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Abstract: In this study, a large arch-gravity Moste Dam was analyzed, where an automated system
for the measurements of horizontal displacements of the upper part of the dam was established.
Two-dimensional (2D) and three-dimensional (3D) analyses of dam behavior, taking into account the
earth pressures and the hydrostatic load, using the finite element method (FEM)-based computer
program DIANA, were performed. The influence of lowering the water level of the reservoir by 6.2 m,
on the horizontal displacements of the upper part of the dam, at stationary temperature conditions,
was investigated. It was found that the results of the performed 2D and 3D FEM analyses fitted in
very well with the result of experimentally determined measurement of horizontal displacements
(which was 0.48 mm in the upstream direction) that was obtained using a hanging pendulum. An
additional comparison of the results of 3D calculations showed that the finite element mesh density
had a small effect on the calculated horizontal displacements.

Keywords: concrete dam; finite element method; material properties; structure behavior; measuring
instruments; monitoring; time series analysis; horizontal displacements; hydrostatic pressure

1. Introduction

Recently, the monitoring of static and dynamic behavior of complex building struc-
tures, which also include large dams, has become very important, as by closely monitoring
of their behavior, we can also determine their safety. In addition to the temperature load,
the hydrostatic pressure causes high stresses in large arch-gravity concrete dam structures
and has consequently great influence on cracks and dam deformation [1]. Accurate and
reliable prediction of dam deformation is of great importance to ensure the safe and stable
operation of dams [2]. Due to climate change, the frequent extreme rainfall can cause a
sudden rise of the water level of the reservoir, which can endanger the dam safety [3].

In the 1990s, Leger et al. [4,5] presented a methodology, which was based on the
FEM and which could be used to determine the deformation behavior of concrete gravity
dams. Using this methodology, the stress-strain state of concrete dams was much better
analyzed, both in the initial design phase [6,7], as well as in the later phase of monitoring
the behavior of dams [8,9]. A large amount of research about this topic, where the effects of
changing hydrostatic pressure on horizontal displacements of concrete dams were taken
into account, has been carried out recently. Some of researchers focusing on the detailed
dealing with the displacement response of a concrete arch dam to reservoir level rise
based on conventional geodetic measurements and FEM analyses during the first filling
period [10], some others discussing with displacement study based on precision geodetic
monitoring and numerical modeling [11,12], whereas other researchers analyzed displace-
ment responses of the dam based on both geodetic and pendulum monitoring records [13].
Some researchers used the results of measurements with pendulums for prediction the
deformation of super-high arch dam by deformation model [14], whereas the others for
interpretation of concrete dam behavior with artificial neural network [15]. Some other
authors have discussed the development of new numerical models, such as hydrostatic,
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temperature, time-displacement model for concrete dams [16]. Some researchers have
focused on detailed studies of displacements dealing with diagnostic analysis of concrete
dams based on seasonal hydrostatic loading [17]. Some reports have discussed actual work-
ing performance in the case of super-high arch dams [18]. Colombo et al. [19] presented
a methodology to validate the finite element models of existing concrete dams with the
monitoring data, whereas Li et al. [20] reviewed a literature about dam monitoring data
analysis methods, which is very important for monitoring dam safety. Konakoglu et al. [21]
investigated the deformation of a concrete dam during the change of the water level of
the reservoir, by means of the Global Navigation Satellite Systems data. Qin et al. [22] and
Yang et al. [23] separated the hydrostatic pressure component of displacements from the
measured data of high concrete dams in operating conditions and calculated the deforma-
tion using the FEM analyses. Considering the generally recognized three components of
dam displacement (hydraulic, seasonal and time) Wang et al. [24] proposed state space
model, which is useful to improve ability of the separated displacement components of
concrete dams and which was verified by an engineering example.

In the last decade there were attempts to obtain high-quality 3D models of surface
geometry, based on terrestrial laser scanner (TLS) measurements, which were applied to
different complex and large structures [25,26]. There were also some studies on the use of
TLS measurements to monitor the deformations of hydraulic structures [27], but in this
case very accurate instruments and very reliable measurements are needed.

