
Using Well-Understood Single-Objective
Functions in Multiobjective Black-Box

Optimization Test Suites

Dimo Brockhoff firstname.lastname@inria.fr
Inria, CMAP, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, France

Anne Auger firstname.lastname@inria.fr
Inria, CMAP, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, France

Nikolaus Hansen firstname.lastname@inria.fr
Inria, CMAP, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, France

Tea Tušar firstname.lastname@ijs.si
Jožef Stefan Institute, Ljubljana, Slovenia

Abstract
Several test function suites are being used for numerical benchmarking of multiobjec-
tive optimization algorithms. While they have some desirable properties, like well-
understood Pareto sets and Pareto fronts of various shapes, most of the currently used
functions possess characteristics that are arguably under-represented in real-world
problems such as separability, optima located exactly at the boundary constraints, and
the existence of variables that solely control the distance between a solution and the
Pareto front. Via the alternative construction of combining existing single-objective
problems from the literature, we describe the bbob-biobj test suite with 55 bi-
objective functions in continuous domain, and its extended version with 92 biobjective
functions (bbob-biobj-ext). Both test suites have been implemented in the COCO
platform for black-box optimization benchmarking and various visualizations of the
test functions are shown to reveal their properties. Besides providing details on the
construction of these problems and presenting their (known) properties, this paper
also aims at giving the rationale behind our approach in terms of groups of functions
with similar properties, objective space normalization, and problem instances. The lat-
ter allows us to easily compare the performance of deterministic and stochastic solvers,
which is an often overlooked issue in benchmarking.

Keywords
Black-box optimization benchmarking, multiobjective optimization, algorithm com-
parison, benchmark suite generator.

1 Introduction

Numerical benchmarking is an important part of (black-box) optimization that helps to
understand algorithm behavior and recommend algorithms. In order to obtain mean-
ingful results, a benchmarking experiment should be (i) based on a thorough, well-
documented and well-understood methodology and (ii) either be conducted on real-
world problems of interest or a collection of artificial test functions that possess com-
prehensible difficulties observed in practical optimization problems. This holds true

This is the author’s final version that has been accepted for publication in Evolutionary Computation.

©202X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

https://github.com/numbbo/coco
 https://doi.org/10.1162/evco_a_00298


D. Brockhoff et al.

for both single- and multiobjective problems but for the latter, the methodology is less
advanced at the moment.

Many artificial test functions that are frequently used in multiobjective optimiza-
tion have been derived by setting up the Pareto front shape first without relating it to
the intrinsic difficulties of the objective functions. Such an approach has the advantage
that the analytical forms of the Pareto front and the Pareto set can be exploited to fa-
cilitate the performance assessment. Another aspect of state-of-the-art test suites for
multiobjective optimization is the fact that not much progress has been made to avoid
the overrepresentation of functions that are too simple or have questionable proper-
ties. Several existing (and still frequently used) multiobjective test suites, for example,
contain a large share of functions that are separable, have the Pareto set on the domain
boundary, or contain distance and position variables1 —artificial features not reflecting
well the difficult black-box problems observed in practice.

In the context of single-objective algorithm benchmarking, a lot of progress has
been made in recent years in the design of artificial test functions that represent a wide
range of difficulties observed in practice. The black-box optimization benchmarking
test suite (bbob, Hansen et al. (2009)) in particular has received wide acceptance as its
24 test functions have various advantages over previous test suites. The functions are
well understood and expose algorithms to a variety of real-world difficulties such as
multimodality, ill-conditioning, non-separability of the variables, and non-linearities.
The bbob functions are grouped into five function groups with functions within a
group sharing similar difficulties (such as multimodality with weak global structure)
and with the aim to not overemphasize certain difficulties. Each function has one or
several concrete scientific questions associated with it that can be answered by look-
ing at algorithm performance results on that function (or in combination with another
function). General statements beyond the tested concrete functions are possible by
testing invariance properties of algorithms such as scaling, rotation and affine invari-
ance. In contrast to the previously mentioned approaches to building multiobjective
test suites, we suggest to focus on introducing the known difficulties of real-world
problems into the test suite. This is analogous to the single-objective case, but has the
disadvantage that analytical formulas for the Pareto front and Pareto set might not be
available. The motivation behind this approach is that in practice, multiobjective prob-
lems are constructed in exactly this way—with each objective corresponding to a sep-
arate single-objective function. Concretely, we propose a generic way to combine the
well-established and -understood single-objective functions from the bbob test suite
(Hansen et al., 2009). Using the bbob test functions as building blocks allows us to
build upon a careful statistical choice of the functions (without overrepresenting a cer-
tain type of problem) as well as comprehensive difficulties. In turn, the proposed multi-
objective functions are more likely to be practically relevant than previous benchmarks.
In particular, our proposal fulfills all five recommendations for benchmark suites men-
tioned by Huband et al. (2006, page 485), see also Section 3. We showcase our idea
by implementing two biobjective test suites within the COCO platform (Hansen et al.,
2021) that supports automated benchmarking. The implementation within the COCO
platform has two important advantages over many other existing test suites: (1) numer-
ical experiments can be done more easily by automation, and, even more importantly,

1A function is said to have a distance variable if changing this variable only results in dominating or
dominated solutions. In other words, a distance variable determines solely the distance of a solution from the
Pareto front. A position variable, in turn, only results in incomparable solutions when changed, see Huband
et al. (2006) for details.

2 Evolutionary Computation Volume x, Number x

https://github.com/numbbo/coco
https://github.com/numbbo/coco


Using SO-Functions in MOO Test Suites

(2) it is possible to compare new results with a large variety of already benchmarked
algorithms and to share the results effortlessly. As of end of 2020, the results of 32
algorithm implementations2 have been collected and made available online3.

The lack of analytical expressions for the Pareto sets and fronts in our approach is
addressed by collecting and visualizing approximations from numerical experiments
with a large variety of algorithms. The collected hypervolume values are available
online for performance assessment4. To understand the quality of the reference Pareto
set approximations, we investigate necessary optimality conditions in Section 6. We
also provide dominance- and gradient-based plots to gain additional insight into the
problem properties.

The non-existence of analytical forms of Pareto set and Pareto front in our ap-
proach can be even seen as an advantage: the combination of existing single-objective
test functions allows, in a controlled way, to mimic the typical constructions of real-
world problems and to empirically investigate the resulting Pareto set and Pareto front
shapes from such constructions. Moreover, the proposed multiobjective benchmark
functions come in the form of pseudo-random instances, which allows to more easily
compare deterministic and stochastic approaches and makes it possible to investigate
the variance of properties like a connected or convex Pareto front emanating from the
combination of single-objective test functions.

The contributions of this paper are: (i) the purposeful choice of single-objective
functions and their combinations into biobjective problems, (ii) cherry-picking in-
stances to avoid pathological combinations, (iii) a classification of the problems, (iv) im-
plementation of two suites for the COCO platform, (v) identifying problem attributes
and properties, (vi) provision of Pareto set approximations with an analysis of their
quality, (vii) various visualizations of the constructed functions (see also the supple-
mentary material5), (viii) empirical identification of target values, and (ix) a guide to
performance assessment.

The paper is organized as follows. We start by outlining the fundamental defini-
tions in multiobjective optimization and benchmarking in Section 2 and review multi-
objective benchmark suites and their properties in Section 3. Section 4 introduces the
main concepts behind the single-objective bbob test suite with more details given in
the appendix. Section 5 proposes the bbob-biobj and bbob-biobj-ext test suites
which are then analyzed visually in Section 6. The paper concludes with a discussion of
how to report algorithm performance data in Section 7 and final remarks in Section 8.

2 Preliminaries

We consider biobjective, unconstrained minimization problems of the form

min
x∈Rn

F (x) = (fα(x), fβ(x)),

where n is the number of variables of the problem (also called the problem dimension),
fα : Rn → R and fβ : Rn → R are the two objective functions, and the min operator is

2Updated list of algorithm data sets: https://numbbo.github.io/data-archive/bbob-biobj/.
3Postprocessed performances of most available algorithms are displayed online at https://

numbbo.github.io/ppdata-archive/bbob-biobj/2016-all/ and https://numbbo.github.
io/ppdata-archive/bbob-biobj/2019-all/.

4The best known hypervolume values for all supported test instances are available via the COCO
platform at https://github.com/numbbo/coco/blob/master/code-experiments/src/suite_
biobj_best_values_hyp.c. To create these hypervolume “reference” values, we relied on data from
a large variety of numerical experiments—for details, see Section 6.1.

5Webpage with supplementary material: https://numbbo.github.io/bbob-biobj.

Evolutionary Computation Volume x, Number x 3

https://github.com/numbbo/coco
https://numbbo.github.io/data-archive/bbob-biobj/
https://numbbo.github.io/ppdata-archive/bbob-biobj/2016-all/
https://numbbo.github.io/ppdata-archive/bbob-biobj/2016-all/
https://numbbo.github.io/ppdata-archive/bbob-biobj/2019-all/
https://numbbo.github.io/ppdata-archive/bbob-biobj/2019-all/
https://github.com/numbbo/coco
https://github.com/numbbo/coco/blob/master/code-experiments/src/suite_biobj_best_values_hyp.c
https://github.com/numbbo/coco/blob/master/code-experiments/src/suite_biobj_best_values_hyp.c
https://numbbo.github.io/bbob-biobj


D. Brockhoff et al.

related to the standard dominance relation. A solution x ∈ Rn is thereby said to dominate
another solution y ∈ Rn if fα(x) ≤ fα(y) and fβ(x) ≤ fβ(y) hold and at least one of
the inequalities is strict. We adopt the notation fα for the first objective (resp. fβ for
the second objective) instead of f1 and f2 to avoid confusion with notations adopted
within the single-objective bbob test suite.

Solutions which are not dominated by any other solution are called Pareto-optimal
or efficient solutions. All Pareto-optimal solutions constitute the Pareto set of which an
approximation is sought. The Pareto set’s image in the objective space F (Rn) is called
the Pareto front. Two specific points in the objective space are important to mention:

• The ideal point defined as the vector in objective space that contains the optimal
F -value for each objective independently. More precisely, if foptα := infx∈Rn fα(x)
and foptβ := infx∈Rn fβ(x), the ideal point is given by zideal = (foptα , foptβ ).

• The nadir point (in objective space) consisting in each objective of the worst value
obtained by a Pareto-optimal solution. More precisely, if we denote the Pareto set
by P , the nadir point satisfies znadir = (supx∈P fα(x), supx∈P fβ(x)) .

In the specific case where each of the two objective functions has a unique global
minimum (that is, a single point in the search space which maps to the global
minimum function value), znadir = (fα(arg min fβ(x)), fβ(arg min fα(x))) .

All given definitions generalize trivially to problems with more than two objec-
tives. When solving an unconstrained multiobjective problem as the above, usually
the goal is to find, with as few evaluations of F as possible, a set of non-dominated
solutions which is (i) as large as possible and (ii) has objective values as close to the
Pareto front as possible6. Here, we define this optimization goal via the maximization
of a quality indicator, namely, the hypervolume (Zitzler et al., 2003) of the set of all
non-dominated solutions found so far (Brockhoff et al., 2016).

In this context, an optimization algorithm addressing the above minimization
problem is given an instance of F : we implement each generic multiobjective function F
as a parametrized function F θ : Rn → Rm with a problem dimension n and a parameter
value θ ∈ Θ that might depend on n and m = 2, the number of objectives. The parame-
ter value θ determines a function instance. For example, θ can encode the location of the

optimum, xoptα , of the first objective fθα : Rn → R with fx
opt
α

α (x) = ||x − xoptα ||2. Search
space rotations and shifts in the objective values are other generic transformations that
can be encoded in instances (Hansen et al., 2021).

