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Abstract

A new method for e�cient and robust determination of thermal conductivity in liquids

is presented. The method is based on the search for an optimal agreement between the

analytical solution of the heat transfer in a continuum model described by Fourier law and

the relaxation of thermal inhomogeneity simulated by nonequilibrium MD simulations. Our

approach exploits a transient regime in which a system relaxes towards equilibrium after the

introduction of a small temperature perturbation in a spatially con�ned part of the system.

The applicability of this new method is demonstrated on liquid argon and two water models,

the mW and SPC models.
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1. Introduction

Thermal conductivity (κ) is one of the fundamental material properties and measures

the rate at which thermal equilibrium is established. In the past, a substantial e�ort has

been devoted to the development of computational methods which allow one to determine

thermal conductivities of liquids, crystals, and glasses by exploiting molecular dynamics

(MD) simulations [1]. Accurate and reliable in silico methods are especially important in

cases where an experimental determination of transport coe�cients is challenging as for
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example in ionic melts [2, 3] or liquids under extreme pT conditions [4, 5]. Ionic melts

and speci�cally understanding of their thermal properties are now becoming increasingly

more important due to their use as heat-transfer �uids in solar power plants [6] and molten

salt nuclear reactors [7]. State of the art computational methods for the determination of

thermal conductivities (and other transport coe�cients as well) generally fall into one of the

two categories: equilibrium and non-equilibrium methods.

Equilibrium methods are rooted in the Green-Kubo (GK) theory of linear response

[8, 9] where one is required to evaluate the integral of the heat �ux autocorrelation function

which, for three-dimensional isotropic case, reads as:

κ =
1

3kbV T 2

∫ t0→∞

0

⟨J(0) · J(τ)⟩dτ. (1)

Here V and T are the volume and the temperature of a system, respectively, and ⟨⟩ stands

for the ensamble average. Despite the theoretical elegance, the GK method is associated

with practical limits raised by the slow convergence of κ with the avaliable simulation time

t0. In case of slow relaxation in the system, long-time tails are present in the autocorre-

lation function. Moreover, the autocorrelation function becomes dominated by statistical

noise at large τ values which implies that the upper integration limit t0 signi�cantly a�ects

the result [10, 11, 12]. Therefore, large simulation cells and long trajectories are usually

required to obtain well-converged results. The aforementioned problems were signi�cantly

overcome very recently by the introduction of the cepstral analysis which allows relatively

accurate estimation of transport coe�cients even from trajectories a�ordable by ab-initio

MD simulations [13, 14]. Another recently introduced equilibrium approach by Cheng &

Frenkel is based on the computation of the thermal conductivity solely from an analysis of

particle density �uctuations [15] and therefore bypasses the computation of the heat �ux.

In order to overcome the di�culties of the equilibrium methods described above, several

nonequilibrium (NEMD) methods have been developed which rely on continuum description

2



of heat conduction given by Fourier law:

J = −κ∇T. (2)

A common trait of most NEMD methods is the direct use of the Fourier law. For that

purpose, one either imposes a temperature gradient along one direction of a simulation

cell and measures the generated heat �ux [16] (direct-NEMD) or one imposes the heat

�ux and measures the established temperature gradient [17] (reverse-NEMD). In both cases

κ is estimated as a slope of Jx versus dT/dx (x is the direction along the temperature

gradient) after a non-equilibrium steady state has been reached. These methods require

shorter simulation times but may su�er from convection problems and signi�cant size e�ects.

In the context of NEMDmethods, it is much less common to deviate from the non-equilibrium

steady state as explained above and use a transient regime instead where a relaxation of

temperature perturbation is monitored. Such ideas were mostly applied to studies of heat

conduction in crystalline and amorphous solids in the context of phonons [18, 19, 20] and

transient melting at the nanoscale [21].

Here we present a new non-equilibrium scheme for the determination of thermal con-

ductivity of liquids based on continuum description of heat transfer. The method exploits

the transient regime where a system undergoes a thermal relaxation towards equilibrium

after the introduction of a small temperature perturbation. Our approach is simple to im-

plement, easy to run in parallel and is compatible with periodic boundary conditions (PBCs)

commonly applied in bulk MD simulations.

