
Citation: Zuena, M.; Pondelak, A.;

Garbin, E.; Panizza, M.; Nodari, L.;

Škapin, A.S.; Škrlep, L.; Artioli, G.;

Tomasin, P. Innovative Calcium

Carbonate-Based Products to Repair

Cracked Cement Mortars. Materials

2022, 15, 4044. https://doi.org/

10.3390/ma15124044

Academic Editor: Francisco Agrela

Received: 12 May 2022

Accepted: 4 June 2022

Published: 7 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Innovative Calcium Carbonate-Based Products to Repair
Cracked Cement Mortars
Martina Zuena 1, Andreja Pondelak 2 , Enrico Garbin 3 , Matteo Panizza 1 , Luca Nodari 1,
Andrijana Sever Škapin 2,4 , Luka Škrlep 2, Gilberto Artioli 3,5 and Patrizia Tomasin 1,*

1 Institute of Condensed Matter Chemistry and Technologies for Energy, CNR, Corso Stati Uniti 4,
35127 Padova, Italy; martina.zuena@icmate.cnr.it (M.Z.); matteo.panizza@cnr.it (M.P.);
luca.nodari@cnr.it (L.N.)

2 Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, 1000 Ljubljana, Slovenia;
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Abstract: The durability of Portland cement mortars is often affected by environmental factors, which
can cause physicochemical and mechanical degradation processes. In this study, the performance of
three products, calcium acetoacetate and calcium tetrahydrofurfuryloxide dissolved in two different
solvents developed and tested as stone consolidants, was evaluated in terms of crack filling or sealing
and consolidation. Realistic cracks were induced in quasibrittle cement mortar prisms using a custom-
designed test rig. The effectiveness and the performance of the considered treatments, investigated
on specimens, were evaluated by optical and scanning electron microscopy, colourimetry, water
absorption rate, ultrasonic pulse velocity, and surface hardness measurements. Results revealed
that, in the examined conditions, the products were more suitable as surface consolidants than as
crack fillers.

Keywords: cement mortars; 20th century architecture conservation; calcium acetoacetate; calcium
alkoxide; concrete repair

1. Introduction

Concrete is globally the most widespread building material, and cement is used to
produce more than one cubic meter of concrete per person per year [1]. Indeed, thanks to
its performance when coupled with steel reinforcements, and to the capability of being cast
in complex shapes, concrete ensured an unprecedented creative freedom for architects and
designers, thus characterising the architecture of the 20th century since the beginning [2,3].
Furthermore, starting from modern architecture and related movements such as brutalism,
which promoted aesthetic creativity via the direct exposition of construction materials, the
use of béton brut [4] became an architectural feature of several paradigmatic buildings and
structures, with concrete directly exposed to the external environment without paints or
other protective treatments.

Initially considered to be a very durable material, in the past century, concrete has
shown decay signs as a consequence of combined factors. Degradation has been mainly
induced by environmental aggressiveness and internal chemical reactions, anthropogenic
influences, and climatic changes, bringing to leaching, thermal and hydric expansion,
shrinkage and creep, corrosion of reinforcement, and soiling [5,6]. Weathering can not
only lead to aesthetic problems, but also to structural issues such as steel reinforcement
corrosion [7–10].
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In civil engineering, the demolition and substitution of deteriorated elements are
common practice. Nonetheless, when dealing with historical and artistically valuable
buildings or artefacts, other solutions (restoration, repair) should be designed and imple-
mented. Moreover, the increased service life of concrete structures reduces the demand
for new constructions and consequently raw materials, thus eventually reducing pollution,
energy consumption, and CO2 emissions [11–13]. New concrete materials can include self-
healing approaches, but for existing buildings, preventive repair and proper maintenance
must be applied. European set of standards EN 1504 classifies two groups of possible
causes of defects (degradation of concrete cover and degradation of reinforcement) and
three approaches for repair methods: impregnation, sealing, and coating [14–17]. Surface
treatments provide protection against external aggressive agents, while sealing is used
for filling the cracks. The presence of cracks is a common feature in concrete due to its
properties (porosity, composition, design): it usually does not constitute a safety problem,
but depending on the width of the cracks and their diffusion (a continuous network can
modify permeability), it may compromise its durability and long-term functionality by
inducing loss of strength or stiffness and reinforcement corrosion [18–20].