3 Review of Existing Multiobjective Test Suites

Many multiobjective test suites have been proposed throughout the years. Here, we in
particular discuss those that are scalable in the problem dimension and that are uncon-
strained or box-constrained and defined in the continuous domain—the focus of our
proposal for a new benchmark suite.

The (evolutionary) multiobjective optimization field first performed numerical
comparisons of algorithms on single, independently proposed test problems like those
by Kursawe (1990) and Fonseca and Fleming (1995), see for example Tan et al. (2002),
or in real-world studies, see Van Veldhuizen and Lamont (1998) for an early overview.

6The distance in objective space is defined here in such a way that the nadir and ideal points have in each
coordinate the distance of one. Note also that finding a set of non-dominated solutions as large as possible
might not always be the ultimate goal, in particular if the number of objective functions is large.

4 Evolutionary Computation Volume x, Number x



Using SO-Functions in MOO Test Suites

A first attempt to create a consistent multiobjective test suite with several problems
with desired properties was, to the best of our knowledge, the work of Van Veldhuizen
and Lamont (1999b,a). The authors clearly stated the need for scalable test suites and
emphasized that problems of a test suite should possess practically relevant features.
In the years that followed, several other scalable test suites have been proposed, of
which the most established ones are (i) the ZDT suite of Zitzler et al. (2000), scalable in
the number of variables but with only two objectives, (ii) its rotated version, the IHR
problem suite of Igel et al. (2007), (iii) the DTLZ suite of Deb et al. (2005), with seven
problems, all scalable in the number of variables and objectives, (iv) the WFG suite of
Huband et al. (2006) with nine scalable problems of various difficulties, (v) the LZ suite
of Li and Zhang (2009) containing problems with more complicated Pareto sets, (vi) the
CEC2007 suite, combining and extending 13 existing test functions from the literature
(Huang et al., 2007), (vii) the CEC2009 suite with 13 problems overall (Zhang et al.,
2009), and finally (viii) the CEC2017 suite with 15 collected problems, tailored towards
many-objective optimization (Cheng et al., 2017).

Most of these test suites have some desirable properties like well-understood
Pareto sets and Pareto fronts with shapes of various kinds (linear, convex, concave,
discontinuous). But they also possess artificial characteristics that stem from the eas-
ier construction of such problems—overrepresenting properties such as no or only few
dependencies among variables, Pareto sets located exactly at the boundary constraints,
and the differentiation between position and distance variables. Although, for exam-
ple, the importance of non-separable test functions in single-objective test suites is un-
questioned and even Deb (2001, p.353f) states its significance, most proposed multiob-
jective test problems are still separable or mostly separable in the sense that a function
is separable if it can be optimized variable by variable.

Another way of generating multiobjective test problems is to decide on the single
objectives and simply combine them to a multiobjective problem. Examples for this are
the double sphere or Schaffer function number 1 (Schaffer, 1985), the combination of
convex quadratic functions such as ellipsoids and cigtab functions by Igel et al. (2007) or
the multimodal functions based on spherical functions by Emmerich and Deutz (2007),
the latter construction of which has been extended by Kerschke et al. (2016).

Even though all test suites in the above list are scalable in the problem dimension,
we rarely see performance studies that investigate the scaling of the algorithms with
the problem dimension.

The arguably most complete paper on the topic of multiobjective benchmark prob-
lems to date is still the work of Huband et al. (2006) where the authors (i) identify im-
portant properties test functions should have, (ii) discuss in detail all other available
test suites at that time with respect to these properties, and (iii) finally propose a new,
well-motivated test suite that avoids many pitfalls of other test suites. In particular,
Huband et al. (see Huband et al. (2006), page 485) recommend that multiobjective test
suites should, in addition to recommendations for single-objective test suites:

1. contain a few unimodal test problems to test convergence velocity relative to dif-
ferent Pareto optimal geometries and bias conditions,

2. cover the three core types of Pareto optimal geometries: degenerate Pareto optimal
fronts, disconnected Pareto optimal fronts, and disconnected Pareto optimal sets,

3. have a majority of its test problems multimodal with a few deceptive problems,

4. have the majority of problems nonseparable, and

Evolutionary Computation Volume x, Number x 5



D. Brockhoff et al.

5. contain problems that are both nonseparable and multimodal to be representative
of real-world problems.

All five recommendations are fulfilled for the test suites proposed in this paper.
Similar to the single-objective bbob functions, the WFG suite of Huband et al. (2006)
employs problem transformations that change the properties like (non-)separability,
bias, and the shape of the Pareto front of underlying raw objective functions.

One common property of the above mentioned test suites is that their Pareto sets
can be described in analytical form. This certainly has an advantage for performance
assessment but it also restricts the types of real-world problem characteristics that can
be captured with such functions.

However, in practice, multiobjective optimization problems are typically con-
structed by combining objective functions that are defined (and understood) indepen-
dently such as cost and performance of a new product. The objective functions might
thereby come from different domains and share or do not share common properties
such as uni-/multimodality, (non-)separability, asymmetry, etc.

The idea of defining multiobjective test problems by combining single-objective
ones is therefore straightforward and has been proposed before, as mentioned above,
for example in (Schaffer, 1985), (Igel et al., 2007), (Emmerich and Deutz, 2007) or (Horn
et al., 2015). To create a benchmark suite with challenging properties observed in prac-
tice, we follow here the same path and combine some of the existing, well-established,
well-understood functions of the bbob test suite to create new multiobjective suites.

4 The Single-Objective bbob Functions

Our multiobjective test suites build on the single-objective bbob function suite (Hansen
et al., 2009; Finck et al., 2009). The bbob suite includes unimodal and multimodal test
functions, separable and non-separable functions, well-conditioned and ill-conditioned
problems, see Appendix A for a short definition of those properties. Each function
is parametrized (see Section 2) and is scalable with respect to the dimension. Some
function pairs allow to answer specific questions: for instance, the ellipsoid and the
Rastrigin functions are present in a separable and a non-separable version such that
one can investigate how much an algorithm exploits separability. The functions are
unbounded but the search domain of interest is [−5, 5]n. Except for the linear slope
function f5, the optimum of each function lies in the hypercube [−4, 4]n for all instances
and all dimensions. The optimum of the linear function is attained at a (randomly
chosen) corner of the hypercube [−5, 5]n and in the orthant beyond this point.

The bbob test suite has 24 functions, split into five groups. The Separable group
contains five separable functions, the Moderate group consists of four functions with
low or moderate conditioning, including multimodal functions, the Ill-conditioned
functions group contains five unimodal functions with high conditioning, the Mul-
timodal functions group comprises five multimodal functions with adequate global
structure, and the Weakly-structured group consists of five multimodal functions with
weak global structure. Problem difficulty is typically increasing from the first to the last
group, but there are exceptions, for example, solving the Büche-Rastrigin function from
the first group is difficult for most algorithms. The manually assigned function groups
are also used to aggregate performance, allowing to make meaningful statements about
the performance on functions with specific properties reflected by the groupings.

6 Evolutionary Computation Volume x, Number x

https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=25


Using SO-Functions in MOO Test Suites

5 The Proposed Biobjective Test Suites

Given the well-motivated bbob functions from Hansen et al. (2009), it is natural to
construct a multiobjective test suite from these single-objective functions. For the biob-
jective case, a pairwise combination of all 24 functions results in 242 = 576 biobjective
functions. We however assume that multiobjective optimization algorithms are not sen-
sitive to permutations of the objectives, so that we do not include F = (fβ , fα) if (fα, fβ)
is already present7. This results in the total of

(
25
2

)
= 300 function combinations—the

number of 2-combinations drawn with replacement.
While a benchmarking suite should contain a large number of different problems

to avoid overfitting, first tests in Brockhoff et al. (2015) showed that having 300 func-
tions is impracticable in terms of the overall running time of a benchmarking experi-
ment. Therefore, a subset of these 300 functions was selected.

We present two such selections—the bbob-biobj test suite with 55 functions and
its extension, the bbob-biobj-ext test suite with 92 functions. We also provide vi-
sualizations for some of the functions, showing different Pareto set and front shapes.
Plots for all 92 functions are provided via the supplementary material webpage5.

5.1 The bbob-biobj Test Suite

The biobjective bbob-biobj test suite is created by exploiting the organization of the
bbob functions into groups. More precisely, only two (representative) functions from
each of the bbob function groups are chosen. This way, we do not introduce any bias
towards a specific group. In addition, within each group, the functions are chosen to
be the most representative without repeating similar functions. For example, only one
ellipsoid, one Rastrigin, and one Gallagher function are included in the bbob-biobj
suite although they appear in multiple versions in the bbob suite.

These ten bbob functions are chosen to create the bbob-biobj test suite:

• From the separable functions group: sphere function f1 and separable ellipsoid
function f2.

• From the functions with low or moderate conditioning: attractive sector function
f6 and original Rosenbrock function f8.

• From the unimodal functions with high conditioning: sharp ridge function f13 and
sum of different powers function f14.

• From the multimodal functions with adequate global structure: Rastrigin function
f15 and Schaffer F7 function with condition number 10 f17.

• From the multimodal functions with weak global structure: Schwefel x sinx func-
tion f20 and Gallagher 101 peaks function f21.

Using the previously described pairwise combinations, this results in
(
11
2

)
= 55

biobjective functions for the final bbob-biobj suite, denoted as F1 to F55 in the rest of
the paper. Figure 1 visualizes these combinations of the chosen single-objective bbob
functions f1, f2, f6, f8, f13, f14, f15, f17, f20, and f21 to the 55 bbob-biobj functions
and color-codes the resulting 15 function groups, for example the group of separable -
ill-conditioned functions (F5, F6, F14, F15) where one objective comes from the separa-
ble and the other objective comes from the ill-conditioned bbob function group.

7Note that this assumption is not true for simple classical strategies such as optimizing successively a
weighted sum w · f1(x) + (1− w) · f2(x) with increasing weight 0 ≤ w ≤ 1.

Evolutionary Computation Volume x, Number x 7

https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=5
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=10
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=10
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=30
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=30
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=40
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=65
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=70
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=75
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=75
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=85
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=100
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=100
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=105
https://numbbo.github.io/bbob-biobj/def/#F1
https://numbbo.github.io/bbob-biobj/def/#F55
https://numbbo.github.io/bbob-biobj/def/#F5
https://numbbo.github.io/bbob-biobj/def/#F6
https://numbbo.github.io/bbob-biobj/def/#F14
https://numbbo.github.io/bbob-biobj/def/#F15


D. Brockhoff et al.

Separable

Se
pa
ra
bl
e

Low or
moderate
conditioning

Lo
w
or

m
od
er
at
e

co
nd
iti
on
in
g

High
conditioning
and
unimodal

Hi
gh

co
nd
iti
on
in
g

an
d

un
im
od
al

Multimodal
with global
structure

M
ul
tim

od
al

wi
th
gl
ob
al

st
ru
ct
ur
e

Multimodal
with weak
global
structure

M
ul
tim

od
al

wi
th
we
ak

gl
ob
al

st
ru
ct
ur
e

f1

f1

f2

f2

f6

f6

f8

f8

f13

f13

f14

f14

f15

f15

f17

f17

f20

f20

f21

f21

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

F11 F12 F13 F14 F15 F16 F17 F18 F19

F20 F21 F22 F23 F24 F25 F26 F27

F28 F29 F30 F31 F32 F33 F34

F35 F36 F37 F38 F39 F40

F41 F42 F43 F44 F45

F46 F47 F48 F49

F50 F51 F52

F53 F54

F55

f1 Sphere
f2 Ellipsoid separable

f6 Attractive sector
f8 Rosenbrock original

f13 Sharp ridge
f14 Sum of different powers

f15 Rastrigin
f17 Schaffer F7 (condition 10)

f20 Schwefel x*sin(x)
f21 Gallagher 101 peaks

Figure 1: The functions of the bbob-biobj test suite (F1 to F55) together with the
information about which single-objective bbob functions are used to define them (top
and right annotations). Background color is used to delineate function groups.