However, in the above-mentioned articles there seems to be no exhaustive data on
accurate measurements and 3D calculations of horizontal displacements of the upper part
of the dam solely because of changes in hydrostatic pressure (i.e., at stationary temperature
conditions), and at the same time there is no comprehensive data where an accurate 3D
model of the dam would be made using contemporary measurements (e.g., TLS measure-
ments). Consideration of changes in hydrostatic pressure is important because it represents
one of the three parameters (in addition to seasonal temperature changes and time effects)
that affect the horizontal displacements of a concrete dam over a long period of time. In
the case of a rapid decrease of the water level of the reservoir (when the influence of the
other two factors on the displacements is negligible), the horizontal displacements due to
the reduction of hydrostatic pressure, which occur in a very short period of time, can be
accurately evaluated.

In this article, the author presents a case study of the Moste Dam, where the reduction
of the hydrostatic pressure on the arch-gravity concrete dam, on horizontal displacements
of the upper part of the dam, in a very short period of time, i.e., at stationary temperature
conditions, was investigated. An automated system for measurements of horizontal dis-
placements by hanging pendulum was established in a central cross-section of the dam,
and FEM analyses of a dam deformation behavior were performed. In addition to the 2D
analyses, the 3D analyses were also carried out, where a very accurate geometric model of
the dam was made using precise TLS measurements at reduced water level of the reservoir.

2. Materials and Methods
2.1. Stress-Strain Analysis of a Solid Body
2.1.1. Basic Equations

The stress-strain state of a solid body is determined by the three groups of basic
equations (equilibrium, kinematic and constitutive), which are described and explained in
detail also in Žvanut [28].

The first group of basic equations represents the equilibrium equations of a rigid body,
which connect the specific surface load (pn) and the specific volume load (ν) of the discussed
body with stresses (σij). There are three partial differential equations for six independent
scalar functions of stresses. A special solution of these equations is obtained by taking
into account the boundary conditions, which require that every particle at the boundary
surface of the body, on which the external load is prescribed (Sp), is also in equilibrium.
The equilibrium of moments is satisfied by considering the symmetry of the shear stresses.
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The equilibrium equations and the associated boundary conditions can be briefly written
with the following equations

∑
i

∂σij

∂xi
+ vj = 0 and pnj = ∑

i
σijeni (i, j = x, y, z). (1)

The second group of basic equations consists of the kinematic equations of a de-
formable body, which connect the components of a symmetric tensor of small strains (ε)
with the displacements (u). There are nine unknown scalar functions (i.e., six strains and
three displacements) in the six partial differential equations, which are briefly written with
the following equation

εij =
1
2

(
∂uj

∂xi
+

∂ui
∂xj

)
(i, j = x, y, z). (2)

The equations are solved at the prescribed kinematic boundary conditions, which
show how the analyzed body is supported (i.e., what are the displacements and rotations on
the part of the boundary surface on which the displacements and rotations are prescribed
(Su)), wherein the rotations (ω) can be expressed by displacements (u)

ui = ur
i and ωi = ωr

i (i = x, y, z). (3)

If the displacements are known as coordinate functions, the strains can be easily
calculated from Equation (2). Otherwise, if the strains are known and it is desired to
calculate the displacements from Equation (2), the strains must satisfy an additional six
compatibility conditions, which ensure a uniform determination of the three displacements
from the six kinematic equations. The necessary and sufficient conditions for the uniformity
of displacements are expressed by means of compatibility equations, which can also be
written with the components of the so-called Riemann tensor of the fourth order R(4)

Rijkl =
∂2ε jk

∂xi∂xl
+

∂2εil
∂xj∂xk

−
∂2ε jl

∂xi∂xk
− ∂2εik

∂xj∂xl
= 0 (i, j, k, l = x, y, z). (4)

The dependences between stresses and strains are described by a third group of
basic equations, which are called constitutive or material equations. When dealing with
linearly elastic solid bodies, the relations between stresses and strains are determined by
Duhamel-Neumann equations. The six linear algebraic equations are briefly written with
the equation

σij = 2µεij + λδij Iε
1 − βTδij∆T (i, j = x, y, z). (5)

The inverse form is written with the following equation

εij =
1 + v

E
σij −

v
E

δij Iσ
1 + δijαT∆T (i, j = x, y, z), (6)

where µ (shear modulus G) and λ are Lamé’s constants of linearly elastic isotropic material,
expressed by the elastic modulus E and the Poisson’s ratio ν, δij the Kronecker delta, Iε

the first strain invariant, Iσ the first stress invariant, βT the temperature parameter, αT the
thermal expansion coefficient and ∆T the temperature change.