2. Model

Let us consider a bulk liquid in a form of extended linear �lament with a temperature

inhomogeneity present along the main axis. Heat transfer in such a system is described

by combining the Fourier law and continuity equation which leads to the heat transport

equation
∂T (x, t)

∂t
=

κ

ρcp

∂2T (x, t)

∂x2
, (3)
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with ρ standing for the density and cp for speci�c heat. Assuming the �xed form of initial

temperature pro�le T0(x, t = 0) we can obtain temperature pro�le at any time t > 0 by the

general solution of eq. (3):

T (x, t) =
1

2a
√
πt

∫ ∞

−∞
T0(x

′) exp

(
−(x− x′)2

4a2t

)
dx′, (4)

where we introduce the parameter a =
√

κ/(ρcp).

Although the equation (4) generally describes heat conduction in macroscopic contin-

uum medium, we assume that it also can correctly describe heat conduction for su�ciently

large microscopic systems, i.e. su�ciently dense systems containing large enough number

of atoms, N > NC, above some threshold value NC. If microscopic system is supposed to

obey the Fourier law, then for a properly set parameter a the solution (4) should match the

temperature pro�le derived from the simulated particle velocity distributions at the same

time t > t0 given that the analytical and simulated temperature pro�les at the time t0 are

equal. Furthermore, if matching between analytical and simulated temperature pro�les is

found to exist for a given value of a at any instant of time during the relaxation and persists

over the size range N > NC, then the �tting parameter a can be used to determine the ther-

mal conductivity κ of the simulated system. Standard MD simulations of bulk media imply

periodic boundary conditions (PBC), which means that any inhomogeneity in the primary

simulation cell representing the �nite volume of the system is necessarily replicated in all

surrounding image cells. Thus, in order to make the analogy of the temperature pro�le T (x)

in the simulated system under PBC and its continuum counterpart, we should also apply the

periodic condition, T (x±L) = T (x), in the analytical model with L being the length of the

primary cell. The analytical solution for the time dependent temperature pro�le within the

range of the primary cell, [−L/2, L/2], which is explicitly derived in Appendix A, consists

of contributions from the neighboring image cells,

T (x, t) =
1

2a
√
πt

n=N∑
n=−N

exp

(
−(nL)2

4a2t

)∫ L/2

−L/2

T0(x
′) exp

(
−(x− x′)2 − 2nL(x− x′)

4a2t

)
dx′,

(5)
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where n indexes neighboring images as indicated in Figure 1.

Figure 1: A schematic representation of temperature pro�les in continuum linear �lament applying PBC
along x-axis. Upper and lower rows display the pro�le T0(x) at the beginning, and at some later time t,
T (x, t), respectively. The central cell (n = 0) corresponds to the primary cell.

Derivation of the thermal conductivity can be thus based on �tting of the analytical so-

lution of eq. (5) to temperature pro�les collected from MD simulations at di�erent evolution

times from some well de�ned initial temperature pro�le.

In what follows the above approach will be validated on three carefully chosen systems:

liquid argon, Stillinger-Weber monoatomic water model (mW) [22] and the SPC [23] water

model.

3. Simulation setup

All MD simulations were performed using LAMMPS [24] combined with several in-

house developed computer codes for the purposes of thermostatting and post-processing. A

standard velocity-Verlet integration scheme was used and the periodic boundary conditions

were imposed in all directions.

Pairwise interactions in liquid argon, a paradigmatic example of a simple liquid, were
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described using the Lennard-Jones potential:

U(r) = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]

(6)

and truncated at rc = 2.5σ. Unless stated otherwise, simulations were performed with 6.000

atoms. For the sake of comparison with a previous study by Ercole et. al. [13] we ran our

calculations at the density ρ = 1.55 g/cm3 and T0 = 220 K, adopting ϵ/kB = 119.8 K and

σ = 0.3405 nm [25]. Equations of motion were integrated using a timestep of 4 fs. For

monoatomic water (mW) introduced by Molinero and Moore we used the Stillinger-Weber

force-�eld which also contains many-body interactions. As discussed by other authors before,

the standard expression for heat �ux should not be used in the case of many-body potentials

[26]. Thermal conduction in mW water has been studied by Cheng and Frenkel who used

the recently introduced WAVE method. We performed our simulations with 9.000 atoms

adopting the same thermodynamic conditions as in [15] (T = 800 K and p = 35.6 atm) and

a timestep of 4 fs.