Conservation treatments play a key role in the protection of construction materi-
als, in particular in historical buildings [21–24]. Nonetheless, several products used in
this field show unsatisfactory long-term performance [25–27]. Therefore, scientists are
constantly engaged in the research of stable, efficient, compatible, and long-lasting treat-
ments [15,18,27–29].

In self-healing processes that can be autogenously activated or induced with different
methods [1,18,30], carbonation is the most effective in terms of crack sealing and self-healing
performance. Taking this mechanism into consideration, a recent method for improving the
strength of cracked brittle materials is injecting a preparation with colloidal nanoparticles
of Ca(OH)2 able to form CaCO3 by reaction with the atmospheric CO2 [31].

Within this context, we report in the present work the application of two novel
products, namely, calcium acetoacetate Ca(OAcAc)2 and calcium tetrahydrofurfuryloxide
Ca(OTHF)2, to address important deterioration issues of Portland cement mortars: surface
protection and the sealing of microcracks that constitute the most significant way of penetra-
tion of harmful agents (CO2, H2O, Cl−). The two proposed products had been developed
and successfully tested as stone consolidants during European projects HEROMAT [32],
and NANOMATCH [33], and they present features that can be used and optimised for
cement mortar application. Both are CaCO3-forming compounds, hence being compatible
with the inorganic composition of concrete, and both demonstrated good penetration and
reconsolidation ability [34,35]. Ca(OAcAc)2 dissolved in water and Ca(OTHF)2 dissolved
in a proper organic solvent can deeply penetrate porous substrates, where they transform
into CaCO3 [36,37]. The different solubility of the used compounds renders them useful
for different concrete compositions. Since Ca(OTHF)2 was dissolved in two different sol-
vents, the tested products became three. Prismatic mortar samples resembling the cortical
surface of a normal concrete were prepared with Portland cement. Before the application
of the treatments, realistic superficial cracks were induced in the mortar prisms using a
custom-designed test rig to simulate a damaged or deteriorated surface layer of concrete.

The properties of cement mortar samples were investigated before and after the
cracking process and, finally, after the application of the treatments. The performance and
effectiveness of the new products were evaluated in terms of efficacy and compatibility, and
explored as follows: consolidation effect, penetration depth, variation in water transport
properties, and changes in superficial morphological characteristics. Aesthetic performance
was also evaluated because it is one of the requirements of conservation treatments for
historical buildings [21].

2. Materials and Methods

Three products were prepared and tested. The first product, calcium acetoacetate
Ca(OAcAc)2, is a water solution of calcium acetoacetate synthetised in the laboratory with
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a calcium concentration of 9.6 % [32,34]. The synthesis procedure was the following: 20 g
of CaCO3 and 100 g of water were poured into a 1000 mL flask and stirred with a magnetic
stirrer for about 10 min. Then, 61.3 g of acetondicarboxylic acid was added in small
quantities. The flask was placed in a water bath with a temperature of 40 ◦C for 8 h. Then,
330 g of water was added to give 460 g of a 9.6% aqueous solution of calcium acetoacetate.
The second, calcium tetrahydrofurfuryloxide Ca(OTHF)2, is a whitish-light yellow powder
produced by ABCR labs (Forcarei, Spain) according to a patented method [33]. A total
of 2.628 g of liquid ammonia and 339 g of metallic calcium were added to 3.01867 g of
tetrahydrofuran in N2 atmosphere and stirred until calcium dissolution. The temperature
was maintained at −65 ± 5 ◦C. A solution of 1.73055 g of 98% tetrahydrofurfuryl alcohol in
3.01867 g of tetrahydrofuran was added drop by drop at a temperature between −75 and
−55 ◦C. Then, the mixture was slowly brought to ambient temperature and left overnight
under vigorous stirring. Residual ammonia was removed by reduced pressure (T = 25 ◦C;
P = 0.27 bar). An extensive characterisation of this product can be found in [35,37] and
references therein. This consolidant was dissolved in either ethanol or 2-butanol to achieve
the same calcium concentration as that of Ca(OAcAc)2. The two (analytical-grade) alcohols
were purchased from Sigma-Aldrich and used as received without any further purification.
Fresh nanosuspensions of Ca(OTHF)2 have a dispersion centered around 50 nm, with
particle dimensions between 20 e 120 nm [33,35]; the aggregation of particles was reduced
by sonication. Overall, the applied products were:

• Ca(OAcAc)2 dissolved in water (CFW);
• Ca(OTHF)2 dissolved in ethanol (ALK1);
• Ca(OTHF)2 dissolved in 2-butanol (ALK2).