The following links exist between these parameters:

µ =
E

2(1 + v)
= G and λ =

Ev
(1 + v)(1− 2v)

, 0 ≤ v ≤ 1
2

, (7)

Iε
1 = εxx + εyy + εzz and Iσ

1 = σxx + σyy + σzz, (8)

Iε
1 =

1− 2v
E

Iσ
1 +

3(1− 2v)
E

βT∆T and βT =
E

1− 2v
αT . (9)
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2.1.2. Numerical Solution of Equations

The previously written equilibrium, kinematic and constitutive equations represent
the system of 15 equations for 15 unknown functions (six stresses, six strains, and three
displacements) describing the stress-strain state of an isotropic, linearly elastic solid body in
the case of static loading, so they are also called the fundamental equations of the theory of
elasticity. In addition to the six linear algebraic constitutive equations, there are nine linear
partial differential equations of the first order that need to be solved under the prescribed
boundary conditions. In most cases, the boundary value problem is solved by numerical
procedures in which the basic equations are satisfied only in a final set of selected discrete
points of the analyzed body.

For numerical solving, FEM [29] is very commonly used, in which the relationship
between nodal forces and nodal displacements is defined by the following equation

F = KU, (10)

where F is a vector of nodal forces, K is a stiffness matrix of the system of finite elements,
and U is a vector of nodal displacements.

In 2D analyses, a 4-node quadrilateral isoparametric plane-strain finite element was
used (Figure 1), and in 3D analyses, an 8-node isoparametric solid brick finite element was
applied (Figure 2). Both elements are based on linear interpolation according to Equations
(11) and (12), and Gaussian integration [30].
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The polynomial for the displacements ux and uy can be expressed as

ui(ξ, η) = a0 + a1ξ + a2η + a3ξη (i = x, y), (11)

where a0, a1, a2, a3 are the coefficients of the polynomial.
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For constant shear, this polynomial yields a strain εxx which is constant in x direction
and varies linearly in y direction and a strain εyy which is constant in y direction and varies
linearly in x direction. The shear strain γxy is constant over the element area.

The polynomial for the displacements ux, uy and uz can be expressed as

ui(ξ, η, ζ) = a0 + a1ξ + a2η + a3ζ + a4ξη + a5ηζ + a6ξζ + a7ξηζ (i = x, y, z), (12)

where a0, a1, a2, a3, a4, a5, a6, a7 are the coefficients of the polynomial.
Typically, a rectangular brick element approximates the following strain and stress

distribution over the element volume. The strain εxx and stress σxx are constant in x
direction and vary linearly in y and z direction. The strain εyy and stress σyy are constant in
y direction and vary linearly in x and z direction. The strain εzz and stress σzz are constant
in z direction and vary linearly in x and y direction.

2.1.3. Earth Pressures and Hydrostatic Load

The determination of earth pressures and hydrostatic load on a rigid vertical retaining
structure with the horizontal hinterland and the presence of water in the hinterland is
described and explained in detail also in Žvanut [28].

The total active earth pressure pa (Pa) is calculated by the following equation

pa = p′a + pw, (13)

where p′a the effective active earth pressure (Pa) and pw the hydrostatic pressure (Pa), which
is defined by the equation

pw = γwhw = ρwghw, (14)

where γw the unit weight of water (N/m3), ρw the water density (kg/m3), g the gravitational
acceleration (m/s2) and hw the water depth (m).