All bbob-biobj functions are scalable in the search space dimension and come in
the form of instances as it is the case with the original bbob suite.

In the following, we specify the common properties of the bbob-biobj functions
and the main rationale behind them while concrete details on each of the 55 functions
are provided via the supplementary material webpage5.

5.1.1 Function Domain
Since we use the single-objective bbob functions to construct the bbob-biobj suite,
all functions are unbounded and the extreme solutions of the Pareto set are guaranteed
to lie within [−5, 5]n.

Note that the Pareto set can partially lie outside of this area but that the major
part of the Pareto set is expected to lie within it. Initial experiments found Pareto set
approximations to be partially outside of the hypercube [−5, 5]n on a few functions in
low dimensions, see also Section 6.5.

5.1.2 Normalization of Objectives
None of the 55 bbob-biobj functions is explicitly normalized and the optimization
algorithms therefore have to cope with objective values in different ranges. Typically,
different orders of magnitude between the objective values can be observed.

However, to assess performance on the test suites, we normalize the objectives
based on the ideal and nadir points before calculating the hypervolume indicator
(Brockhoff et al., 2016). Both points can be computed, because the unique global op-
timum is known for the used 10 bbob base functions. In the black-box optimization
benchmarking setup of the COCO platform, the algorithm is allowed to use the values

8 Evolutionary Computation Volume x, Number x

https://numbbo.github.io/bbob-biobj/def/#F1
https://numbbo.github.io/bbob-biobj/def/#F55
https://github.com/numbbo/coco


Using SO-Functions in MOO Test Suites

of the nadir point as an upper bound on a region of interest in objective space but no
other normalization is directly available to the algorithm.

5.1.3 Instances
Our proposed test functions are parametrized and their instances are instantiations of
the underlying parameters of the bbob functions (see Hansen et al., 2021)8. In addition,
we assert two conditions:

1. The Euclidean distance between the two single-objective optimal solutions
(also called the extreme solutions) in the search space is at least 10−4.

2. The Euclidean distance between the ideal and the nadir point in the non-
normalized objective space is at least 10−1.

Each function instance has an integer ID. The relation between the instance ID,
KF

ID, of a biobjective function F = (fα, fβ) and the instance IDs, Kfα
ID and K

fβ
ID , of

its underlying single-objective functions is Kfα
ID = 2KF

ID + 1 and K
fβ
ID = Kfα

ID + 1.
If the two above conditions are not satisfied for all dimensions and functions in the
bbob-biobj suite, we increase the instance ID of the second objective successively
until both properties are fulfilled. Exceptions to the above rule are, for historical rea-
sons, the bbob-biobj instance IDs 1 and 2 which contain the single-objective instance
IDs 2 and 4 and the IDs 3 and 5, respectively. This results in the same instances 1 to 5
here and in Brockhoff et al. (2015).

An implementation of the above procedure is in effect a test function generator. Yet
we emphasize that the generated instances of a parametrized function are meant to rep-
resent problems with similar difficulties. In the following, we only use a small number
of fixed instances: for each biobjective function and given dimension, the bbob-biobj
suite contains by default 15 instances9, which are chosen in advance and will remain
fixed for a long period of time for comparability reasons10.

Problem instances in the multiobjective case tend to differ more wildly than in
the single-objective case. Even when for each single objective the different instances
are similar, different combinations of them can result in very different shapes of the
Pareto front (for example continuous vs. discontinuous) or in different difficulties to
solve such problems (the orientation of level sets, for example, might be in accordance
between the objectives or perpendicular—resulting in significantly different multiob-
jective problems when two ill-conditioned functions are combined)11. Additionally, for

8Performing numerical benchmarking experiments on a set of different instances of a parametrized func-
tion instead of experiments on a single fixed function has an immediate advantage: deterministic algorithms
and stochastic algorithms can be compared easily in the same way stochastic algorithms are naturally com-
pared. Running a deterministic algorithm on different instances of the same parametrized function intro-
duces stochasticity of the runtime to reach certain target difficulties among runs in the same way as the
combined stochasticity from the instance generation and the random events within a stochastic algorithm.
Care, however, has to be taken that the variation of problem difficulty among instances is relatively low
compared to the variation of difficulty between the actual benchmark functions. This assumption does not
always hold for all instances of highly multimodal functions or for instances of most combinatorial optimiza-
tion problems.

9In principle, as for the instance generation for the bbob suite, the number of possible instances for the
bbob-biobj suite is unlimited (Hansen et al., 2021). However, even the tiniest performance difference can
be made statistically significant with a high enough number of instances and repetition.

10Another reason to fix the instances for a long(er) time period is that no analytical form of the Pareto sets
and Pareto fronts is available such that (good enough) Pareto set approximations need to be available for all
instances for a proper performance assessment of algorithms.

11We have observed performance differences of up to two orders of magnitude (in the number of function
evaluations to reach a certain hypervolume indicator precision) between instances in some cases. Differences

Evolutionary Computation Volume x, Number x 9



D. Brockhoff et al.

very different instances the target levels defined for the performance assessment may
become incomparable. Consequently, we estimate the Pareto set’s hypervolume per
instance and do not adopt the technique from the single-objective case to aggregate
results from different instances by simulated restarts (Hansen et al., 2021) to estimate
runtimes to target values unattained on a given instance. The second reason to dis-
card simulated restarts in the multiobjective case is the performance evaluation setup
in COCO: we measure performance based on the entire archive of all so-far-evaluated
solutions. Runs on different instances however produce incompatible archives, hence
simulated restarts cannot account for the hypervolume attained by previous runs.

5.2 The bbob-biobj-ext Test Suite

Having all combinations of only a subset of the single-objective bbob functions in a test
suite like the above bbob-biobj one has also a few disadvantages. Using only a subset
of the 24 bbob functions introduces a bias towards the chosen functions and reduces the
variety of difficulties a biobjective algorithm is exposed to. Allowing all combinations
of (a subset of the) bbob functions also increases the percentage of problems for which
both objectives are from different bbob function groups. In practice, however, both
objective functions may often come from a similar “function domain”.

The rationale behind the extended test suite, denoted as bbob-biobj-ext, is to
reduce the mentioned effects. To this end, we add all within-group combinations of
bbob functions which are not already in the bbob-biobj suite and which do not com-
bine a function with itself. For technical reasons, we also remove the Weierstrass func-
tion f16 because its optimum is not necessarily unique and computing the nadir point is
more challenging. This extension adds 3·(4+3+2+1−1)+2·(3+2+1−1) = 3·9+2·5 = 37
functions, resulting in 92 functions overall.

5.2.1 The bbob-biobj-ext Functions and Function Groups
Figure 2 details the single-objective bbob function combinations contained in the 92
bbob-biobj-ext functions. The first 55 bbob-biobj-ext functions are the same
as in the bbob-biobj test suite for compatibility reasons. We still obtain 15 function
groups to structure the 92 biobjective functions of the bbob-biobj-ext test suite.
Depending on whether a function group combines functions from the same or from
different bbob function groups, the new groups contain eight, 12 or just four functions.

The concrete function definitions are given in the supplementary material5.

5.2.2 Normalization and Instances
Normalization of the objectives and instances for the bbob-biobj-ext test suite are
handled in the same manner as for the bbob-biobj suite, i.e., the objective functions
are not normalized and 15 instances are prescribed for a typical experiment.

5.3 Reference Implementation

Both the bbob-biobj and the bbob-biobj-ext suites have been implemented in the
COCO platform which is freely available and supports access in various programming
languages (Python, C/C++, Java, Matlab/Octave). After installation of COCO12, this is
as easy as typing (here in an IPython shell):

of more than one order of magnitude happen in maximally 30% of the function/dimension pairs with typical
algorithms on the proposed bbob-biobj test suite. Due to the higher amount of multimodal functions in
the bbob-biobj-ext suite, differences among instances are more common.

12Besides downloading the code, installation of the experiments part with access to the function suites is
a single call python do.py build-LANGUAGEOFINTEREST.

10 Evolutionary Computation Volume x, Number x

https://github.com/numbbo/coco
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=80
https://github.com/numbbo/coco


Using SO-Functions in MOO Test Suites

Separable

Low or
moderate
conditioning

High
conditioning
and
unimodal

Multimodal
with global
structure

Multimodal
with weak
global
structure

Separable
Low or
moderate
conditioning

High
conditioning
and unimodal

Multimodal
with global
structure

Multimodal
with weak
global structure

f1

f1

f2

f2

f3

f3

f4

f4

f5

f5

f6

f6

f7

f7

f8

f8

f9

f9

f10

f10

f11

f11

f12

f12

f13

f13

f14

f14

f15

f15

f16

f16

f17

f17

f18

f18

f19

f19

f20

f20

f21

f21

f22

f22

f23

f23

f24

f24

F1 F2 F56 F57 F58 F3 F4 F5 F6 F7 F8 F9 F10

F11 F59 F60 F61 F12 F13 F14 F15 F16 F17 F18 F19

F62 F63

F64

F20 F65 F21 F66 F22 F23 F24 F25 F26 F27

F67 F68

F28 F69 F29 F30 F31 F32 F33 F34

F70 F71 F72 F73

F74 F75 F76

F77 F78

F35 F36 F37 F38 F39 F40

F41 F42 F43 F44 F45

F46 F47 F79 F80 F48 F49

F50 F81 F82 F51 F52

F83

F53 F54 F84 F85 F86

F55 F87 F88 F89

F90 F91

F92

f1 Sphere
f2 Ellipsoid separable
f3 Rastrigin separable
f4 Skew Rastrigin-Bueche
f5 Linear slope

f6 Attractive sector
f7 Step-ellipsoid
f8 Rosenbrock original
f9 Rosenbrock rotated

f10 Ellipsoid
f11 Discus
f12 Bent cigar
f13 Sharp ridge
f14 Sum of different powers

f15 Rastrigin
f16 Weierstrass
f17 Schaffer F7 (condition 10)
f18 Schaffer F7 (condition 1000)
f19 Griewank-Rosenbrock F8F2

f20 Schwefel x*sin(x)
f21 Gallagher 101 peaks
f22 Gallagher 21 peaks
f23 Katsuuras
f24 Lunacek bi-Rastrigin

Figure 2: The functions of the bbob-biobj-ext test suite (F1 to F92) together with the
information about which single-objective bbob functions are used to define them (top
and right annotations). Background color is used to delineate function groups.

In [1]: import cocoex
In [2]: biobj_suite = cocoex.Suite(’bbob-biobj’, ’’, ’’)
In [3]: fun = biobj_suite.get_problem_by_function_dimension_instance(17, 10, 1)
In [4]: fun([0]*10) # evaluate in origin
Out[4]: array([3.33606646e+06, 5.31128506e+01])

6 Insights into Problem Properties

In order to better understand the functions in the bbob-biobj and bbob-biobj-ext
suites, we visualize and analyze their properties. We display their best known Pareto
set and Pareto front approximations together with 1-dimensional search space cuts in
Section 6.1, investigate a necessary optimality condition in Section 6.2, and provide
2-dimensional dominance-based (Section 6.3) and gradient-based plots (Section 6.4)
known from the literature for all proposed functions. All discussed plots are available
online at the supplementary material webpage5.

Evolutionary Computation Volume x, Number x 11

https://numbbo.github.io/bbob-biobj/def/#F1
https://numbbo.github.io/bbob-biobj/def/#F92


D. Brockhoff et al.

6.1 Plots of Pareto Set and Front Approximations

In this section, we plot the best currently known approximations of the Pareto set
and the Pareto front, obtained from running many algorithms and collecting the non-
dominated solutions, evaluated during those runs13.