Eighteen standard mortar prismatic samples (40 × 40 × 160 mm3) were prepared and
cured according to EN 196-1:2016 [38]. One part of Portland cement CEM II/A-LL 42.5 R
was mixed with 0.5 parts of tap water and 3 parts of standard quartz sand according to the
reference mix design provided by EN 196-1:2016 for testing the strength of cement. The
cement was selected by considering that CEM II [39] has been holding the largest market
share over the last few decades in Europe compared to the other types, and limestone
Portland cement is the most used among CEM II products [40,41]. Samples were cured
for 28 days under water and stored in laboratory conditions at a constant temperature
(20 ◦C ± 1 ◦C).

Three samples were used for the characterisation tests to measure the 28-day compres-
sive and flexural strengths according to EN 196-1:2016 [38]. Then, 13 prisms were cracked
using the custom-designed test rig shown in Figure 1a. The two remaining uncracked
prisms were used as reference samples for the subsequent testing.
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 Figure 1. Cracking procedure: (a) test rig for eccentric axial compression; (b) width and (c) depth of
induced cracks.

The cracking method and related laboratory test rig envisaged the application of an
eccentric axial compression to the mortar prisms. An eccentricity of 15 mm along one of
the two axes of symmetry of the 40 × 40 mm2 cross-section was used. This eccentricity
and a proper contact with the 40 × 40 mm2 surfaces of the mortar prisms were produced
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by using a steel ball-joint and a linear hinge as bottom and top boundary conditions,
respectively (Figure 1a). The linear hinge was placed parallel to one of the 40 mm sides
of the cross-section and with an inward offset of 5 mm from the edge, thus producing
the abovementioned eccentricity of 15 mm. The eccentric compression imposed by the
boundary conditions generated combined internal plane–stress tension and compression
stress field parallel to the vertical plane perpendicular to the linear hinge. Owing to the
quasifragile behaviour of the cement mortar prisms [42], during loading, the internal tensile
stresses reached the tensile strength of the mortar and generated the crack (Figure 1b),
while the compressive stresses were still within the elastic behaviour and maintained
undamaged about one-third of the 40 × 40 mm2 mortar cross-section. The compression
load was applied in displacement control at a rate of 5 µm/s. Loading was stopped once 3
to 4 stable cracks with a mouth of about 0.2 mm (Figure 1b), a depth of 20 mm to 30 mm
(Figure 1c), and spaced apart about 40 mm, had been induced in each mortar prism.

The achievement of a crack mouth opening of about 0.2 mm was the stopping criterion
for the loading procedure. After unloading, the crack mouth relaxed to about 0.1 to 0.15 mm
once the eccentric axial compression had been removed from the mortar prisms, thus repro-
ducing typical microcracks in reinforced concrete structures during their service life [43].
Hairline cracks (microcracks smaller than 0.3 mm) are usually left untreated in common
practice due to the difficulty of injecting them with commercial epoxy resins [17]. Nonethe-
less, microcracks adversely influence the durability of reinforced concrete structures, for
instance, the resistance to chloride penetration and related damage [44]. Therefore, compat-
ible consolidants with concrete substrates and having good penetration into microcracks,
and reconsolidation ability were tested in the present investigation.

Before the application of the products, all prisms (except for the three used for the
characterisation tests) were cut to obtain 40 × 40 × 40 mm3 cubic specimens, taking care to
include at least one crack where relevant (Table S1, Supplementary Materials).

Two procedures were used to apply the consolidating products: by brush till refuse
(AP1), and by absorption through capillarity (AP2). In the first case, the application stopped
when the surface had remained wet for more than 1 min, and it consisted of 8 applications
each sample (Figure 2a). In the second case, specimens were placed over a glass sphere
bed with the face to be treated left in contact with the products for 2 h (Figure 2b). For each
type of test, results are expressed as the mean value of three samples.
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Figure 2. Example of application procedures of CFW: (a) brush till refuse, AP1; (b) absorption
through capillarity, AP2.

To evaluate the amount of dry matter (kg/m2) retained after each application pro-
cedure and product, samples were dried and weighed before and one month after the
treatment with a SalTec analytical balance.