The effective active earth pressure is calculated by the equation

p′a = σ
′
vka − 2c′

√
ka = γ′hka − 2c′

√
ka, (15)

where σ
′
v is the effective vertical pressure (Pa), h the depth (m), γ’ the effective unit weight

of soil (N/m3), c’ the effective cohesion (Pa) and ka the coefficient of active earth pressure
defined by the equation

ka =
1− sin ϕ′

1 + sin ϕ′
= tg2

(
45◦ − ϕ′

2

)
and

√
ka =

cos ϕ′

1 + sin ϕ′
, (16)

where ϕ′ is the effective friction angle (◦).
An important property of the active earth pressure is that it is smaller than the hydro-

static pressure and smaller than the earth pressure at rest, so

ka < k0 < 1, (17)

where k0 is the coefficient of earth pressure at rest, which is determined for horizontal and
normally consolidated soils by the equation [31]

k0 = 1− sin ϕ′ (18)

If the hinterland of the retaining structure consists of several differently solid and
deformable horizontal soil layers, the active earth pressures at the boundaries of individual
layers are calculated. First, the effective vertical pressures are calculated, which are then
multiplied by the corresponding coefficient of active earth pressure, after that the appropri-
ate portion of cohesion is subtracted and finally the corresponding hydrostatic pressure
value is added.
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The total passive earth pressure pp (Pa) is calculated by the following equation

pp = p′p + pw, (19)

where p′p the effective passive earth pressure (Pa) and pw the hydrostatic pressure (Pa),
which is defined by Equation (14).

The effective passive earth pressure is calculated by the equation

p′p = σ
′
vkp + 2c′

√
kp = γ′hkp + 2c′

√
kp, (20)

where kp is the coefficient of passive earth pressure defined by the equation

kp =
1 + sin ϕ′

1− sin ϕ′
= tg2

(
45◦ +

ϕ′

2

)
and

√
kp =

cos ϕ′

1− sin ϕ′
, (21)

while the other parameters are explained under Equation (15).
An important property of the passive earth pressure is that it is greater than the

hydrostatic pressure and greater than the earth pressure at rest, so

k0 < 1 < kp (22)

If the hinterland of the retaining structure consists of several differently solid and
deformable horizontal soil layers, the passive earth pressures at the boundaries of individ-
ual layers are calculated similarly to the active earth pressures. First, the effective vertical
pressures are calculated, which are then multiplied by the corresponding coefficient of pas-
sive earth pressure, and finally the appropriate portion of cohesion and the corresponding
hydrostatic pressure value are added.

2.2. Fieldwork
2.2.1. Description of the Dam

A large arch-gravity concrete Moste Dam, which lies on the Sava Dolinka River in the
north-western part of Slovenia, was completed in 1952. It is almost 60 m high and is the
highest dam in Slovenia. It was built during the construction of the Moste hydroelectric
power plant. The main characteristics of the dam are presented in Table 1 [32]. The
dimensions of the central cross-section of the dam are shown in Figure 3, while the view
of the Moste Dam from the downstream side, where its position in the narrow canyon is
visible, is presented in Figure 4.

Table 1. Main characteristics of the Moste Dam.

Characteristic Unit Value

Structural height m 59.80
Crest length m 72.00
Dam volume m3 42,000

Crest altitude (steel gates) m a.s.l. 524.75
Crest altitude (concrete) m a.s.l. 523.50
Operational water level m a.s.l. 518.00–524.75

Reservoir capacity m3 6,240,000
Reservoir surface area m2 620,000

Reservoir length km 5.00
Catchment area km2 325

Geographical latitude (North) ◦ 46.41
Azimuth (downstream side) ◦ 186
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2.2.2. Inclination Measurements

In the case of complex building structures it is very often difficult to determine the
appropriate numerical values for the properties of materials (especially of the foundation
soil, other soils and rocks), which means that the calculated values of individual parameters
are unreliable. To determine the accordance between the calculated and actual values of
individual parameters, it is necessary to monitor complex building structures [33,34], which
also include large concrete dams [35–37]. One of the most important parameters which should
be monitored at large concrete dams is the inclination of the dam structure, which is often
measured by hanging pendulum. In this method, the hanging wire, which is loaded at the
lowest part, serves as a basis for measuring the deviation from the vertical. If we consider the
pivot point as fixed, then in the case of inclination of the dam, deviations between the wire
and the surrounding points on the dam occur at displacement gauge, which are measured as
a relative horizontal displacement of the pivot point according to the displacement gauge.