Figure 3 shows exemplary plots for three functions of the bbob-biobj suite in
dimension 5: the double sphere function F1 = (f1, f1) with a continuous Pareto front
and a straight line as the Pareto set (left column), the sphere/Gallagher 101 peaks func-
tion F10 = (f1, f21) with a continuous Pareto front but a gap in the Pareto set (middle
column), and the double Rastrigin function F46 = (f15, f15) for which both Pareto set
and Pareto front are discontinuous (right column). The best known Pareto set/front
approximations are shown in black.

We provide four different plots for each function: the top row of Figure 3 shows
the projection onto an axes-parallel cut of the search space defined by two variables (x1
and x4 here). The second row shows the projection onto a random plane that contains
both single-objective optima14 and gives contour lines for each objective function. The
coordinate system is chosen such that the two optima lie on the first axis and their
geometric center is the origin. The third row depicts the same data in the objective
space in original scaling (as seen by the algorithm), while the last row shows the same
in log-scale, normalized so that the ideal point is at (0, 0) and the nadir point is at (1, 1).

In addition to the best known Pareto set/Pareto front approximations (in black),
the plots of Figure 3 show various 1-dimensional cuts (“lines”) through the search
space: (i) along a random direction through each single-objective optimum (in blue), (ii)
along each coordinate axis through each single-objective optimum (blue dotted lines),
(iii) along the line connecting both single-objective optima (in red), (iv) two fully ran-
dom lines15 (in yellow), and (v) a random line in the random projection plane going
through both optima16 (in green). All those straight lines have the same length of 20
with the support vector in its exact middle. Ticks along the lines indicate line segments
of the same length in search space. Thicker points on the lines depict solutions that are
non-dominated with respect to all points on the same line.

The shape of these lines in objective space and the distribution of non-dominated
solutions along these lines (in objective and search space) indicate the difficulty of the
bbob-biobj-ext problems for algorithms based on line searches. Sometimes smooth,
sometimes rather chaotic looking lines in the objective space indicate that the proposed
multiobjective problems show a wide range of different landscapes.

Furthermore, the first two rows of Figure 3 highlight the projected region [−5, 5]n

as a gray-shaded area while the gray-shaded areas in the objective space plots in the
last two rows denote the regions of interest between the ideal (×) and nadir points (+).

13The non-dominated solutions have been obtained from extensive numerical experiments with a wide
range of optimization algorithms. In particular, all 32 algorithm data sets2, submitted to the BBOB workshops
in the years 2016–2019, contributed together with data from additional runs of random search, weighted
sum and Chebyshev scalarization functions optimized by the quasi-Newton BFGS method and by CMA-ES
(Hansen and Ostermeier, 2001). Moreover, other well-known multiobjective algorithms such as NSGA-II
(Deb et al., 2002), SMS-EMOA (Beume et al., 2007), HMO-CMA-ES (Loshchilov and Glasmachers, 2016),
and COMO-CMA-ES (Touré et al., 2019) have been run as well. Non-dominated solutions evaluated during
all these experiments have been collected to form the displayed Pareto set approximations. Those Pareto
set approximations have also been used to calculate reference target precision values for the performance
assessment—for details, see (Brockhoff et al., 2016).

14To obtain the second axis, a standard normally distributed vector is orthogonalized with respect to the
first axis (via Gram-Schmidt).

15of random direction through a random point drawn uniformly in [−4, 4]n
16with a random direction within the plane and through a random point drawn uniformly in [−4, 4]2

12 Evolutionary Computation Volume x, Number x

https://numbbo.github.io/bbob-biobj/def/#f1-spheresphere
https://numbbo.github.io/bbob-biobj/def/#f10-spheregallagher-101-peaks
https://numbbo.github.io/bbob-biobj/def/#f46-rastriginrastrigin


Using SO-Functions in MOO Test Suites

Figure 3: Illustration in the search space (first two rows) and the objective space (third
row: original scaling; forth row: normalized in log-scale) of three bbob-biobj func-
tions: the double sphere function F1 = (f1, f1) (left column), the sphere/Gallagher
101 peaks function F10 = (f1, f21) (middle column), and the double Rastrigin function
F46 = (f15, f15) (right column) in dimension 5 for the first instance.

Evolutionary Computation Volume x, Number x 13

https://numbbo.github.io/bbob-biobj/def/#f1-spheresphere
https://numbbo.github.io/bbob-biobj/def/#f10-spheregallagher-101-peaks
https://numbbo.github.io/bbob-biobj/def/#f46-rastriginrastrigin


D. Brockhoff et al.

Pareto set and Pareto front approximations of Figure 3 are downsampled such that
only one solution per grid point is shown—with the precision of 2 decimals for the
search space plots and 3 decimals for the objective space plots to define the grid. The
number of all available and actually displayed solutions is indicated in the legend of
each plot. Due to this downsampling, the number of displayed points (∼ 20000 or less)
in Figure 3 is much smaller than the number of non-dominated solutions contained in
the Pareto set approximation (about 6× 106 for F1, 3× 106 for F10 and 6× 105 for F46).
For links to the illustrations of all functions, we refer to the supplementary material5.

6.2 Investigations on Necessary Optimality Conditions

An important question to ask is whether our collected Pareto set approximations are
qualitatively good, i.e., how close they are to the true Pareto front. Assuming differen-
tiable objective functions, a necessary condition for optimality of a point x is that the
two objective gradients are collinear and point in opposite directions (Miettinen, 1999).

For our blackbox functions, we estimate collinearity as follows: for each Pareto set
approximation (or function instance), we assess the two objective function gradients
of solutions by finite (central) differences17 and compute the angle between them. The
angle between the gradients is closely related to the normalized multiobjective gradient by
Kerschke and Grimme (2017), in the biobjective case defined as

∇f1(x)

‖∇f1(x)‖
+
∇f2(x)

‖∇f2(x)‖
. (1)

Its value is zero for locally non-dominated solutions (Kerschke and Grimme, 2017). The
cosine of the angle between the two gradients has a strictly increasing bijection to the
length of the normalized biobjective gradient (1):

Lemma 1. The length of the normalized biobjective gradient (1) and the cosine of the angle
between the two gradients, say v and w, are related like

1 + cos(v, w) =
1

2

∥∥∥∥ v

‖v‖
+

w

‖w‖

∥∥∥∥2 ∀ v, w ∈ Rn \ {0} . (2)

The proof is given in Appendix B. A value of 0, 1, or 2 for 1 + cos(v, w) in (2)
means that the gradients point in the exact opposite direction (indicating local non-
dominance), are orthogonal, or point in the very same direction, respectively.

Figure 4 shows empirical cumulative distribution functions (ECDFs) of the value
1 + cos(α), where α is the angle between the two gradients, denoted as gradient angle
plots in the following. Shown are the first five instances (using the same color) of three
different bbob-biobj functions in dimensions 2, 3, and 5.18 For the gradient angle
plots of all functions, we refer to the supplementary material5.

Depending on the function, two different observations can be made. For simpler,
smooth functions such as the double sphere function F1 = (f1, f1), almost all values
of 1 + cos(α) are smaller than 10−4 for all instances and dimensions—indicating that

17Using a step length of ε = 10−8 to approximate the i-th coordinate of the gradient in x ∈ Rn by
f(x+ε·ei)−f(x−ε·ei)

2ε
where ei ∈ Rn is the Cartesian unit vector in the ith variable.

18Only every hundredth point of the Pareto set approximations is displayed to limit computation time and
file sizes. We checked for some cases that the display of all solutions does not change the plots significantly.
Reducing the number of displayed points further, for example to every thousandth point, however, starts to
visibly roughen the plots. The legends in Figure 4 show the number of displayed points compared to the
entire size of the Pareto set approximation for each dimension and for the last instance.

14 Evolutionary Computation Volume x, Number x

https://numbbo.github.io/bbob-biobj/def/#f1-spheresphere


Using SO-Functions in MOO Test Suites

10−16 10−14 1012 10−10 10−8 10−6 10−4 10−2 100

1+cos(angle)

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
ta

ge
 o

f p
oi

nt
s

step length for gradient estimation: 1.0e-08

Distribution of gradient angles (F1 = (f1, f1), inst. 1-5)
2-D (47279 of 4727861 points)
3-D (36681 of 3668025 points)
5-D (60196 of 6019511 points)

10−16 10−14 1012 10−10 10−8 10−6 10−4 10−2 100

1+cos(angle)

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
ta

ge
 o

f p
oi

nt
s

step length for gradient estimation: 1.0e-08

Distribution of gradient angles (F5 = (f1, f13), inst. 1-5)
2-D (41039 of 4103841 points)
3-D (31185 of 3118445 points)
5-D (40239 of 4023885 points)

10−16 10−14 1012 10−10 10−8 10−6 10−4 10−2 100

1+cos(angle)

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
ta

ge
 o

f p
oi

nt
s

step length for gradient estimation: 1.0e-08

Distribution of gradient angles (F29 = (f8, f13), inst. 1-5)
2-D (25254 of 2525399 points)
3-D (34455 of 3445427 points)
5-D (39828 of 3982763 points)

Figure 4: Gradient angle plots of solutions in our Pareto set approximations for three
functions. A necessary optimality condition for smooth functions is 1 + cos(α) = 0.
Left: the double sphere function F1 = (f1, f1), Middle: the sphere/sharp ridge function
F5 = (f1, f13), Right: the original Rosenbrock/sharp ridge function F29 = (f8, f13).

the gradients point in nearly opposite directions. For smooth functions, this also sug-
gests that our Pareto set approximations are reasonably close to a true local Pareto set.
This also holds for other combinations of objectives such as the sphere/sum of differ-
ent powers function F6 = (f1, f14), the sphere/Schwefel function F9 = (f1, f20), the
attractive sector/sum of different powers function F23 = (f6, f14), the double sum of
different powers function F41 = (f14, f14), and the double Schwefel x sinx function
F53 = (f20, f20) and with slightly higher cosine values for several other functions, for
example the attractive sector/Gallagher 101 peaks function F27 = (f6, f21) and the
double original Rosenbrock function F28 = (f8, f8). Both lists are non-exhaustive5.

On the other hand, there are functions with higher values of 1 + cos(α), indicating
(at first sight) that the Pareto set approximations are less well converged. Two exam-
ples, the sphere/sharp ridge function F5 = (f1, f13) and the original Rosenbrock/sharp
ridge function F29 = (f8, f13) are shown in Figure 4. A closer look at the functions with
the (strongest) right-shift in the ECDF reveals that often one of the objectives is multi-
modal, flat, or its gradient changes non-smoothly (which is the case for the sharp ridge
function of Figure 4). In the latter case in particular, we do not expect that the values
of 1 + cos(α) are close to zero. We have verified that for the combination of sphere
and sharp ridge, all solutions in our Pareto set approximation lie along a line between
the two single-objective optima, but that depending on which side of the sharp ridge a
point is located, the two objectives’ gradients are pointing in the same or the opposite
direction, resulting in small and large values of 1 + cos(α) respectively.

Although we do not know the exact Pareto set for the proposed functions (except
for the double sphere function F1 = (f1, f1)), the generated non-dominated Pareto set
approximations seem to be accurate enough also based on consistency: both, the large
amount of non-dominated solutions from several algorithms, implemented by various
authors as presented here, and the non-dominated solutions on a 2-dimensional grid,
as presented in the next subsection, show qualitatively the same sets19.

6.3 Dominance-Based Plots

To further investigate and understand the bbob-biobj-ext functions and their avail-
able Pareto set approximations, we provide three kinds of dominance-based plots for
2-variable problems computed on an axes-parallel grid of 501 × 501 points. Figure 5
shows examples of these plot for the first instance of three bbob-biobj functions

19In the cases where our Pareto set approximations go beyond the region [−5, 5]n, the grid-based ap-
proach shows additional artifacts for solutions connected to the grid boundary.