The following measurements were carried out to characterise the performance of
tested products: visual appearance via optical (OM) and scanning electron microscopy
(SEM), colorimetry (COL), water absorption through capillarity (ABS), ultrasonic pulse
velocity (UPV) and surface hardness (SH).
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The visual appearance was investigated to detect the possible sealing of cracks and/or
formation of a coating on the surface or inside the microcracks. The other techniques
aimed at providing indications about aesthetic compatibility, through colorimetric mea-
surements, and variation of physicomechanical properties (such as permeation to water,
surface, and general hardness/consolidation), through water absorption tests, ultrasonic
and rebound measurements.

All tests were carried out on both reference (uncracked) and cracked samples (Table S1).
In the latter case, they were performed twice, before and after treatment. Multiple methods
were applied to the same specimens, such as: colour measurements, water absorption
through capillarity, and UPV.

Microscopy analyses were performed to evaluate the distribution of consolidating
products. Optical microscopy was performed with an Olympus SZX12 (Olympus Corp.,
Tokyo, Japan) equipped with a digital camera. Four cracked samples were selected: one
untreated and the remnant treated with each product: ALK1_AP2, ALK2_AP2, CFW_AP2.
Application method AP2 was chosen because it guaranteed higher product penetration.
Samples were analysed, without any modification, with a Scanning Electron Microscope
JEOL JSM-IT500 with EDS analyser (Oxford Instruments, Tokyo, Japan) operating at low
vacuum (80 Pa), at working distance of 10 mm and accelerated voltage of 15 kV, backscatter
electron detector in shadow mode (BED-S). Smaller fragments (Figure 3) were also ob-
tained through a Herbert Albert cutting saw and were analysed with an FEI Quanta 200
FEG-ESEM (FEI Czech Republic s.r.o, Brno, Czech Republic) in high vacuum conditions,
after metallisation with carbon. Different magnification and detectors (BSED and EDT)
were used.
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Colour measurements were performed to detect possible chromatic variations of the
treated surface induced by the applied products. A spectrophotometer Konica Minolta CM-
700d, (Konica Minolta Corp., Tokyo, Japan) under Illuminant D65 at a 10◦ of observation
was adopted according to NORMAL 43/93 [45]. For each treatment, three samples were
analysed, and four points for each sample were considered. Results are reported in the
CIE L*a*b* colour space, and the total colour difference ∆E* was calculated as follows
(Equation (1)):

∆E∗ =
√

∆L∗2 + ∆a∗2 + ∆b∗2 (1)

where L* is the lightness; a* and b* are the colorimetric coordinates for red/green and
yellow/blue parameters, respectively (a* < 0 green, a* > 0 red, b* < 0 blue, and b* > 0 yellow);
∆ is the difference between the mean values of the treated and untreated surfaces. Data
were elaborated with the Spectramagic software.

Water absorption through capillarity was performed under the procedure provided by
standard UNI 10859:2000 [46]. All the surfaces of the sample were covered with aluminium
tape except the treated one, which was then put in contact with water. Samples were
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weighed at regular time intervals until a steady-state had been reached. A comparison
before and after treatment was obtained by calculating the capillary water absorption coef-
ficient (CWAC), which is the angular coefficient of the first part of the capillary absorption
curve. For each treatment, results are reported as the mean of three samples.

Ultrasonic pulse velocity (UPV) is one of the most used undestructive techniques
to evaluate the status of concrete, to detect internal defects, and to estimate the crack
depth and compressive strength [47–49]. It can be correlated to stiffness (e.g., modulus
of elasticity), compressive strength, porosity, and permeability. Indeed, an increase in
wave velocity generally indicates an improvement in material cohesion. In our case,
measurements before and after the application of treatments can indicate a crack filling
and/or a consolidation action. A Pundit transmitter (London, UK) with a frequency of
54 kHz was used. Measurements were taken with the direct method by placing transducers
on the opposite surfaces perpendicularly to the treated one. Results are expressed as the
mean value of three measurements.

Surface hardness measurements were performed through a portable tester Equotip 3
(Proceq, Zurich, Switzerland), which is based on the Leeb dynamic rebound test method [34].
Probe D, which has an impact energy of 11 N mm, was used. The hardness value is ex-
pressed as the Leeb hardness (HLD), i.e., the ratio of rebound velocity to impact velocity
multiplied by 1000 [50]. Results are given as the average of 10 measurements obtained for
each sample (3 samples for treatment).