In the massive part of the Moste Dam, there is a one hanging pendulum, located in
the vertical shaft along the upstream side of the central cross-section of the dam (Figure 5),
where the typical inclination of the dam can be monitored. The top of the shaft is at
altitude 518.62 m, and its bottom at altitude 481.53 m; the height of the shaft is therefore
37.09 m [38]. The pivot point of the pendulum is at the top of the shaft, while the horizontal
displacement gauge is 149 cm above the bottom of the shaft (at altitude 483.02 m), above a
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steel weight with a mass of about 400 kg, which is hanging on a stainless steel wire with a
diameter of 3 mm (Figure 6). The distance from the pivot point to the gauge is thus 35.6 m.
An automatic system for measuring the horizontal displacements with a pendulum was
established in 1998 [39] and upgraded in 2003 [40]. In March 2013, the three faulty inductive
displacement sensors were replaced with the new ones. The results of the measurements
are analyzed as part of the technical monitoring of the Moste Dam [41].
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2.3. Procedure for the FEM Analysis

2D FEM analyses were carried out using the DIANA computer program [30], where
4-node quadrilateral isoparametric plane-strain finite elements were used in analyses.
Three-dimensional (3D) FEM analyses, using 8-node isoparametric solid brick finite ele-
ments, were also performed with the same computer program, in which a 3D model of the
Moste Dam was first time developed.

The mechanical properties of the mass concrete that were used to determine the stress-
strain state of the dam are given in Table 2. They were determined based on data from
the Report on the establishment of the technical monitoring system at the Moste Dam [42],
the results of non-destructive investigations of concrete of the Moste Dam, i.e., seismic
tomography and georadar [43] or obtained from other literature [4,44].

Table 2. Mechanical properties of the mass concrete.

Material Property Unit Value

Density (ρ) kg/m3 2400
Elastic modulus (E) GPa 30
Poisson’s ratio (ν) / 0.2

Thermal expansion coefficient (αT) K−1 10−5

Compressive strength (fc) MPa 30 1

Tensile strength (ft) MPa 3 2

1 Estimated compressive strength of concrete. 2 10% of the estimated compressive strength of concrete.

The input data for the calculation of the active earth pressures and the passive earth
pressures are given in Table 3. In the computational model, the dam extends 12 m into the
bedrock on the upstream side, whereas on the downstream side stretches 6 m to it. The
height of sediments in the reservoir is 10 m.

Table 3. Material properties of the sediments and of the rock.

Material Property Unit Sediments 1 Rock 2

Density (ρ) kg/m3 1800 2600
Effective friction angle (ϕ′) ◦ 23 58 3

Effective cohesion (c′) kPa 0 0
1 Lenart and Likar [45]. 2 Koprivec et al. [42]; Geršak [46]. 3 Equivalent friction angle determined from Hoek-
Brown classification [47].

3. Results and Discussion
3.1. Two-Dimensional (2D) Analyses
3.1.1. Model of the Dam

The geometry of the 2D model of the dam (i.e., the cross-section in the axis of the
dam) was determined from the data of the Project of technical monitoring of the dam [38]
and mainly from the data of TLS measurements of the Moste Dam [48,49]. The height of
the discussed cross-section was 50.2 m, while the width of the cross-section was 48.0 m at
the bottom of the dam (taking into account the above extension, the width was 50.8 m).
The unreinforced concrete of the dam structure was modeled as an isotropic material. A
linearly elastic constitutive model of the concrete behavior was used, as deformations in the
range of linear elasticity were expected; the mechanical properties of the mass concrete are
given in Table 2. The computational model of the plane-strain state was taken into account,
so a 4-node plane-strain finite element was used in the analysis (Figure 1). The finite
element mesh of the 2D model of the dam included 1674 finite elements and 1768 nodes.
For boundary conditions, it was considered that the model of the dam was supported at
the lower edge, which included the edges of 39 finite elements and 40 nodes; fixed nodes
prevented displacements in two perpendicular directions. The flexibility of the foundation
soils and the impact due to uplift pressure were assumed to be negligible. The 2D model
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of the dam (showing its geometry, the selected finite element mesh, and the boundary
conditions; grid raster: 5 m × 5 m) is shown in Figure 7.
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3.1.2. Measured Horizontal Displacements

