25% (negative error),
the assumption of constant velocity clearly was not appropriate and had to be addressed. Figure 10
shows the correlation between the error in carriage GVW and the relative velocity for all carriages of
all four trains. It can be seen that Trains 3 and 4 in particular show strong linear correlations between
GVW error and relative velocity with correlation coefficients of 0.99 and 0.96, respectively.Appl. Sci. 2020, 10, x 11 of 18 
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To address this issue, the constant velocity of the whole train was replaced with different velocities
for individual carriages. The additional step in the modified algorithm consists of determining
the sections of the SMP signals where a locomotive/carriage is on the bridge (as isolated as possible),
calculating the correlations for only those parts of the signals and assigning the resulting speeds to
the locomotive/carriage in question.

Figure 11 displays the errors in the predicted carriage gross weights for each train when considering
(i) the average velocity of the train obtained from the entire train crossing (solid black line curves
as shown in Figure 9) and (ii) variable velocities calculated for each carriage (dashed grey line).
There are clear improvements in accuracy for all four trains. The improvements are less pronounced
for Trains 2 and 3 but the accuracy for these was already good, and it is significant that where there
were some larger errors in Train 3 (Carriages 37–39), these were greatly reduced. The improvements
in Train 4 were quite pronounced although some errors persisted at Carriages 1, 3, and 4. This may
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be explained by the occurrence of heavy rain just before the crossing of this train and insufficient
protection of the strain gauges (due to the short testing campaign), which resulted in a noisy speed
measurement signal (the shaded area in Figure 12) and, consequently, unreliable velocity measurements
for these carriages. Such errors can easily be avoided in the future by protecting the sensors against
environmental effects.
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Figure 13 summarises the results obtained with the original RB-WIM algorithm and those obtained
using the revised algorithm for all four reference trains (calibration trains). It can be seen from
this figure that the mean error in GVW was considerably reduced by the revised algorithm. For Train 4
in particular, the maximum error was reduced from 28.19 to 10.17%. The weights of the Train 2
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carriages were predicted very accurately, which can be linked to constant travelling speed and uniform
distribution of carriage weights.Appl. Sci. 2020, 10, x 13 of 18 
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Figure 13. Comparison between the original and revised algorithms: (a) mean error for each algorithm,
(b) coefficient of variation of the error.

In the results up to this point, all four trains were used to calibrate the system. As such, the mean
weight is not an indication of the accuracy, but the low standard deviation indicates an excellent level
of accuracy relative to conventional road weigh-in-motion technologies. To investigate the sensitivity
of the algorithm to the chosen calibration/test trains, 11 permutations of the calibration database were
considered using all possible combinations of the four trains for calibration. These combinations were
then used to produce a linear regression model between predicted GVW using the revised RB-WIM
algorithm and the measured GVWs of carriages. Using each regression model, the GVWs of carriages
and locomotives for each train were calculated and compared to the corresponding static values
(Figure 14). The light grey area in this figure shows the minimum and maximum range of errors for
each regression model and the dark grey represents the mean of the errors in carriage GVW ± one
standard deviation (for each model). The horizontal dashed lines represent the minimum, maximum,
and mean ± one standard deviation. It can be seen that there was little difference in the results except
for calibration using Trains 3 and 4, likely due to the poor accuracy of Train 4.

According to the railway authorities in Poland, there is a very common 120 t locomotive that
operates on the network. At the time of the measurements for this study, in addition to the four
calibration trains, another two trains with locomotives of approximate 120 t gross vehicle mass were
measured. In this figure, each point represents an individual locomotive/carriage and points aligned
in the vertical direction (with small timestamp difference) represent one train. Figure 15 presents all
measured trains and time of measurement. Both in the trains with 120 t locomotives and the others,
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there were carriages/locomotives weighing about 80 t with most of the remaining carriages ranging
between 20 t and 50 t.Appl. Sci. 2020, 10, x 14 of 18 
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Figure 16a illustrates a particular train with 40 carriages, where it can be seen that the front
carriages were much more heavily loaded than the others. Figure 16b,c provide a closer view of
two groups of carriages 2–23 and carriages 24–40, respectively. Apart from the locomotive, the front
carriages all had weights between 74 and 81 t. There was a dramatic drop at Carriage 24 and all
remaining carriages weighed between 20 t and 28 t.
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5. Conclusions

Knowing the true weights of trains is becoming more important, particularly in Europe, due to
the splitting of the operation and infrastructure maintenance roles of the relevant authorities. This paper
adapted a commercial road B-WIM system for use on railways. An old railway bridge in Nieporęt
in Poland was used to test the accuracy of the new RB-WIM system.

Initial results demonstrated that one of four pre-weighed trains, the only one that crossed
the bridge at constant speed, was weighed very accurately, with all carriage weight errors falling
within the −0.9% to 1.6% error interval. Disappointing levels of accuracy for the other pre-weighed
trains was shown to be the result of variable carriage speed in the time that the train took to cross
the bridge. Results improved significantly when this was addressed, with 75% of all calculated carriage
weights falling within ±2% and 97% of them falling within ±5% of their actual values. These values
include 4 carriages that had an issue with axle detection due to rain.
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In summary, the study has shown that the common assumption of constant velocity in bridge-WIM
theory is not appropriate for trains. Due to the length of a train, the change in velocity can be
considerable and neglecting this change can lead to significant errors in bridge-WIM algorithms.
In the case of the selected bridge, this issue is of particular importance due to the speed restriction
in place and continuous braking and acceleration. It should be noted that higher traveling speed
and track irregularities may have an impact on the accuracy of the algorithm; however, these factors
were not investigated in this study.
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(ZAG): Ljubljana, Slovenia, 2001.
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