A detailed list of all the abbreviations used in this paper is reported in Table S2
(Supplementary Material).

3. Results and Discussion

Characterisation tests on the cement mortar prisms delivered an average compressive
strength of 42.1 MPa (CoV 0.8%) and an average flexural strength of 6.3 MPa (CoV 2.0%).
Measured strengths were in line with the type of tests and used cement, thus confirming
the proper preparation and curing of mortar specimens.

3.1. Retained Dry Matter of Consolidants

Table 1 reports the average amount of dry matter retained by cubic samples treated
with the three products, each of them applied with both methods. As expected, method
AP2 lead to a greater amount of retained material compared to AP1, about 15–20% for
products ALK1 and ALK2 and more than 140% for CFW. ALK1 and ALK2 showed similar
results on equal methods, while the amount of retained material for CFW, compared to the
former, was slightly higher (6%) in the case of AP1, and remarkably greater (more than
110%) in the case of AP2.

Table 1. Quantity of dry matter retained after one month for all products and application procedures.

Samples 1 Dry Matter (kg/m2)

CFW_AP1 0.57 ± 0.08
ALK1_AP1 0.54 ± 0.08
ALK2_AP1 0.54 ± 0.07
CFW_AP2 1.37 ± 0.15
ALK1_AP2 0.63 ± 0.07
ALK2_AP2 0.65 ± 0.07

1 CFW: Ca(OAcAc)2; ALK1: Ca(OTHF)2 in ethanol; ALK2: Ca(OTHF)2 in 2-butanol; AP1: brush till refuse; AP2:
absorption through capillarity.

The lower quantity of alkoxide-based solutions could have been due to some ageing
of the applied product, as already observed [35]. The product received from ABCR was
not whitish as usual, but light yellow, an indication of incomplete purification, which can
induce the faster ageing of the product.
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3.2. Visual Appearance

Observations of the application face of samples through optical microscopy on rep-
resentative samples of all the applied products (one for each product and treatment and
2 not treated as references, 8 samples in total) generally seemed to reveal a reduction in
the width of the cracks after the introduction of the consolidants (Figure 4a,b, referring to
ALK2_AP1). This was a general trend, although measurements were not performed on the
same samples before and after application.
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Figure 4. Stereomicroscopy images (7×) of samples (a) untreated and (b) treated with ALK2_AP1: a
reduction in crack width is visible.

Four selected cubic mock-ups (one untreated and one treated by absorption through
capillarity for each product: ALK1_AP2, ALK2_AP2, CFW_AP2), observed in advance
with optical microscopy, were then observed with the scanning electron microscope (JEOL
instrumentation) to evaluate a possible crack-filling effect. SEM images of samples treated
with ALK1 and CFW by immersion (AP2) are shown in Figure 5. At low magnifications,
consolidants apparently did not exhibit a crack-filling effect (Figure 5a,b). Higher magnifi-
cations of cracks show that consolidants were deposited on the crack walls, as indicated by
the arrows in Figure 5c,d: on the surface of samples, the formation of needlelike (Figure 5e)
and spherical (Figure 5f) particles can be seen. Needlelike particles are characteristic for
alkoxide transformation [51], while spherical particles are characteristic for vaterite for-
mation, typically occurring in CFW transformation [52]. Formed vaterite particles are
approximately 1 to 3 µm in size, which is in accordance with previous studies [52].

It is interesting to compare these results with those obtained from the use of the
other SEM instrumentation (FEI Quanta 200), where the preparation of samples required
a rather aggressive cutting in presence of water. In one case (ALK1_AP2), the deposit of
the treatment inside the cracks was evident, but with an inhomogeneous distribution. For
CFW_AP2 and ALK2_AP2, the deposit was scarcely visible in the cracks; however, CFW
seemed to have a more homogeneous distribution. The procedure used to cut the samples
might have partially removed the coating, as also observed by Roig-Flores and Serna [53].
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Figure 5. SEM images of samples treated with (a,c,e) ALK1 and (b,d,f) CFW, applied via absorption
through capillarity (AP2), at different magnifications ((a,b): 100×; (c,d): 500×; (e,f): 2000×). (a,b) At
low magnification, it is evident that the crack was not filled with consolidants; (c,d) at higher magnifi-
cations, the consolidant material was deposited on the crack walls. At even higher magnifications,
the morphology of different consolidants was clearly seen to be (e) needlelike and (f) spherical
particle formation.