Lastly we check the perfromance of our method on bulk water represented by SPC water

model. We used 3000 molecules and ran the simulations at ρ = 1.0 g/cm3 and T = 300 K

with a timestep of 1 fs. Bond lengths and HOH angles were constrained using SHAKE [27].

Long-range interactions were taken into account by means of PPPM [28] method with a

force accuracy of 10−5.

The work�ow of our approach is as follows. First, a cubic simulation box with an

edge L is created and the atoms are placed at random positions. The system is extensively

equilibrated at T0 in the NVT ensemble using Nose-Hoover thermostat [29, 30]. After the

initial equilibration, the system is divided into Ns slices along the x direction (see Fig. 2)

and the Nose-Hoover thermostat is switched o�. To create a temperature perturbation, the

atomic velocities in each slice are rescaled by a factor

λ =

√
T ′

T0

, (7)
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where T ′ is given by the shape of the perturbation that we want to impose. For SPC water,

all atoms in a molecule are rescaled by the same factor. Here we have used a perturbation

in the form of a boxcar function:

T ′(x, t = 0) =

T0 +∆T ; L−d
2

≤ x ≤ L+d
2

T0 otherwise

where 0 ≤ x ≤ L. Such rescaling procedure is applied for 500 ps every ∆t = 20 fs. After

each rescaling event, atom velocities are corrected by the amount of the center of mass

velocity of entire system to assure zero total momentum. Between two rescaling events, the

system is allowed to evolve microcanonically. After a non-equilibrium steady state has been

reached, we keep the same protocol for as long as required to extract M frames which serve

as a starting point for relaxation. Usually, M = 1000 is su�cient to obtain well-converged

results. The aforementioned frames are extracted every τ = 800 fs which is enough to ensure

that two successive starting con�gurations are statistically independent of each other. The

value of τ can be conveniently estimated for instance from velocity autocorrelation function.

Lastly, M independent microcanonical (NVE) simulations are performed and the atomic

velocities are stored in each slice. The length of each NVE run is typically between 10-20

ps which is su�cient for the system to almost completely relax to equilibrium. Obviously,

the length of NVE runs has to be adjusted according to the magnitude of L, since for larger

simulation boxes the relaxation proceeds slower and vice versa. The �nal temperature in

j-th slice at time t is obtained from:

Tj(t) =
1

kB

〈
1

NDOF

N∑
i=1

miv
2
i

〉
. (8)

Here Tj is computed from velocities of atoms which, at time t, belong to the j-th slice and the

constrained degrees of freedom in case of SPC water model are carefully omitted in NDOF .

Note that the velocities stored in each slice are taken from all M NVE runs and a single

calculation of a temperature per slice is made.

7



In order to obtain thermal conductivity κ from thermal di�usivity α, the density and

the isobaric heat capacity cp are required (α = κ/ρcp). Given that all simulations are

performed at constant volume, the density is readily available and the heat capacity can be

routinely evaluated from a slope of enthalpy H(T ) versus temperature T in the interval from

T0 to T0 +∆T using a separate set of NpT simulations.

Figure 2: The simulation box divided into Ns slices. Figure was generated using VMD [31] and matplotlib.

4. Results and Discussion

In the following, we test our approach on liquid argon in a super�uidic state, mW

and SPC water models as described in Simulation setup (Section 3) and summarized in

the Appendix B. We begin with a short description of time series analysis (κ(t)) through

which the �nal conductivity along with the error can be estimated. We continue with the

evaluation of the robustness of our method to the choice of several parameters: the number

of neighboring periodic images required, the width of the perturbation and the magnitude

of ∆T . We �nish our discussion by examining size e�ects for Lennard-Jones �uid and give

a brief overview of results for mW and SPC water. The number of slices is �xed at Ns = 30.
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Figure 3: Snapshots of temperature pro�les during relaxation at various times for liquid argon.