It is evident from Figure 8 that before lowering the water level of the reservoir (altitude
524.59 m, obtained on 27 January 2014) the measured relative displacement was 0.17 mm in
the downstream direction, while after lowering the water level to an altitude of 518.39 m
(obtained on 3 February 2014) the measured relative displacement was 0.31 mm in the
upstream direction. The lowering of the water level by 6.2 m (at stationary temperature
conditions), therefore, at the top of the vertical shaft, where the measurements were carried
out, caused a relative displacement of 0.48 mm in the upstream direction.

3.1.3. Calculated Horizontal Displacements

When calculating the displacements of the dam in the stream direction due to changes
of the water level of the reservoir (at stationary temperature conditions), the total active
earth pressures on the upstream side of the dam (due to water in the reservoir, sediments
and rock; Table 4) and the total passive earth pressures on the downstream side of the dam
(due to water in the stilling basin and rock; Table 5) were considered to be a load of the dam.
The lowering of the water level of the reservoir from an altitude of 524.59 m to an altitude
of 518.39 m resulted in a reduction of the total active earth pressures on the dam (Table 4).
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Figure 8. Measured displacements and the water level of the reservoir, during the analyzed year.

Table 4. Total active earth pressures acting on the upstream side of the dam, for two different water
levels of the reservoir.

Height
(m) Medium Active Pressure 1 1

(Pa)
Active Pressure 2 2

(Pa)
Difference

(Pa)

50.20 10,693 0 10,693
45.09 Water 60,822 0 60,822
22.00 287,335 226,513 60,822

22.00
Sediments

287,335 226,513 60,822
12.00 419,816 358,994 60,822

12.00
Rock

391,888 331,066 60,822
0.00 525,095 464,273 60,822

1 Before lowering of the water level. 2 After lowering of the water level.

Table 5. Total passive earth pressures acting on the downstream side of the dam.

Height
(m) Medium Passive Pressure 1

(Pa)

8.70
Water

0
6.00 26,487

6.00
Rock

26,487
0.00 1,230,721

1 The same all the time.

Figure 9 shows the loading of the 2D model of the Moste Dam before lowering the
water level of the reservoir, which was 524.59 m a.s.l., and after lowering the water level of
the reservoir, which was 518.39 m a.s.l., while Figure 10 shows the calculated horizontal
displacements of the 2D model of the Moste Dam in both mentioned cases (the displacement
scale is significantly larger than the scale in which the dam is shown, because otherwise
the actual displacements of up to a few mm would not be observed at all with such a large
dam; the magnification factor of 5000 was considered for displacements). The results of
calculations of horizontal displacements on the 2D model show that in the case of full
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water reservoir, the upper part of the dam moves in the downstream direction, while after
lowering the water level the upper part of the dam moves upstream, i.e., in the opposite
direction (the calculated upstream horizontal displacement, due to the lowering of the
water level, was 0.49 mm at the top of the vertical shaft).
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Figure 10. Horizontal displacements of the dam according to the water level of the reservoir:
(a) before lowering and (b) after lowering.

Comparison with the measured horizontal displacement, which was 0.48 mm (see
Section 3.1.2), shows an excellent match between the measured and calculated value of
the upstream horizontal displacement of the dam, at the top of the vertical shaft, due to
lowering the water level of the reservoir (at stationary temperature conditions).