Evolutionary Computation Volume x, Number x 15

https://numbbo.github.io/bbob-biobj/def/#f1-spheresphere
https://numbbo.github.io/bbob-biobj/def/#f5-spheresharp-ridge
https://numbbo.github.io/bbob-biobj/def/#f29-rosenbrock-originalsharp-ridge
https://numbbo.github.io/bbob-biobj/def/#f6-spheresum-of-different-powers
https://numbbo.github.io/bbob-biobj/def/#f9-sphereschwefel-xsinx
https://numbbo.github.io/bbob-biobj/def/#f23-attractive-sectorsum-of-different-powers
https://numbbo.github.io/bbob-biobj/def/#f41-sum-of-different-powerssum-of-different-powers
https://numbbo.github.io/bbob-biobj/def/#f53-schwefel-xsinxschwefel-xsinx
https://numbbo.github.io/bbob-biobj/def/#f27-attractive-sectorgallagher-101-peaks
https://numbbo.github.io/bbob-biobj/def/#f28-rosenbrock-originalrosenbrock-original
https://numbbo.github.io/bbob-biobj/def/#f5-spheresharp-ridge
https://numbbo.github.io/bbob-biobj/def/#f29-rosenbrock-originalsharp-ridge
https://numbbo.github.io/bbob-biobj/def/#f1-spheresphere


D. Brockhoff et al.

Figure 5: Dominance-based plots for three bbob-biobj functions: the double sphere
function F1 = (f1, f1) (left column), the sphere/Gallagher 101 peaks function F10 =
(f1, f21) (middle column), and the double Rastrigin function F46 = (f15, f15) (right
column) in dimension 2 for the first instance. First row: dominance ratio; Second row:
non-dominated solutions (in black) and level sets of both objectives; Third row: local
dominance landscape plots.

(the double sphere function F1 = (f1, f1), the sphere/Gallagher 101 peaks function
F10 = (f1, f21) and the double Rastrigin function F46 = (f15, f15)), while the plots for
the other functions and instances can be found in the supplementary material5.

The first row of Figure 5 presents plots of the dominance ratio (Fonseca, 1995,
p. 71ff.). Based on solutions on a regular grid in search space, the dominance ratio
of each grid point is the ratio of all grid points that dominate it. The plot uses a loga-
rithmic color scale with the overall non-dominated points shown in yellow.

The non-dominated grid points are presented in the second row of Figure 5 in
black, together with the level sets of the first objective in blue and the second in red.

The last row of Figure 5 shows the so-called local dominance landscape plots by

16 Evolutionary Computation Volume x, Number x

https://numbbo.github.io/bbob-biobj/def/#f1-spheresphere
https://numbbo.github.io/bbob-biobj/def/#f10-spheregallagher-101-peaks
https://numbbo.github.io/bbob-biobj/def/#f10-spheregallagher-101-peaks
https://numbbo.github.io/bbob-biobj/def/#f46-rastriginrastrigin
https://numbbo.github.io/bbob-biobj/def/#f1-spheresphere
https://numbbo.github.io/bbob-biobj/def/#f10-spheregallagher-101-peaks
https://numbbo.github.io/bbob-biobj/def/#f46-rastriginrastrigin


Using SO-Functions in MOO Test Suites

Fieldsend et al. (2019). These plots use, for each grid point, one of three different col-
ors. In dark green, we show all grid points P for which all 8 neighboring grid points
(in the Moore neighborhood) are mutually non-dominated to P . In landscape analy-
sis terms, we can call the green regions in the plots “dominance-neutral local optima
regions” (Fieldsend et al., 2019) in the sense that a dominance-based hill-climber will
be able to explore a green region by single non-dominated moves. The pink areas are
comprised of grid points for which at least one neighboring grid point dominates it and
all dominating movement paths from neighbors in pink regions lead to the same green
region (Fieldsend et al., 2019). Each pink area is considered a “basin of attraction” of
a green area in the sense that a local dominance-based hill climber can only move to-
wards the included green area. Last, a grid point is assigned a white color if at least two
of its dominating neighbors belong to two different basins of attraction—white areas in
the plots therefore show the boundaries between the basins. The existence of multiple,
distinct basins of attractions can be interpreted as multimodality of a multiobjective
problem: it is denoted unimodal if and only if a single basin of attraction is present
(and thus no two distinct local Pareto-optimal sets exist). Otherwise, the problem is
called multimodal.

6.4 Gradient-Based Plots

The gradient angle plots of Section 6.2 gave insight into the angle between the gradients
of solutions contained in the best known Pareto set approximations. We now present
biobjective gradient plots based on 2-dimensional grids.

The first row in Figure 6 visualizes the length of the normalized biobjective gradi-
ent (1) at 501×501 grid points for three bbob-biobj functions. This length signifies
how aligned or opposed the single-objective gradients are. For all functions, we again
refer to the supplementary material5.

The second row in Figure 6 shows the length of the path from each grid point to-
wards the next local optimum. Inspired by the cumulated gradient field landscapes
(Kerschke and Grimme, 2017), the length is (recursively) defined as Euclidean distance
to the Moore neighbor to which the biobjective gradient points20 plus the path length of
this neighbor21. Cumulated gradient field landscapes sum gradient lengths instead of
Euclidean distances. We use the latter because they better quantify the actual distance
to the local optimum, however both approaches lead to qualitatively very similar fig-
ures. Plotting the lengths of the normalized grid-based local search paths as in Figure 6
allows to visualize the difficulty of multiobjective landscapes, at least for problems with
2 variables: although not as clearly as in the previous dominance-based plots we can
infer the boundaries of the basins of attractions of the local Pareto-optimal sets as the
places in the search space where the path lengths for neighbored grid points decrease in
two different directions, see the examples in Figure 6. With the normalized biobjective
gradient plots, we can therefore see how many distinct local Pareto-optimal sets exist.

6.5 Summary of Observed Problem Properties

From the above visualizations we report basic properties of the bbob-biobj-ext test
functions and the corresponding Pareto set/front approximations that we provide for
performance assessment. We investigate properties like continuous vs. discontinuous
Pareto fronts and sets, the existence of non-dominated points outside a certain region,

20The 360 degrees of possible directions are assigned evenly to the eight neighbors.
21A grid point whose normalized biobjective gradient is below 10−6 in length is considered to be at a

(local) Pareto-optimum and assigned zero path length.

Evolutionary Computation Volume x, Number x 17



D. Brockhoff et al.

Figure 6: Gradient-based plots for three bbob-biobj functions: the double sphere
function F1 = (f1, f1) (left column), the sphere/Gallagher 101 peaks function F10 =
(f1, f21) (middle column), and the double Rastrigin function F46 = (f15, f15) (right
column) in dimension 2 for the first instance. First row: pure gradient length at each
grid point, Second row: length of the path from each grid point towards the next local
optimum (see text for more information).

and uni- or multimodality. Table 1 details these findings for the 2-variable instances
1–5 where search space related numbers correspond to the region [−5, 5]n.

We briefly summarize main findings from Table 1. First, different instances of the
same function share most of the time the same properties—especially for the num-
ber of basins of attraction and the Pareto front convexity. Similarly, 78 of the 92
bbob-biobj-ext functions do not differ among the instances 1–5 in terms of Pareto
set/front (dis-)continuity—only the number of the connected Pareto set/front parts
changes in case discontinuities are observed.

Out of the 92 bbob-biobj-ext functions, only 27 (of which 18 belong to the 55
bbob-biobj suite) have a continuous Pareto front and a continuous Pareto set in all
five instances (i.e. 29% resp. 33% of the functions). Only 9 functions show a convex
Pareto front for all five instances. Similarly, all five instances of 59 functions are multi-
modal, as indicated by more than one basin of attraction. Hence we conclude that most
of the proposed functions possess challenging Pareto set and Pareto front shapes.

Furthermore, the Pareto set of most problem instances of the proposed test suites
lies within the hyperbox [−5, 5]n. However, 51 of the investigated 92 ·5 = 460 instances
(from 28 functions) show non-dominated points outside. For this reason, the COCO im-
plementation defines the region of interest as [−100, 100]n although the single-objective
optima are always in [−4, 4]n (with the exception of the linear function f5).

18 Evolutionary Computation Volume x, Number x

https://numbbo.github.io/bbob-biobj/def/#f1-spheresphere
https://numbbo.github.io/bbob-biobj/def/#f10-spheregallagher-101-peaks
https://numbbo.github.io/bbob-biobj/def/#f10-spheregallagher-101-peaks
https://numbbo.github.io/bbob-biobj/def/#f46-rastriginrastrigin
https://github.com/numbbo/coco


Using SO-Functions in MOO Test Suites

Ta
bl

e
1:

Se
le

ct
ed

pr
op

er
ti

es
of

th
e
b
b
o
b
-
b
i
o
b
j
-
e
x
t

te
st

fu
nc

ti
on

s
fo

r
th

e
fir

st
fiv

e
in

st
an

ce
s

in
di

m
en

si
on

2.
Th

e
co

lu
m

ns
gi

ve
th

e
pr

op
er

ti
es

,f
ro

m
le

ft
to

ri
gh

t,
th

e
nu

m
be

r
of

di
st

in
ct

Pa
re

to
se

tp
ar

ts
(?

=u
nc

le
ar

),
th

e
nu

m
be

r
of

di
st

in
ct

Pa
re

to
fr

on
tp

ar
ts

,t
he

(v
is

ua
l)

co
nv

ex
it

y
of

th
e

Pa
re

to
fr

on
t(

n=
no

n-
co

nv
ex

,y
=c

on
ve

x)
,t

he
ex

is
te

nc
e

of
so

lu
ti

on
s

w
it

hi
n

th
e

be
st

kn
ow

n
Pa

re
to

se
ta

pp
ro

xi
m

at
io

n
th

at
lie

ou
ts

id
e

[−
5,

5]
n

(n
=n

o
su

ch
po

in
t,

y=
so

m
e

po
in

ts
ou

ts
id

e
of

th
e

hy
pe

rb
ox

),
an

d
fin

al
ly

th
e

nu
m

be
r

of
ba

si
ns

of
at

tr
ac

ti
on

s
w

it
hi

n
[−

5
,5

]n
,i

nd
uc

ed
vi

su
al

ly
fr

om
th

e
pl

ot
s

de
sc

ri
be

d
in

th
e

te
xt

.