4.1. Liquid argon

Using the simulation protocol described in Section 3, we obtain temperature pro�les

T (x, t) (see Figure 3) which are used to compute the thermal conductivity by �tting them

with the analytical solution given by Eq. (5). We perform a separate �t at each t and thus

obtain a time series κ(t) from which the �nal conductivity along with the error estimate is

extracted.

4.1.1. Time series analysis

A typical shape of κ(t) is shown in Figure 4. For t < 2 ps, κ shows signi�cant instability

which we suspect is due to the memory e�ect of a thermostat. Nonetheless, for t > 2 ps, κ

quickly stabilizes and generally begins to oscillate around the correct value of thermal con-

ductivity. Therefore values of κ for t < 2 ps are discarded from further discussion. The shape
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of κ(t) for t > 2 ps shows regular oscillations which are not merely statistical �uctuations.

Given that simulations are performed under periodic boundary conditions, such oscillations

are expected. As the temperature perturbation relaxes, the thermal wave collides with the

ones from its neighboring images. When the thermal wave bounces back, κ is underestimated

and vice versa as the wave relaxes again. Thermal waves are not predicted by Fourier law or

heat equation which is the basis of our model. We did not try to incorporate their presence

in our analytical solution but rather account for them in the posteriori analysis. A thor-

ough discussion on thermal waves and non-Fourier types of heat conduction can be found

for instance in Ref. [32]. As far as our method is concerned, for smaller simulation boxes

and su�cient averaging over a large number of trajectories it is possible to nearly eliminate

the presence of a wave in the �nal κ(t). Conversely, for larger simulation boxes the wave

persists which is expected given that the creation of a coherent wave is more likely (compare

for instance Figure 4 and Figure 5a). In Figure 4 we show that if running average over a

well-converged κ(t) is performed, the presence of thermal waves is not problematic to obtain

the correct value of thermal conductivity since running average is a well-behaved function.

More speci�cally, for a set of N equally spaced temperature pro�les from a trajectory of

length tmax = N∆t, we de�ne the running average over κ(t) as:

κ(t) =
1

j − k + 1

j∑
i=k

κi. (9)

Here k corresponds to the moment in time t0 from which averaging takes place, namely

t0 = k∆t, t = j∆t (for t = tmax, j = N), and 1/∆t is the sampling frequency.
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Figure 4: Raw data (left) and running average (right) of thermal conductivity shown for a system of liquid
argon where ∆T = 30 K, d/L = 0.2 and Ns = 30. Two neighboring images (n = 2) were included in the
�tting procedure. Our estimation of κ agrees well with values obtained by Ercole et. al. [13] within the
statistical error.

To summarize, if well-converged κ is to be obtained from a stable running average

over κ(t), it should not matter whether oscillations are present in the simulation when solely

trying to extract thermal conductivity; they contribute only to the larger standard deviation.

Another important parameter which in�uences the rate of convergence of κ(t) with

respect to the number of required simulated trajectories is τ as de�ned in Simulation setup.

An optimal choice of τ can be estimated from a velocity autocorrelation function (VACF).

The suggested choice of τ is the moment at which VACF reaches 0, which ensures that

two succesive starting con�gurations, used to study an independent thermal relaxation, are

indeed uncorrelated.

4.1.2. Neighboring periodic images corrections

As shown in Section 2, the correct treatment of heat transfer for the setup considered

here includes taking into account the periodic boundary conditions. Here we identify the

minimum number of neighboring periodic replicas of the central box (n = 0) that are neces-

sary to ensure that the relaxation of a temperature perturbation is correctly described for the

whole duration of our simulations (i.e. until thermal equilibrium is nearly established again).

We also compare our predictions with the model which ignores the periodicity and assumes

that the perturbation is allowed to spread to in�nite media on both sides of the central box.