3.2. Three-Dimensional (3D) Analyses
3.2.1. Model of the Dam

The geometry of the 3D model of the dam (i.e., the entire dam) was determined from
the data of the Project of technical monitoring of the dam [38], from the geometry of the
2D model of the dam (Section 3.1.1) and mainly from the data of TLS measurements of the
Moste Dam [48]. The height and width of the discussed model were the same as in the
2D model, while the depth was 42.4 m. As with the 2D model, the isotropic properties of
the concrete, the same mechanical properties and the linearly elastic material model were
taken into account. The computational model of the solid was considered, so an 8-node
isoparametric solid brick finite element was used in the analysis (Figure 2). In the process
of making the 3D model, the basic 2D geometry was first divided into quadrilaterals,
which were later upgraded to octagons. The finite element mesh of the 3D model of
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the dam included 72,000 finite elements and 77,748 nodes. For boundary conditions, it
was considered that the model of the dam was supported at the bottom, which included
1560 finite elements and 1643 nodes (in the nodes, displacements in three perpendicular
directions are disabled) and on the sides of the dam, which included the surfaces of
4800 finite elements and 5016 nodes (in the nodes, displacements in two perpendicular
directions are disabled; the exception is the stream direction). It was assumed that the
settlements of the foundation soils and the impact due to uplift pressure were negligible.
In the calculations, it was found that increasing the density of the finite element mesh does
not affect the results. The 3D model of the dam (showing its geometry, the selected finite
element mesh, and the boundary conditions; grid raster: 5 m × 5 m) is shown in Figure 11.
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3.2.2. Calculated Horizontal Displacements

The magnitude of the measured displacement was determined in Section 3.1.2, where it
was found that when lowering the water level of the reservoir from an altitude of 524.59 m a.s.l.
to an altitude of 518.39 m a.s.l. (i.e., by 6.2 m), at stationary temperature conditions, the measured
horizontal displacement at the top of the vertical shaft was 0.48 mm in the upstream direction.

The load of the dam, which was taken into account when calculating the displacements
of the dam in the stream direction due to changes in hydrostatic pressure, was determined
in Section 3.1.3.

Figure 12 shows loading of the 3D model of the Moste Dam in the case of full water
reservoir and after lowering the water level of the reservoir, while Figure 13 shows the
calculated horizontal displacements of the 3D model of the Moste Dam in both mentioned
cases (the displacement scale is significantly larger than the scale in which the dam is shown;
the magnification factor of 5000 was considered for displacements). The results of calculations
of horizontal displacements on the 3D model show similar results as those obtained with the
2D model (Section 3.1.3). In the case of full water reservoir, the upper part of the dam moves
downstream, while after lowering the water level of the reservoir, the upper part of the dam
moves in the opposite direction (the calculated upstream horizontal displacement, due to the
lowering of the water level, was 0.50 mm at the top of the vertical shaft; Table 6).
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Figure 12. Loading of the dam according to the water level of the reservoir: (a) before lowering—view
in the z-axis direction, (b) after lowering—view in the z-axis direction, (c) before lowering—isometric
view and (d) after lowering—isometric view.

Materials 2022, 15, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 13. Horizontal displacements of the dam according to the water level of the res-
ervoir: (a) before lowering—view in the z-axis direction, (b) after lowering—view in the 
z-axis direction, (c) before lowering—isometric view and (d) after lowering—isometric 
view. 

Table 6. Comparison of the measured and calculated (3D) displacement of the dam in the upstream 
direction, corresponding to the top of the shaft, due to the change in hydrostatic pressure. 

Upstream Displacement (mm) 
Measured Calculated (2D) Calculated (3D) 

0.48 1 0.49 1 0.50 
1 See Sections 3.1.2 and 3.1.3. 

3.2.3. Comparison of Calculated Horizontal Displacements 
Table 7 shows the results of displacements of the 3D model of the dam according to 

two types of prescribed boundary conditions (variant A and variant B) and two differ-
ently dense meshes (29,960 and 72,000 finite elements). A comparison of the results of 
calculations shows that the mesh density has a small effect on the value of the calculated 
displacements in the stream direction, while the influence of the prescribed boundary 
conditions (or prescribed displacements) is very large. The results confirm that the best 
displacement value is obtained in the previously described case (Section 3.2.2), when the 
model of the dam is fixedly supported at the bottom, while on the sides of the dam only 
displacement in the stream direction is allowed. 