# Pareto set subsets # Pareto front subsets Convex Pareto front Pareto set with |xi| > 5 # Basins of attraction
Instance 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
F1=(f1, f1) 1 1 1 1 1 1 1 1 1 1 y y y y y n n n n n 1 1 1 1 1
F2=(f1, f2) 1 1 1 1 1 1 1 1 1 1 y n y n y n n n n n 1 1 1 1 1
F3=(f1, f6) 1 1 1 1 1 1 1 1 1 1 n n n n n n n n n n 1 1 1 1 1
F4=(f1, f8) 1 1 1 1 1 1 1 1 1 1 y y y y y n n n n n 1 1 1 1 1
F5=(f1, f13) 1 1 1 1 1 1 1 1 1 1 y y y y y n n n n n 1 1 1 1 1
F6=(f1, f14) 1 1 1 1 1 1 1 1 1 1 y y y y y n n n n n 1 1 1 1 1
F7=(f1, f15) 4 10+ 5–9 10+ 10+ 3 10+ 5–9 10+ 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F8=(f1, f17) 5–9 5–9 5–9 5–9 5–9 5–9 5–9 5–9 5–9 5–9 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F9=(f1, f20) 1 5–9 5–9 1 1 1 5–9 5–9 1 1 y y y y y n n n n n 5–9 5–9 5–9 5–9 5–9
F10=(f1, f21) 3 2 2 5–9 1 2 1 1 3 1 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F11=(f2, f2) ? ? ? ? 10+ 1 1 1 1 1 n n n n n n n n n n 1 1 1 1 1
F12=(f2, f6) 1 1 1 1 1 1 1 1 1 1 n n n n n y n n y y 1 1 1 1 1
F13=(f2, f8) 1 2 1 1 1 1 1 1 1 1 y y y n n n n n n n 3 3 3 1 1
F14=(f2, f13) 1 1 1 1 1 1 1 1 1 1 n n n n n n n y y n 1 1 1 1 1
F15=(f2, f14) 1 1 1 1 1 1 1 1 1 1 n n n n n y n n y n 1 1 1 1 1
F16=(f2, f15) 10+ 10+ 5–9 10+ 10+ 10+ 10+ 5–9 5–9 10+ n n n n n y y n n y 10+ 10+ 10+ 10+ 10+
F17=(f2, f17) 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F18=(f2, f20) 3 3 3 3 3 3 3 1 3 3 n n n n n y y n n n 10+ 10+ 10+ 10+ 10+
F19=(f2, f21) 3 3 2 3 2 2 2 2 1 2 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F20=(f6, f6) 1 1 1 1 1 1 1 1 1 1 n n n n n y n n n n 1 1 1 1 1
F21=(f6, f8) 1 1 1 1 1 1 1 1 1 1 n n n n n n n n n n 2 2 1 2 2
F22=(f6, f13) 1 1 1 1 1 1 1 1 1 1 n n n n n n n n n n 1 1 1 1 1
F23=(f6, f14) 1 1 1 1 1 1 1 1 1 1 n n n n n n n y y n 1 1 1 1 1
F24=(f6, f15) 10+ 10+ 5–9 10+ 5–9 5–9 3 4 10+ 5–9 n n n n n n n n y n 10+ 10+ 10+ 10+ 10+
F25=(f6, f17) 10+ 10+ 10+ 10+ 10+ 10+ 10+ 5–9 10+ 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F26=(f6, f20) 5–9 4 5–9 3 4 5–9 4 2 2 3 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F27=(f6, f21) 2 4 3 3 5–9 2 2 2 2 2 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F28=(f8, f7) 1 1 1 1 1 1 1 1 1 1 y y y y y n n n n n 2 2 2 2 2
F29=(f8, f13) 1 1 2 2 1 1 1 1 1 1 y y n y y n n y n n 2 2 2 2 1
F30=(f8, f14) 1 1 1 1 1 1 1 1 1 1 y y y y y n n n n n 1 2 2 1 1
F31=(f8, f15) 10+ 5–9 5–9 10+ 10+ 5–9 3 4 10+ 5–9 n n n n n n n n y n 10+ 10+ 10+ 10+ 10+
F32=(f8, f17) 10+ 10+ 10+ 10+ 10+ 5–9 10+ 10+ 10+ 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F33=(f8, f20) 3 4 5–9 5–9 4 2 3 5–9 3 3 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F34=(f8, f21) 3 3 5–9 5–9 5–9 3 1 1 3 2 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F35=(f13, f13) 1 1 1 1 1 1 1 1 1 1 y n y n n n n n n n 1 1 1 1 1
F36=(f13, f14) 1 1 1 1 1 1 1 1 1 1 y y y y y n n n y n 1 1 1 1 1
F37=(f13, f15) 10+ 10+ 10+ 10+ 5–9 10+ 10+ 10+ 10+ 4 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F38=(f13, f17) 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F39=(f13, f20) 3 3 3 2 5 3 2 3 2 5 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F40=(f13, f21) 4 2 2 2 4 3 2 2 2 2 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F41=(f14, f14) 1 1 1 1 1 1 1 1 1 1 y y y y y n n n n n 1 1 1 1 1
F42=(f14, f15) 10+ 5 10+ 10+ 10+ 10+ 5 10+ 10+ 10+ n n n n n y n n n n 10+ 10+ 10+ 10+ 10+
F43=(f14, f17) 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F44=(f14, f20) 5–9 4 4 3 3 5–9 4 4 3 3 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F45=(f14, f21) 5 4 4 5 4 3 3 1 3 2 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F46=(f15, f15) 5–9 5–9 10+ 10+ 10+ 3 5–9 5–9 5–9 5–9 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F47=(f15, f17) 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ n n n n n y n n n y 10+ 10+ 10+ 10+ 10+
F48=(f15, f20) 2 4 10+ 5–9 4 2 3 10+ 5–9 3 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F49=(f15, f21) 4 5–9 10+ 10+ 3 3 3 5–9 10+ 3 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F50=(f17, f17) 5–9 10+ 5–9 10+ 10+ 10+ 10+ 10+ 10+ 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F51=(f17, f20) 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ n n n n n n y n n n 10+ 10+ 10+ 10+ 10+
F52=(f17, f21) 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F53=(f20, f20) 5 5–9 5–9 5 5 5 5 5 5 3 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F54=(f20, f21) 5–9 5–9 2 5–9 4 5–9 5–9 2 3 2 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F55=(f21, f21) 3 5–9 5–9 5–9 5–9 1 1 2 1 2 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F56=(f1, f3) 10+ 5–9 5–9 10+ 10+ 5–9 5–9 5–9 10+ 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F57=(f1, f4) 10+ 10+ 5–9 10+ 10+ 5–9 5–9 5–9 10+ 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F58=(f1, f5) 1 1 1 1 1 1 1 1 1 1 n n n n n n n n n n 1 1 1 1 1
F59=(f2, f3) 10+ 10+ 5–9 10+ 10+ 10+ 5–9 5–9 5–9 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F60=(f2, f4) 10+ 10+ 10+ 5–9 10+ 10+ 5–9 5–9 5–9 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F61=(f2, f5) 1 1 1 1 1 1 1 1 1 1 n n n n n y y y y y 1 1 1 1 1
F62=(f3, f4) 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F63=(f3, f5) 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ n n n n n n y y n n 10+ 10+ 10+ 10+ 10+
F64=(f4, f5) 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F65=(f6, f7) 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ n n n n n n n y y n 10+ 10+ 10+ 10+ 10+
F66=(f6, f9) 1 3 1 3 1 1 1 1 1 1 n n n n n n n n y n 1 3 1 3 2
F67=(f7, f8) 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F68=(f7, f9) 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F69=(f8, f9) 1 1 1 2 2 1 1 1 1 1 n y y n n n n n n n 1 1 1 2 2
F70=(f10, f11) 1 1 1 1 1 1 1 1 1 1 n n n n n n n n n n 1 1 1 1 1
F71=(f10, f12) 1 1 1 1 1 1 1 1 1 1 n n n n n n n n n n 1 1 1 1 1
F72=(f10, f13) 1 1 1 1 1 1 1 1 1 1 n n n n n n n y n n 1 1 1 1 1
F73=(f10, f14) 1 1 1 1 1 1 1 1 1 1 n n n n n n n n n n 1 1 1 1 1
F74=(f11, f12) 1 1 1 1 1 1 1 1 1 1 n n n n n n n y n y 1 1 1 1 1
F75=(f11, f13) 1 1 1 1 1 1 1 1 1 1 n n n n n n n y n y 1 1 1 1 1
F76=(f11, f14) 1 1 1 1 1 1 1 1 1 1 n n n n n n n n n n 1 1 1 1 1
F77=(f12, f13) 1 1 2 1 1 1 1 1 1 1 n n n n n n y y n n 1 1 1 1 1
F78=(f12, f14) 2 2 1 2 1 1 1 1 1 1 y y y n y y y n y n 1 1 1 1 1
F79=(f15, f18) 10+ 5–9 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ n n n n n y n y y n 10+ 10+ 10+ 10+ 10+
F80=(f15, f19) 10+ 5–9 10+ 4 5–9 10+ 5–9 10+ 4 5–9 n n n n n n n y n n 10+ 10+ 10+ 10+ 10+
F81=(f17, f18) 5–9 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ n n n n n n n y n y 10+ 10+ 10+ 10+ 10+
F82=(f17, f19) 10+ 10+ 5–9 10+ 10+ 10+ 10+ 5–9 10+ 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F83=(f18, f19) 10+ 10+ 5–9 10+ 10+ 10+ 10+ 5–9 10+ 10+ n n n n n n y n n n 10+ 10+ 10+ 10+ 10+
F84=(f20, f22) 3 2 5 5 4 3 2 3 5 2 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F85=(f20, f23) 5–9 5–9 5–9 5–9 5–9 5–9 5–9 5–9 5–9 5–9 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F86=(f20, f24) 4 10+ 10+ 10+ 5–9 5–9 10+ 10+ 10+ 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F87=(f21, f22) 5–9 5–9 5–9 10+ 3 3 1 2 2 1 n n n n n n n y n n 10+ 10+ 10+ 10+ 10+
F88=(f21, f23) 10+ 5–9 5–9 5–9 5–9 5–9 5–9 5–9 5–9 3 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F89=(f21, f24) 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F90=(f22, f23) 3 5–9 2 2 3 5–9 5–9 3 10+ 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F91=(f22, f24) 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ n n n n n n n n n n 10+ 10+ 10+ 10+ 10+
F92=(f23, f24) 5–9 5–9 5–9 3 5–9 5–9 5–9 5–9 3 5–9 n n n n n n n n n n 10+ 10+ 10+ 10+ 10+

Evolutionary Computation Volume x, Number x 19



D. Brockhoff et al.

7 On Reporting Algorithm Performance

The definition of (test) problem instances is only the first step towards benchmarking
optimization algorithms. Further steps entail to choose, record and display the actual
performance measure(s). As the proposed test problems have been implemented in
the COCO software, the postprocessing module of COCO can be directly used for the
performance assessment (up to LaTeX templates for publication of the results) and we
briefly discuss what this comprises. As best practice, we usually conduct seven steps
to analyze the performance of an algorithm, here also illustrated with an example.

Benchmarking Experiment First, we run the algorithm on a chosen benchmark suite.
COCO offers example code in all supported languages. A minimal code example
in Python is shown in Hansen et al. (2021, Figure 2). Here, we have run the COMO-
CMA-ES (Touré et al., 2019) with population size 100 on the bbob-biobj suite.

dimo: prepare all algorithm data sets again wrt new hypervolume values do a
release with new hv reference values before submission

Choosing Algorithms for Comparison We decide on (baseline) algorithms to com-
pare with. As of May 2021, data for browsing3 and downloading from 32 algo-
rithms2 run on the bbob-biobj test suite is available online. Here, we choose
SMS-EMOA and NSGA-II as baselines.

Postprocessing The postprocessing of COCO, here invoked by the command “python
-m cocopp COMO-100 NSGA-II-Matlab SMS-EMOA-DE”, then downloads
the corresponding baseline data and displays the algorithms performance in both
html and LaTeX/PDF format.

For multiobjective problems, COCO measures the value of an extended hypervolume
indicator of all non-dominated solutions evaluated so far22. Within a benchmarking
experiment, COCO records the number of function evaluations (“runtime”) to reach
certain indicator values, given as precisions to a reference value. For each instance,
function, and dimension, the runtime to 58 target precisions is displayed (amongst
other visualizations) in the form of empirical cumulative distribution functions (ECDF),
see Hansen et al. (2016a, 2010).23

Test suites that contain many function instances in several dimensions require to
aggregate data when analyzing and sharing results. Conveniently, runtimes from dif-
ferent instances or functions can be meaningfully displayed in a single ECDF graph.

Displaying and Discussing Summary Results In publications, we show summary
ECDFs over all functions in 5-D and 20-D and the results for each function group
in 10-D.

22More specifically, the (multiobjective) performance measure used in COCO makes a case distinction.
When at least one solution dominates the hypervolume reference point, the hypervolume indicator of all
non-dominated solutions is used, normalized so that the ideal point is in the origin and the nadir point is in
[1, 1], with this nadir point as the (normalized) reference point. Otherwise, the performance is measured as
the negative of the minimal distance of any found solution (in objective space and normalized as above) to
the box [0, 1]2, for details see (Brockhoff et al., 2016).