The solution of the heat equation for the latter case can be evaluated analytically and has a
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well-known form given by:

T (x, t) = T0 +
1

2
∆T

[
erf

( 1
2
(L+ d)− x

√
4αt

)
− erf

( 1
2
(L− d)− x

√
4αt

)]
. (10)

As expected, for short t (t < 7 ps) it is not important whether the system is treated

as periodic or in�nite on both sides of the central box. The latter approximation, however,

quickly breaks down as demonstrated in Figure 5 (left). To achieve well converged κ(t)

throughout the whole relaxation process under periodic geometry, it is necessary to include

neighboring image corrections up to at least n = 2. Nonetheless, it is actually not necessary

to sample the whole relaxation to achieve well converged κ since running average over κ(t)

stabilizes much faster (see Figure 4). Therefore as shown in Figure 5 corrections up to n = 1

are already su�cient. Throughout this work, we have consistently used corrections up to

n = 2.

4.1.3. Width of a perturbation and the magnitude of ∆T

To check how the shape of a perturbation a�ects the estimation of thermal conductivity,

we performed simulations for various widths (d) of the slab in which a thermal perturbation

is introduced, and magnitudes of ∆T by keeping the number of slices and the system size

�xed (Ns = 30, N = 6000). Simulation parameters that were used and corresponding results

are given in Table 1.

d/L ∆T [K] κ [W/mK]
1/5 30 0.1969± 0.007
2/5 30 0.1927± 0.007
1/5 50 0.1958± 0.005

Table 1: Values of κ for various values of d/L and ∆T .

We conclude that neither the magnitude of ∆T nor the width of a perturbation do not

signi�cantly a�ect κ since all values listed in Table 1 coincide within the statistical error,

indicating the robustness of our method. Note that the higher values of ∆T may speed

up the convergence of temperature pro�les and therefore the convergence of κ itself since
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the signal to noise ratio is increased. However, too high values of ∆T can cause signi�cant

changes in both κ and cp. Therefore, we suggest using modest values of ∆T up to 20% of

the reference temperature.

4.1.4. Size e�ects

We �nish our discussion by examining the in�uence of L (and the number of atoms

N) on predicted values of κ. Our systems are cubic and therefore all cell parameters are

changed simultaneously (L = Lx = Ly = Lz). The relationship between systems size and

the number of atoms is given in the Table 2.

As discussed by several authors before, thermal conductivity predicted by NEMDmeth-

ods is generally underestimated for small L. This e�ect is severe for solid systems when the

phonon mean free path is smaller than L [19]. For liquid systems, size e�ects also exist and

it has been suggested, for example, that κ ∝ 1/
√
Lx for a Lennard-Jones �uid when the

cross section is kept constant and the simulation cell is elongated along x-axis [33].

Figure 5: Dependence of κ(t) with rescpect to the maximum range N of neighboring images included in
the analytical solution (5), which was used in the �tting procedure (left) and size dependence of κ(L) as
predicted by our method (right).
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L [Å] N
27.76 500
33.70 894
44.07 2000
55.53 4000
75.36 10000
88.14 16000

Table 2: Number of atoms N in the various simulation cells of size L.

Here we do not wish to discuss the scaling relationship κ(L) as predicted by our method

in detail, but merely provide guidance for selecting the optimal L. Figure 6 clearly shows

that κ is underestimated for small L in agreement with studies mentioned before. Thermal

conductivity converges near L ≈ 4.4 nm which, for the density used here, corresponds to

N ≈ 2000 atoms. All values of κ beyond this treshold agree within statistical uncertainty.

Nonetheless, this treshold may depend on the density and therefore an analysis of size e�ects

is highly suggested to obtain reliable and well-converged thermal conductivity.

4.2. Monoatomic water model

Monoatomic water (mW) model is a simple example of a liquid which contains many-

body interactions. As such (and as brie�y mentioned before) the textbook de�nition of heat

�uxes based on pairwise interactions is not applicable in this case and the correct de�nition

of heat �uxes is non-trivial. In our method an explicit de�nition of heat �uxes is not needed

thus making our approach much more elegant. Simulations performed here to illustrate the

applicability of our approach were run at T0 = 800 K which is also a range of thermodynamic

conditions relevant for e.g. industrially important ionic melts. Therefore we expect similar

performance for ionic systems. Cheng and Frenkel determined the thermal conductivity of

mW using WAVE method. They determined κ = 0.16 W/mK (6,912 atoms) and κ = 0.17

W/mK (27,648 atoms), respectively. Our method predicts κ = 0.1721 W/mK in good

agreement with predictions from WAVE. Our approach therefore also performs well even at

fairly extreme conditions.
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4.3. SPC water model

Lastly we devote our attention to a simple molecular �uid - an SPC water model.

