This is the preprint of the following article:

Drventić I, Šala M, Vidović K, Kroflič A. Direct quantification of PAHs and nitro-PAHs in atmospheric PM by thermal desorption gas chromatography with electron ionization mass spectroscopic detection. *Talanta*. 2023; (251): 1–8. doi: 10.1016/j.talanta.2022.123761

which has been published in final form at:

http://dx.doi.org/10.1016/j.talanta.2022.123761

SUPPORTING INFORMATION FOR:

Direct quantification of PAHs and nitro-PAHs in atmospheric PM by thermal desorption gas chromatography with electron ionization mass spectroscopic detection

Ivana Drventić^{a,b}, Martin Šala^a, Kristijan Vidović^{a,c}, Ana Kroflič^{a,d,*}

^a Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia

^b Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia

^c Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000

Zagreb, Croatia

^dnow at: Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia

Corresponding author:

Ana Kroflič

National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia

+386 1 476 03 84

ana.kroflic@ki.si

	Group	m/z	Dwell time
	1	152.1	90
		166.1	90
		165.1	50
	2	178.1	100
	3	101.1	50
		202.1	100
	4	101.1	50
		114.1	50
		202.1	50
		228.1	50
	5	252.1	50
		264.1	50
	6	138.1	50
		139.1	50
		267.1	50
		276.1	50
		278.1	50
	7	193.1	100
		223.1	100
	8	189.1	40
		217.1	90
		247.1	40
	9	243.1	90
		273.1	40

Table S1. Groups of ions with respective dwell times.

Figure S1. Figure Sampling locations: the red label denotes ARSO campaign site in Nova Gorica (45°57'19 – North, 13°39'8'' – East), while the National Institute of Chemistry in Ljubljana, Slovenia (46°2'36 – North, 14°29'41'' – East) is depicted with the blue label.

Figure S2. Liquid injection chromatograms using different columns: a) HP-5MS, b) DB-EUPA

Figure S3. Optimization of TD desorption flowrate: analyte recovery is shown at three tested gas flows (25, 50 and 100 ml min⁻¹). Peak areas are normalized with the corresponding Splitless liquid injection outputs.

Figure S4. Optimization of TD desorption temperature: analyte recovery is shown at three tested maximum temperatures (275, 300 and 320 °C). Peak areas are normalized with the corresponding Splitless liquid injection outputs.

Figure S5. Optimization of TD desorption time: analyte recovery is shown at three tested hold times (1, 5 and 10 min). Peak areas are normalized with the corresponding Splitless liquid injection outputs.

Figure S6. CIS liner perfomance: analyte recovery is shown with respect to three different liner types (baffled, Tenax and glass wool). Trap temperature was held at 5 °C, while the maximal temperature used corresponded to the specified maximum temperature of every liner (see main text for explanation). Peak areas are normalized with the corresponding Splitless liquid injection outputs.

Figure S7. Standard chromatogram (5000 pg filter⁻¹) obtained with the optimized method parameters.

Figure S8. Exemplary linear calibration curves for a) 1nP and b) B(a)P: liquid injection (blue), TD-Splitless (red) and TD-Split 1-4 (black).

Figure S9. Optimization of CIS hold time: analyte recovery is shown with three different CIS hold times (5.5 min (black), 7.5 min (red) and 9.5 min (blue)).

Analyte	Analyte SD_{max}^2		F _{cal}	F_{theor}^*	Homoscedasticity	
Acy	4.57E+10	2.9E+08	157.4905	6.338	No	
Flu	9.91E+10	9.28E+07	1067.573516	6.338	No	
Phe	1.09E+11	6.11E+08	178.9957	6.338	No	
Ant	2.79E+11	4.95E+08	564.4738	6.338	No	
Pyr	2.35E+10	2.68E+08	87.70063	6.338	No	
Cry	7.91E+10	4.24E+08	186.5777	6.338	No	
BaA	1.02E+11	4.07E+08	250.7089	6.338	No	
BbF	3.18E+11	6.24E+08	509.9101	6.338	No	
BkF	2.71E+11	7.63E+08	355.7157	6.338	No	
BaP	2.16E+11	1.40E+09	154.518	6.338	No	
Ind	7.18E+11	8.97E+09	80.05825	6.338	No	
DbA	3.78E+11	5.10E+09	74.17631	6.338	No	
BghP	4.95E+11	7.28E+09	67.9817	6.338	No	
9nA	4.16E+09	1.73E+07	240.7103	6.338	No	
1-nP	8.96E+09	3.12E+06	2874.896	6.338	No	
6nC	3.34E+09	1.95E+04	171087.9	6.338	No	

Table S2. F-test results with 95 % confidence.

 $*F_{theor}$ - a critical value of F for a one-tailed test (P=0.05) with 9 degrees of freedom [28]

Table S3. Quantification of selected PAHs in ambient PM_{10} filters from Nova Gorica, Slovenia; concentrations in ng m⁻³ are reported for every analyte. In brackets, concentrations as measured by the conventional liquid extraction method at ARSO are also given.