23All plots shown in this paper have been prepared with COCO version 2.4 and the corresponding hy-
pervolume reference values. Improved hypervolume reference values as well as the bbob-biobj-ext suite
are available from version 3.0.

20 Evolutionary Computation Volume x, Number x

https://github.com/numbbo/coco
https://numbbo.github.io/gforge/apidocs-cocopp/cocopp.html
https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://github.com/numbbo/coco
https://github.com/numbbo/coco


Using SO-Functions in MOO Test Suites

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

SMS-EMOA-

NSGA-II-M

COMO-100 

best 2016bbob-biobj f1-f55, 5-D
58 targets: 1..-1.0e-4
10 instances

v2.4.19, hv-hash=ff0e71e8cd978373

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NSGA-II-M

SMS-EMOA-

COMO-100 

best 2016bbob-biobj f1-f55, 20-D
58 targets: 1..-1.0e-4
10 instances

v2.4.19, hv-hash=ff0e71e8cd978373

Figure 7: Empirical runtime distributions aggregated over all bbob-biobj functions
in dimension 5 (left) and 20 (right), comparing the algorithms COMO-100, SMS-EMOA-
DE, and NSGA-II-Matlab.

separable-separable separable-moderate separable-ill-cond. separable-multimodal separable-weakstructure

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NSGA-II-M

SMS-EMOA-

COMO-100 

best 2016bbob-biobj f1, f2, f11, 10-D
58 targets: 1..-1.0e-4
10 instances

v2.4.19, hv-hash=ff0e71e8cd978373

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

SMS-EMOA-

NSGA-II-M

COMO-100 

best 2016bbob-biobj f3, f4, f12, f13, 10-D
58 targets: 1..-1.0e-4
10 instances

v2.4.19, hv-hash=ff0e71e8cd978373

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n 
of

 fu
nc

tio
n,

ta
rg

et
 p

ai
rs

SMS-EMOA-

NSGA-II-M

COMO-100 

best 2016bbob-biobj f5, f6, f14, f15, 10-D
58 targets: 1..-1.0e-4
10 instances

v2.4.19, hv-hash=ff0e71e8cd978373

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NSGA-II-M

SMS-EMOA-

COMO-100 

best 2016bbob-biobj f7, f8, f16, f17, 10-D
58 targets: 1..-1.0e-4
10 instances

v2.4.19, hv-hash=ff0e71e8cd978373

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

SMS-EMOA-

NSGA-II-M

COMO-100 

best 2016bbob-biobj f9, f10, f18, f19, 10-D
58 targets: 1..-1.0e-4
10 instances

v2.4.19, hv-hash=ff0e71e8cd978373

moderate-moderate moderate-ill-cond. moderate-multimodal moderate-weakstructure ill-cond.-ill-cond.

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

SMS-EMOA-

NSGA-II-M

COMO-100 

best 2016bbob-biobj f20, f21, f28, 10-D
58 targets: 1..-1.0e-4
10 instances

v2.4.19, hv-hash=ff0e71e8cd978373

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

SMS-EMOA-

NSGA-II-M

COMO-100 

best 2016bbob-biobj f22, f23, f29, f30, 10-D
58 targets: 1..-1.0e-4
10 instances

v2.4.19, hv-hash=ff0e71e8cd978373

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NSGA-II-M

SMS-EMOA-

COMO-100 

best 2016bbob-biobj f24, f25, f31, f32, 10-D
58 targets: 1..-1.0e-4
10 instances

v2.4.19, hv-hash=ff0e71e8cd978373

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n 
of

 fu
nc

tio
n,

ta
rg

et
 p

ai
rs

SMS-EMOA-

NSGA-II-M

COMO-100 

best 2016bbob-biobj f26, f27, f33, f34, 10-D
58 targets: 1..-1.0e-4
10 instances

v2.4.19, hv-hash=ff0e71e8cd978373

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NSGA-II-M

SMS-EMOA-

COMO-100 

best 2016bbob-biobj f35, f36, f41, 10-D
58 targets: 1..-1.0e-4
10 instances

v2.4.19, hv-hash=ff0e71e8cd978373

ill-cond.-multimodal ill-cond.-weakstructure multimodal-multimodal multimodal-weakstructure weakstructure-weakstructure

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NSGA-II-M

SMS-EMOA-

COMO-100 

best 2016bbob-biobj f37, f38, f42, f43, 10-D
58 targets: 1..-1.0e-4
10 instances

v2.4.19, hv-hash=ff0e71e8cd978373

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

SMS-EMOA-

NSGA-II-M

COMO-100 

best 2016bbob-biobj f39, f40, f44, f45, 10-D
58 targets: 1..-1.0e-4
10 instances

v2.4.19, hv-hash=ff0e71e8cd978373

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NSGA-II-M

SMS-EMOA-

COMO-100 

best 2016bbob-biobj f46, f47, f50, 10-D
58 targets: 1..-1.0e-4
10 instances

v2.4.19, hv-hash=ff0e71e8cd978373

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NSGA-II-M

SMS-EMOA-

COMO-100 

best 2016bbob-biobj f48, f49, f51, f52, 10-D
58 targets: 1..-1.0e-4
10 instances

v2.4.19, hv-hash=ff0e71e8cd978373

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n 
of

 fu
nc

tio
n,

ta
rg

et
 p

ai
rs

SMS-EMOA-

NSGA-II-M

COMO-100 

best 2016bbob-biobj f53-f55, 10-D
58 targets: 1..-1.0e-4
10 instances

v2.4.19, hv-hash=ff0e71e8cd978373

Figure 8: Empirical runtime distributions per function group of the bbob-biobj suite
for the algorithms COMO-100, SMS-EMOA-DE, and NSGA-II-Matlab in dimension 10.

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NSGA-II-M

COMO-100 

SMS-EMOA-

best 2016bbob-biobj f1, 10-D
58 targets: 1..-1.0e-4
10 instances

v2.4.19, hv-hash=ff0e71e8cd978373

1 Sphere/Sphere

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

SMS-EMOA-

NSGA-II-M

COMO-100 

best 2016bbob-biobj f11, 10-D
58 targets: 1..-1.0e-4
10 instances

v2.4.19, hv-hash=ff0e71e8cd978373

11 sep. Ellipsoid/sep. Elli.

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

SMS-EMOA-

NSGA-II-M

COMO-100 

best 2016bbob-biobj f19, 10-D
58 targets: 1..-1.0e-4
10 instances

v2.4.19, hv-hash=ff0e71e8cd978373

19 sep. Elli./Gallagher 101

Figure 9: Empirical runtime distributions for the algorithms COMO-100, SMS-EMOA-
DE and NSGA-II-Matlab on single functions from the bbob-biobj suite in dimension
10. Left: double sphere function F1 = (f1, f1), middle: double ellipsoid function F11 =
(f2, f2), right: ellipsoid/Gallagher 101 peaks function F19 = (f2, f21).

Evolutionary Computation Volume x, Number x 21

https://numbbo.github.io/bbob-biobj/def/#f1-spheresphere
https://numbbo.github.io/bbob-biobj/def/#f11-ellipsoid-separableellipsoid-separable
https://numbbo.github.io/bbob-biobj/def/#f11-ellipsoid-separableellipsoid-separable
https://numbbo.github.io/bbob-biobj/def/#f19-ellipsoid-separablegallagher-101-peaks


D. Brockhoff et al.

Figure 7 shows these runtime distribution graphs aggregated over all functions
and Figure 8 shows the aggregations within function groups24. For budgets larger
than about 5 · 103 times dimension evaluations, COMO-100 overall outperforms SMS-
EMOA-DE and NSGA-II-Matlab, where the latter two are also more affected by in-
creasing dimension. The qualitative differences of the runtime behaviors between the
algorithms remain similar also within function groups, while differences are smaller in
the groups involving multimodal objective functions.

Investigating and Discussing Complementary Results We always inspect all results
on all single functions. Depending on the outcome of this inspection, we display
further graphs. They may show the dependency on dimension or any other re-
markable observation.

Figure 9 shows ECDF graphs for three single functions. We observe exceptionally good
behavior of SMS-EMOA-DE on the double sphere function (Figure 9, left). The middle
plot of Figure 9 shows an example where NSGA-II is better than SMS-EMOA-DE for all
budgets. Finally, on the right plot, we observe that COMO-100 matches and exceeds
the performance of the best 2016 reference algorithm on the ellipsoid/Gallagher 101
peaks function F19 = (f2, f21) for budgets between 5 · 103 and 104 times dimension
evaluations but also does not improve anymore shortly after.

Processed Data Sharing We put the html output from the postprocessing online, see
Postprocessed data in the supplementary material5. During scientific collaborations,
we often share such data repeatedly with collaborators early in the process.

Raw Data Sharing Finally, we publish the raw data sets by creating a submission is-
sue on GitHub25. Raw data can also be ”archived” with the cocopp.archiving
module. Archived data that are then put online can be used in the postprocessing
(cocopp) by everyone who knows the corresponding URL.

8 Conclusions

Designing test suites is a crucial part of benchmarking optimization algorithms. Ar-
guably, the most problematic aspect of using artificial test functions to assess perfor-
mance is the representativeness of these regarding difficulties observed in real-world
problems. In this paper, we suggest to address the problem of representativeness in
the multiobjective case by combining established single-objective test functions with
known difficulties observed in practice. Following the concepts of the single-objective
bbob test suite, we propose two concrete biobjective test suites based on the idea of
combining (subsets of) the existing bbob single-objective functions.

Our approach contrasts most of the existing test suites for multiobjective optimiza-
tion. These are based on the desirable property of having well-understood Pareto sets
and Pareto fronts with analytical forms but have, on the other hand, artificial charac-
teristics that are arguably under-represented in real-world problems. Examples of such
properties are separability, optima located exactly at the boundary constraints, and the
existence of variables that solely control the distance between a solution and the Pareto
front.

24Displayed is the performance of the three algorithms COMO-CMA-ES with a population size of 100
(“COMO-100”, Touré et al. (2019); Dufossé and Touré (2019)), SMS-EMOA with differential evolution as
search operator (“SMS-EMOA-DE”, Beume et al. (2007); Auger et al. (2016b)) and the Matlab implementation
of NSGA-II (“NSGA-II-Matlab”, Deb et al. (2002); Auger et al. (2016a)).

25See https://github.com/numbbo/coco/blob/master/howtos/publish-a-dataset-howto.md

22 Evolutionary Computation Volume x, Number x

https://numbbo.github.io/bbob-biobj/def/#f19-ellipsoid-separablegallagher-101-peaks
https://github.com/numbbo/coco/blob/master/code-postprocessing/cocopp/archiving.py
https://github.com/numbbo/coco/blob/master/code-postprocessing/cocopp/archiving.py
https://numbbo.github.io/gforge/apidocs-cocopp/cocopp.html
https://github.com/numbbo/coco/blob/master/howtos/publish-a-dataset-howto.md


Using SO-Functions in MOO Test Suites

The disadvantage of unknown analytical forms of the Pareto sets and Pareto fronts
in our proposal is addressed by collecting the non-dominated solutions from extensive
experiments with dozens of different optimization algorithms and providing and visu-
alizing the Pareto set and Pareto front approximations for each problem. These visual-
izations lead to new insights into how such non-analytical Pareto sets and Pareto fronts
may look in practice.

Our proposal is currently restricted to two objectives. With a growing number of
objectives, the number of arbitrary combinations of single-objective functions grows
quickly. This leads to long running times of the benchmarking experiment and, more
importantly, discourages to routinely scrutinize new results on each function individu-
ally. Hence, we think that further pruning choices should be made to define test suites
with more objectives.