  

Figure 13. Horizontal displacements of the dam according to the water level of the reservoir:
(a) before lowering—view in the z-axis direction, (b) after lowering—view in the z-axis direction,
(c) before lowering—isometric view and (d) after lowering—isometric view.
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Table 6. Comparison of the measured and calculated displacement of the dam in the upstream
direction, corresponding to the top of the shaft, due to the change in hydrostatic pressure.

Upstream Displacement (mm)

Measured Calculated (2D) Calculated (3D)

0.48 1 0.49 1 0.50
1 See Sections 3.1.2 and 3.1.3.

3.2.3. Comparison of Calculated Horizontal Displacements

Table 7 shows the results of displacements of the 3D model of the dam according to
two types of prescribed boundary conditions (variant A and variant B) and two differently
dense meshes (29,960 and 72,000 finite elements). A comparison of the results of calculations
shows that the mesh density has a small effect on the value of the calculated displacements
in the stream direction, while the influence of the prescribed boundary conditions (or
prescribed displacements) is very large. The results confirm that the best displacement
value is obtained in the previously described case (Section 3.2.2), when the model of the
dam is fixedly supported at the bottom, while on the sides of the dam only displacement in
the stream direction is allowed.

Table 7. Comparison of the calculated (3D) displacement of the dam in the upstream direction,
corresponding to the top of the shaft, due to the change in hydrostatic pressure.

Boundary Conditions Mesh Density
(Number of Finite Elements)

Upstream Displacement
(mm)

Variant A 1 29,960 0.08
72,000 0.08

Variant B 2 29,960 0.50
72,000 0.50

1 Below: fixed nodes; both sides: fixed nodes. 2 Below: fixed nodes; both sides: nodes movable only in the
stream direction.

It is understandable that such small displacements are negligible for this practical
case. Exact values are given to compare the results of measurements with the results of
calculations. The reason for the small displacements is a great rigidity of the arch-gravity
Moste Dam, which, however, is the only dam in Slovenia where the experimental work
can be carried out. In the case of less rigid and much higher dams (i.e., very high arch dam
structures; e.g., up to 300 m), the measured displacements due to the changes in hydrostatic
pressure would be significantly greater.

It has been shown that the consideration of changes in hydrostatic pressure on the
dam is very important, as it represents one of the three parameters (in addition to seasonal
temperature changes and time effects) that affect the horizontal displacements of a concrete
dam over a long time period. In the case of a rapid lowering of the water level of the
reservoir (when the influence of the other two factors on displacements is negligible), the
horizontal displacements due to the reduction of hydrostatic pressure, which occur in a
very short time period, can be exactly determined.

It has also been shown that in computational 3D analyses it is necessary to prepare a
very accurate geometric model of the dam structure, using precise measurements (e.g., TLS
measurements) at very low water level of the reservoir, which allows exact calculation of
deformation behavior of the constructed engineering structure.
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4. Conclusions

In this paper, the horizontal displacements of the large arch-gravity concrete dam
were analyzed. A sophisticated automated system for the measurements of horizontal
displacements of the upper part of the discussed dam was first established in 1998 and then
re-established in 2013, when the pre-existing non-operating system was repaired (i.e., the
three faulty inductive motion sensors were replaced with the new ones). Two-dimensional
(2D) and three-dimensional (3D) analyses of dam behavior, taking into account the active
earth pressures and the hydrostatic load on the upstream side of the dam and the passive
earth pressures and the hydrostatic load on the downstream side of the dam, using the
FEM-based computer program DIANA, were performed. The influence of lowering the
water level of the reservoir by 6.2 m, on the horizontal displacements of the upper part
of the dam, at stationary temperature conditions, was investigated. It was found that
the results of the performed 2D and 3D FEM analyses matched very well the result of
experimentally determined measurement of horizontal displacements (which was 0.48 mm
in the upstream direction) that was obtained using a hanging pendulum. An additional
comparison of the results of 3D calculations showed that the finite element mesh density
had a small effect on the calculated horizontal displacements, while the influence of the
prescribed boundary conditions is very large. The results confirm that in the 3D model of
the dam, the best value of horizontal displacement is obtained when the model is fixedly
supported at the bottom, while on the sides of the dam only displacement in the stream
direction is allowed.
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