3.3. Colorimetry

The surface colour variation caused by treatments was, in all cases, below the accept-
able limit ∆E* < 5 (according to García and Malaga [54]), which is hardly appreciable by
visual estimation, as shown in Figure 6. This datum suggests their aesthetical compatibility
with the treated support. Indeed, this is an important parameter when proposing a treat-
ment for historical buildings and cultural heritage objects, where visual integrity must be
preserved [21,55].
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3.4. Water Absorption

As water plays an essential role in many deterioration mechanisms of concrete, high
resistance to its penetration is desirable for surface treatments [53]. Water absorption, which
is closely related to concrete pore structure, might provide indirect information about the
effectiveness of treatments in this regard, reflecting possible changes of porosity before and
after consolidation.

Water absorption tests were carried out for all the samples, and the results are reported
in Figure 7 and Table 2. After the application of the products, water absorption was
generally similar to that of the untreated mortars. The water absorption of CFW_AP2
decreased during the first 8 h when compared to the cracked–untreated samples (NT) and
to the other treatments with both application procedures, which could have been related to
the maximal material uptake into the fracture (Table 1).

In general, products did not affect the water absorption, although a small reduction in
CWAC was considered to be related to the efficacy of a consolidation treatment. However,
untreated samples start with a low CWAC; therefore, it is difficult to have consistent
variation in this parameter. Furthermore, a variation in CWAC of less than 10% is generally
suggested [56] to assess the compatibility of a consolidation product. Regarding ALK1_AP1,
which showed an unusual increase in CWAC, the standard deviation was significant,
probably due to the different morphology of the cracks and inhomogeneity among samples.
However, more in-depth investigations might suggest alternative hypotheses.
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Figure 7. Quantity of water absorbed by capillarity–comparison among uncracked–untreated samples
(NC–NT), cracked–untreated samples (CFW_AP1 NT, CFW_AP2 NT, ALK1_AP1 NT, ALK1_AP2 NT,
ALK2_AP1 NT, ALK2_AP2 NT) and cracked–treated samples (CFW_AP1 T, CFW_AP2 T, ALK1_AP1
T, ALK1_AP2 T, ALK2_AP1 T, ALK2_AP2 T): (a) focus on CFW (b) focus on ALK1 and (c) focus on
ALK2. CFW: Ca(OacAc)2; ALK1: Ca(OTHF)2 in ethanol; ALK2: Ca(OTHF)2 in 2-butanol; AP1: brush
till refuse (continuous lines); AP2: absorption through capillarity (dashed lines).

Table 2. Comparison of capillary water absorption coefficient (CWAC) before and after treatment.

Samples 1
CWAC

Before Treatment After Treatment

CFW_AP1 5.9 ± 0.6 5.9 ± 0.1
ALK1_AP1 4.6 ± 0.3 5.2 ± 0.5
ALK2_AP1 3.8 ± 0.2 3.8 ± 0.3
CFW_AP2 5.1 ± 0.4 4.2 ± 0.2
ALK1_AP2 5.3 ± 0.2 5.2 ± 0.3
ALK2_AP2 4.8 ± 0.1 4.9 ± 0.3

1 CWAC: capillary water absorption coefficient. CFW: Ca(OacAc)2; ALK1: Ca(OTHF)2 in ethanol; ALK2:
Ca(OTHF)2 in 2-butanol; AP1: brush till refuse; AP2: absorption through capillarity.

3.5. UPV Measurements and Consolidation Effect

UPV measurements were performed on uncracked and cracked specimens, the latter
both before and after the application of treatments. Results (Table 3) show that the recorded
values of ultrasound velocity after the application of consolidants increased in all cases and
were slightly greater when compared to the reference uncracked samples.

Therefore, a certain consolidation effect was observed for all treatments with both
application procedures. The major differences before and after treatment were with applica-
tion method AP2, except for CFW. ALK1 and ALK2 had the best performance in percentage
with the application by capillarity, although their retained quantity of product was the
lowest. The higher UPV values after treatment were probably due to the deposition of the
consolidant on the surfaces of the cracks, as can be seen from SEM images in Figure 5c,d.