Heat transport in molecular �uids is signi�cantly more di�cult to simulate due to addi-

tional degrees of freedom with the most problematic ones being the bond vibrations and

angle bendings. In the results presented here the bonds and angles have been constrained

using the SHAKE algorithm which e�ectively means that the degrees of freedom which may

act as energy sinks are eliminated. Indeed with constraints we reach excellent agreement

between our method (κ = 0.768 W/mK) and the previous works where the authors have

used either the Green-Kubo [34] (κ = 0.776 W/mK) or the Müller-Plathe [34] (κ = 0.802

W/mK) approach. If the constraints are released, our method fails to correctly simulate

heat conduction since the kinetic energy is drained into the vibrational modes. We expect

our approach will perform similarly with other liquids be it in �exible or rigid �avors.

Figure 6: Time series analysis for mW (left) and SPC water (right).
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5. Conclusions

In the present work, we have successfully demonstrated and thoroughly evaluated

our approach to calculating thermal conductivities in atomistic and molecular liquids using

nonequilibrium molecular dynamics. The method presented here is simple, robust, e�ective,

and can be easily performed in parallel. It is independent of the choice of the interatomic

potentials and can be applied to both pairwise and many-body potentials. An important

advantage is that our approach does not require an a priori de�nition of the heat �uxes,

which is known to be problematic in cases where �uids cannot be described by a pairwise

interatomic potential. The e�ciency of the method is evidenced by the proper treatment of

periodic boundary conditions in the derivation of the analytical solution in reference contin-

uum models.
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7. Appendix

A Derivation of equation (5)

Suppose T0(x) is periodic function with periodicity L corresponding to the initial tem-

perature pro�le along linear �lament as shown in Figure 1. The analytical solution for the

time dependent temperature pro�le for x ∈ [−l/2, l/2] according to (4) is given by the sum

from individual intervals:

T (x, t) =
1
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πt

∫ ∞

−∞
T0(x

′) exp
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−(x− x′)2

4a2t
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=
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[· · ·
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′) exp
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+
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)
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)
dx′ · · · ]
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Taking into account the periodic condition T (x + nL) = T (x), n = · · · − 1, 0, 1, · · · , and

substitutions x′ = x′′ + nL, we can evaluate each of the above integrals within the interval

[−l/2, l/2]:

T (x, t) =
1

2a
√
πt

n=N∑
n=−N

∫ l/2

−l/2

T0(x
′′) exp

(
−(−(x− x′′ − nL)2

4a2t

)
dx′′ =

=
1

2a
√
πt

n=N∑
n=−N

exp

(
−(nL)2

4a2t

)∫ L/2

−L/2

T0(x
′) exp

(
−(x− x′)2 − 2nL(x− x′)

4a2t

)
dx′.
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B Work�ow for calculating thermal conductivities using NEMD simulations

Algorithm 1

1: generate the simulation box and initialize velocities
2: equilibrate at T0 in the NVT ensemble using e.g. Nose-Hoover or CSVR thermostat
3: divide the system into Ns slices along x-axis and switch o� the thermostat
4: while t ≤ teq do (equilibration of the temperature perturbation)
5: if t mod ∆t = 0 then
6: compute current temperature in each slice
7: rescale velocities in each slice in accordance to perturbation shape
8: compute and subtract the total c.o.m. momentum
9: end if

10: end while

11: i = 1
12: while i ≤ M do (generation of initial con�gurations)
13: keep the protocol the same as during equilibration
14: if t mod τ = 0 then
15: save current con�guration
16: i = i+ 1
17: end if

18: end while

19: j = 1
20: while j ≤ M do (performing M relaxations)
21: run NVE simulation for tr
22: extract and save velocities to each slice at a given t
23: j = j + 1
24: end while

25: compute the �nal T (x, t) from stored velocities
26: �t T (x, t) with analytical solution and obtain κ(t)
27: perform running average over κ(t) and obtain the �nal κ.
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