	BaA (ARSO)	BbF, BkF (ARSO)	BaP (ARSO)	DbA (ARSO)	Ind (ARSO)	Total PAH conc., ng m ⁻³	PM conc., μg m ⁻³
PM10(Q)NG - 02032021	0.67±0.05 (1.206)	1.5±0.2 (3.602)	0.56±0.09 (1.245)	n.a. (0.265)	n.a. (1.505)	2.7±0.3	22
PM10(Q)NG - 03032021	0.96±0.08 (1.247)	2.6±0.4 (4.109)	0.8±0.1 (1.899)	0.7±0.2 (0.317)	0.035±0.008 (1.505)	5.1±0.8	33
PM10(Q)NG - 04032021	0.63±0.05 (0.878)	2.2±0.3 (3.230)	0.47±0.07 (1.489)	n.a. (0.254)	n.a. (1.376)	3.3±0.4	40
PM10(Q)NG - 05032021	0.62±0.05 (0.362)	2.0±0.3 (2.719)	0.49±0.08 (0.982)	0.13±0.03 (0.214)	0.08 ±0.02 (1.019)	3.3±0.7	41
PM10(Q)NG - 22042021	0.072±0.005 (0.105)	0.15±0.02 (0.597)	0.10±0.02 (0.223)	n.a. (0.041)	n.a. (0.282)	0.32±0.05	12
PM10(Q)NG - 23042021	0.113±0.009 (0.110)	0.60±0.09 (0.648)	0.18±0.03 (0.228)	n.a. (0.039)	n.a. (0.300)	0.9±0.1	12
PM10(Q)NG - 24042021	0.064±0.005 (0.068)	0.38±0.06 (0.448)	0.09±0.02 (0.121)	n.a. (0.028)	n.a. (0.192)	0.53±0.08	14
PM10(Q)NG - 25042021	0.063±0.005 (0.063)	0.39±0.06 (0.473)	0.13±0.02 (0.174)	0.016±0.004 (0.036)	0.24±0.06 (0.245)	0.8±0.1	15
PM10(Q)NG - 26042021	0.16±0.01 (0.104)	0.8±0.1 (0.541)	0.23±0.04 (0.195)	0.030±0.006 (0.030)	0.33±0.08 (0.233)	1.6±0.2	14

PAH/nitro-PAH	PM2.5(Q)20 210224	PM2.5(Q)20 210225	PM2.5(Q)20 210226	PM2.5(Q)20 210227	PM2.5(Q)20 210228	PM2.5(Q)20 210524	PM2.5(Q)20 210525	PM2.5(Q)20 210526	PM2.5(Q)20 210527	PM2.5(Q)20 210528
Ace	0.043±0.006	0.06±0.01	0.06±0.01	0.014±0.002	0.07±0.01	n.a.	n.a.	n.a.	n.a.	n.a.
Flu	n.a.	n.a.	n.a.	n.a.	0.005±0.001	0.012±0.003	0.005±0.001	0.004±0.001	0.004±0.001	0.003±0.001
Phe	0.21±0.02	0.17±0.02	0.14±0.01	0.031±0.003	0.12±0.01	0.082±0.007	0.017±0.002	0.015±0.001	0.016±0.002	0.012±0.001
Ant	0.008±0.002	0.004±0.001	0.006±0.002	0.008±0.002	0.022±0.006	0.013±0.004	0.007±0.002	0.006±0.002	0.006±0.002	0.007±0.002
Pyr	1.49±0.06	1.97±0.08	1.52±0.07	0.36±0.01	1.08±0.04	0.139±0.006	0.041±0.002	0.039±0.002	0.033±0.001	0.053±0.002
BaA	1.6±0.1	2±0.2	2±0.2	0.34±0.03	1.2±0.1	0.12±0.01	0.024±0.002	0.026±0.002	0.014±0.001	0.030±0.003
Cry	2.2±0.2	2.6±0.2	2.4±0.2	0.56±0.04	1.8±0.1	0.24±0.02	0.064±0.004	0.063±0.004	0.038±0.003	0.057±0.004
BbF	1.9±0.3	1.8±0.3	1.8±0.3	0.7±0.1	1.3±0.2	n.a.	0.13±0.02	0.12±0.02	0.07±0.01	0.12±0.02
BkF	1.7±0.2	2.0±0.3	1.8±0.3	0.8±0.1	1.6±0.2	0.45±0.06	0.08±0.01	0.10±0.01	0.045±0.006	0.11±0.01
BaP	1.8±0.3	1.9±0.3	1.8±0.3	0.7±0.1	1.1±0.2	0.32±0.06	0.030±0.005	0.032±0.005	0.014±0.002	0.038±0.006
Ind	0.5±0.1	0.6±0.1	0.15±0.03	0.5±0.1	0.6±0.2	0.33±0.07	0.09±0.02	0.06±0.01	0.035±0.008	0.07±0.02
DbA	0.21±0.05	0.26±0.06	0.42±0.09	0.21±0.05	0.30±0.07	0.09±0.02	0.021±0.004	0.017±0.004	0.008±0.002	0.014±0.003
BghP	n.a.	n.a.	1.3±0.3	0.7±0.2	0.8±0.2	0.35±0.09	0.11±0.03	0.08±0.02	0.05±0.01	0.08±0.02
9nA	0.26±0.02	0.29±0.02	0.24±0.01	0.034±0.002	0.29±0.02	n.a.	n.a.	n.a.	n.a.	n.a.
1nP	0.07±0.02	0.07±0.02	0.14±0.02	0.037±0.008	0.15±0.03	n.a.	n.a.	n.a.	n.a.	n.a.
6nC	0.20±0.04	0.11±0.02	0.09±0.02	0.14±0.03	0.08±0.02	0.05±0.01	n.a.	n.a.	n.a.	n.a.
Total PAH and nitro- PAH conc., ng m ⁻³	12±1	14±2	14±2	5.1±0.8	11±1	2.2±0.4	0.62±0.08	0.56±0.08	0.33±0.05	0.59±0.09
PM conc., µg m ⁻³	29	37	40	19	10	5	10	5	7	9

Table S4. Quantification of PAHs and nitro-PAHs in ambient PM_{2.5} filters from Ljubljana, Slovenia; concentrations in ng m⁻³ are reported for every analyte.