Materials 2022, 15, 4044 11 of 14

Table 3. UPV values for uncracked–untreated and for cracked samples, before and after treatment.

Samples 1
UPV (m/s)

%
Before Treatment After Treatment

NC-NT 4134.0 ± 28.5 –
CFW_AP1 4080.4 ± 56.4 4257.7 ± 33.1 +4.3
ALK1_AP1 4171.2 ± 57.3 4243.9 ± 6.3 +1.7
ALK2_AP1 4201.7 ± 96.3 4274.9 ± 54.4 +1.7
CFW_AP2 4172.6 ± 53.1 4307.2 ± 48.9 +3.2
ALK1_AP2 4120.7 ± 46.6 4307.9 ± 21.9 +4.5
ALK2_AP2 4085.6 ± 43.8 4289.3 ± 41.4 +5.0

1 NC–NT: uncracked–untreated samples; CFW: Ca(OAcAc)2; ALK1: Ca(OTHF)2 in ethanol; ALK2: Ca(OTHF)2 in
2-butanol; AP1: brush till refuse; AP2: absorption through capillarity.

3.6. Surface Hardness

Rebound data of reference samples and specimens treated with all the products and
their percentages of variation (%) are presented in Figure 8. The percentage of variation
(%) of cracked–untreated samples (NT, −16%) was calculated concerning to untreated
and uncracked samples (NC–NT); the results referring to treated samples are expressed
with respect to the cracked–untreated samples. In this case, tests were not performed on
the same specimens before and after the treatment, but the reference was provided by a
separate set of samples. Figure 8 reports in more detail the relative variation in surface
hardness, referring to either uncracked–untreated results (NC–NT) for cracked–untreated
samples (NT) or to the latter for treated ones.
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The presence of cracks on untreated samples (NT) led to a decrease of 16% with
respect to intact NC–NT, while treatments where able to increase the surface hardness to
similar values to those of uncracked–untreated samples, with the exception of ALK2, which
showed an improvement of between 50% and 70% compared to the average performance
of the other treatments. This may provide weak protection of damaged or altered surfaces
to abrasion.

4. Conclusions

This paper reported a preliminary assessment of the possible use of calcium acetoac-
etate (in water solution) and calcium tetrahydrofurfuryloxide (dissolved in either ethanol
or 2-butanol) as products for the repair of deteriorated cement mortars.

The various analyses performed on reference and treated samples provided a first
interesting insight on the use of these treatments for cement mortars.
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First, the retained quantity of applied products did not show straightforward correla-
tion to their measured results. Ultrasonic and surface hardness measurements showed a
certain consolidation effect promoted by all treatments regardless of agent or application
method. Furthermore, no significant chromatic variation of the surface was observed, sug-
gesting their suitability for applications to cultural heritage artefacts. Treatments, however,
did not affect the CWAC, which remained constant in almost all cases. In addition, SEM
observations revealed that the applied products formed particles that had been deposited
on the crack walls.

Specific effects can be noted. Alkoxide in ethanol (ALK1) determined a relevant in-
crease in surface hardness when applied by brush, while it did not achieve remarkable
performance as consolidant. This was likely due to the application method, i.e., by brush,
that did not allow for sufficient penetration of the product in the small and large frac-
tures. Conversely, both alkoxides applied by capillarity enhanced UP velocity and surface
hardness, suggesting a more effective and deep penetration into the substrate. Calcium
acetoacetate showed this trend regardless of application method.

Generally speaking, measured differences between reference and treated samples were
rather limited in all cases because the recorded values, also for the cracked samples, were
typical of a healthy cement mortar (see Table 1 in Karaiskos et al. [49]). Harsher weathering
conditions applied to specimens might more clearly highlight the possible consolidation
effects. In addition, the application of UPV probes on the lateral faces of specimens
(orthogonal with respect to cracks) might provide better evaluation of penetration and
crack filling effects of treatments [47–49].

Nonetheless, these products showed potential as compatible surface consolidants for
concrete repair, provided that further research investigates the use of more concentrated
solutions and the effect of multiple applications injected in the cracks, and the effects on
aged and weathered surfaces.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ma15124044/s1, Table S1: list of the analysed samples. Table S2: legend of
the used abbreviation concerning the used products, type of applications, samples and measurements.
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