Acknowledgments

This work was supported by the grant ANR-12-MONU-0009 (NumBBO) of the French
National Research Agency. We also thank Ilya Loshchilov and Oswin Krause for their
initial suggestions on how to extend the bbob-biobj test suite. Tea Tušar acknowl-
edges financial support from the Slovenian Research Agency (research project No. Z2-
8177 and research program No. P2-0209) and the European Commission’s Horizon 2020
research and innovation program (grant agreement No. 692286).

References

Auger, A., Brockhoff, D., Hansen, N., Tušar, D., Tušar, T., and Wagner, T. (2016a). Bench-
marking MATLAB’s gamultiobj (NSGA-II) on the bi-objective BBOB-2016 test suite.
In Genetic and Evolutionary Computation Conference (Companion), GECCO 2016 Com-
panion, pages 1233–1239. ACM.

Auger, A., Brockhoff, D., Hansen, N., Tušar, D., Tušar, T., and Wagner, T. (2016b). The
impact of variation operators on the performance of SMS-EMOA on the bi-objective
BBOB-2016 test suite. In Genetic and Evolutionary Computation Conference (Companion),
GECCO 2016 Companion, pages 1225–1232. ACM.

Beume, N., Naujoks, B., and Emmerich, M. (2007). SMS-EMOA: Multiobjective Se-
lection Based on Dominated Hypervolume. European Journal of Operational Research,
181(3):1653–1669.

Brockhoff, D., Tran, T.-D., and Hansen, N. (2015). Benchmarking Numerical Multi-
objective Optimizers Revisited. In Genetic and Evolutionary Computation Conference
(GECCO 2015), pages 639–646. ACM.

Brockhoff, D., Tušar, T., Tušar, D., Wagner, T., Hansen, N., and Auger, A. (2016). Biob-
jective Performance Assessment with the COCO Platform. CoRR, abs/1605.01746.

Cheng, R., Li, M., Tian, Y., Zhang, X., Yang, S., Jin, Y., and Yao, X. (2017). Benchmark
functions for the CEC’2017 competition on many-objective optimization. Technical
report, University of Birmingham, UK.

Collange, G., Delattre, N., Hansen, N., Quinquis, I., and Schoenauer, M. (2010). Mul-
tidisciplinary Optimisation in the Design of Future Space Launchers. In Multidisci-
plinary Design Optimization in Computational Mechanics, pages 487–496. Wiley.

Evolutionary Computation Volume x, Number x 23



D. Brockhoff et al.

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chich-
ester, UK.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A Fast and Elitist Multiob-
jective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,
6(2):182–197.

Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2005). Scalable Test Problems for Evo-
lutionary Multi-Objective Optimization. In Abraham, A., Jain, R., and Goldberg, R.,
editors, Evolutionary Multiobjective Optimization: Theoretical Advances and Applications,
chapter 6, pages 105–145. Springer.

Dufossé, P. and Touré, C. (2019). Benchmarking MO-CMA-ES and COMO-CMA-ES on
the bi-objective bbob-biobj testbed. In Genetic and Evolutionary Computation Conference
(Companion), GECCO 2019, pages 1920–1927. ACM.

Emmerich, M. T. and Deutz, A. H. (2007). Test problems based on Lamé superspheres.
In Evolutionary Multi-Criterion Optimization (EMO 2007), pages 922–936. Springer.

Fieldsend, J. E., Chugh, T., Allmendinger, R., and Miettinen, K. (2019). A feature rich
distance-based many-objective visualisable test problem generator. In Genetic and
Evolutionary Computation Conference (GECCO 2019), pages 541–549.

Finck, S., Hansen, N., Ros, R., and Auger, A. (2009). Real-parameter black-box op-
timization benchmarking 2009: Presentation of the noiseless functions. Technical
Report 2009/20, Research Center PPE. Updated version as of February 2019.

Fonseca, C. M. (1995). Multiobjective genetic algorithms with application to control engineer-
ing problems. PhD thesis, University of Sheffield.

Fonseca, C. M. and Fleming, P. J. (1995). An Overview of Evolutionary Algorithms in
Multiobjective Optimization. Evolutionary Computation, 3(1):1–16.

Gould, N. I. M., Orban, D., and Toint, P. L. (2005). CUTEr and SifDec: A Constrained
and Unconstrained Testing Environment, revisited. ACM Transactions on Mathemati-
cal Software, 29(4):373–394.

Hansen, N., Auger, A., Brockhoff, D., Tušar, D., and Tušar, T. (2016a). COCO: Perfor-
mance assessment. ArXiv e-prints, arXiv:1605.03560.

Hansen, N., Auger, A., Finck, S., and Ros, R. (2009). Real-Parameter Black-Box Opti-
mization Benchmarking 2009: Experimental Setup. INRIA Research Report RR-6829,
INRIA Saclay—Ile-de-France. updated February 2010.

Hansen, N., Auger, A., Ros, R., Finck, S., and Pošı́k, P. (2010). Comparing results of
31 algorithms from the black-box optimization benchmarking BBOB-2009. In Genetic
and evolutionary computation conference companion (GECCO 2010), pages 1689–1696,
New York, NY, USA. ACM.

Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., and Brockhoff, D. (2021).
COCO: A platform for comparing continuous optimizers in a black-box setting. Op-
timization Methods and Software, 36:114–144.

Hansen, N. and Ostermeier, A. (2001). Completely Derandomized Self-Adaptation in
Evolution Strategies. Evolutionary Computation, 9(2):159–195.

24 Evolutionary Computation Volume x, Number x

https://arxiv.org/abs/1605.03560


Using SO-Functions in MOO Test Suites

Hansen, N., Tušar, T., Mersmann, O., Auger, A., and Brockhoff, D. (2016b). COCO: The
Experimental Procedure. CoRR, abs/1603.08776.

Horn, D., Wagner, T., Biermann, D., Weihs, C., and Bischl, B. (2015). Model-based multi-
objective optimization: taxonomy, multi-point proposal, toolbox and benchmark. In
Evolutionary Multi-Criterion Optimization (EMO 2015), pages 64–78. Springer.

Huang, V. L., Qin, A. K., Deb, K., Zitzler, E., Suganthan, P. N., Liang, J. J., Preuss, M.,
and Huband, S. (2007). Problem Definitions for Performance Assessment of Multi-
objective Optimization Algorithms. Technical report, Nanyang Technological Uni-
versity. Special Session on Constrained Real-Parameter Optimization.

Huband, S., Hingston, P., Barone, L., and While, L. (2006). A Review of Multiobjective
Test Problems and a Scalable Test Problem Toolkit. IEEE Transactions on Evolutionary
Computation, 10(5):477–506.

Igel, C., Hansen, N., and Roth, S. (2007). Covariance Matrix Adaptation for Multi-
objective Optimization. Evolutionary Computation, 15(1):1–28.

Kerschke, P. and Grimme, C. (2017). An expedition to multimodal multi-objective op-
timization landscapes. In International Conference on Evolutionary Multi-Criterion Op-
timization, pages 329–343. Springer.

Kerschke, P., Wang, H., Preuss, M., Grimme, C., Deutz, A., Trautmann, H., and Em-
merich, M. (2016). Towards analyzing multimodality of continuous multiobjective
landscapes. In Parallel Problem Solving from Nature (PPSN 2016), pages 962–972.
Springer.

Kursawe, F. (1990). A Variant of Evolution Strategies for Vector Optimization. In Schwe-
fel, H.-P. and Männer, R., editors, Parallel Problem Solving from Nature (PPSN 1990),
pages 193–197. Springer.

Li, H. and Zhang, Q. (2009). Multiobjective Optimization Problems With Complicated
Pareto Sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation,
13(2):284–302.

Loshchilov, I. and Glasmachers, T. (2016). Anytime bi-objective optimization with a
hybrid multi-objective CMA-ES (HMO-CMA-ES). In Genetic and Evolutionary Com-
putation Conference Companion (GECCO 2016 Companion), pages 1169–1176. ACM.

Miettinen, K. (1999). Nonlinear Multiobjective Optimization. Kluwer, Boston, MA, USA.

Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic
algorithms. In International Conference on Genetic Algorithms and their Applications,
1985, pages 93–100.

Tan, K. C., Lee, T. H., and Khor, E. F. (2002). Evolutionary algorithms for multi-objective
optimization: Performance assessments and comparisons. Artificial intelligence Re-
view, 17(4):251–290.

Touré, C., Hansen, N., Auger, A., and Brockhoff, D. (2019). Uncrowded hypervolume
improvement: COMO-CMA-ES and the Sofomore framework. In Genetic and Evolu-
tionary Computation Conference (GECCO 2019), pages 638–646. ACM.

Evolutionary Computation Volume x, Number x 25



D. Brockhoff et al.

Van Veldhuizen, D. A. and Lamont, G. B. (1998). Multiobjective evolutionary algorithm
research: A history and analysis. Technical Report TR-98-03, Department of Electrical
and Computer Engineering, Graduate School of Engineering, Air Force Institute of
Technology.

Van Veldhuizen, D. A. and Lamont, G. B. (1999a). MOEA test suite generation, design
& use. In Genetic and Evolutionary Computation Conference (GECCO 1999). Workshop
Program, pages 113–114.

Van Veldhuizen, D. A. and Lamont, G. B. (1999b). Multiobjective evolutionary algo-
rithm test suites. In Symposium on Applied Computing, pages 351–357. ACM.

Zhang, Q., Zhou, A., Zhao, S., Suganthan, P. N., Liu, W., and Tiwari, S. (2009). Multi-
objective Optimization Test Instances for the CEC 2009 Special Session and Competi-
tion. CES 487, The School of Computer Science and Electronic Engieering, University
of Essex.

Zitzler, E., Deb, K., and Thiele, L. (2000). Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results. Evolutionary Computation, 8(2):173–195.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and Grunert da Fonseca, V. (2003).
Performance Assessment of Multiobjective Optimizers: An Analysis and Review.
IEEE Transactions on Evolutionary Computation, 7(2):117–132.

26 Evolutionary Computation Volume x, Number x



Using SO-Functions in MOO Test Suites

A On the Single-objective bbob Functions

This section discusses properties of real-world problems and how the bbob test suite
models different problem difficulties. It then gives more details about the bbob func-
tions, their function groups and instances.

A.1 Real-World Function Properties

We present here in short the general properties of objective functions that are related to
difficulties observed in real-world problems. It depends on these properties whether
an optimization problem is easy or hard to solve. These properties build the basis of
the five function groups described in Section 4.

A separable function does not have any dependencies among its variables and
can therefore be optimized by applying n independent one-dimensional optimizations
along each coordinate axis while keeping the other variables fixed. Difficult optimiza-
tion problems are typically not separable and thus, non-separable optimization prob-
lems should be considered. The typical well-established technique to generate non-
separable benchmark functions from separable ones is the application of a rotation ma-
trix. That is, if g(x) is a separable function with respect to x and R ∈ Rn×n is a rotation
matrix, then g(Rx) will generally be non-separable with respect to x.

A unimodal function has only one local minimum which is at the same time also
its global one. A multimodal function has more local minima which is highly common
in practical optimization problems. We consider a multimodal function to have weak
global structure if the qualities (the f -values) of the local optima are only weakly related
with their locations in search space, e.g. when neighboring optima do not generally
have similar quality values.

Ill-conditioning is another typical challenge of real-parameter optimization and, be-
sides multimodality, probably the most common one. The condition number measures,
loosely speaking, how strongly the steepness of the gradient depends on the position
within a level set. A small condition number, close to one, indicates a well-conditioned
function with little dependency. A large condition number indicates a more difficult,
ill-conditioned function with strong dependency between steepness and position. The
condition number of convex quadratic functions is the ratio between largest and small-
est eigenvalue of the Hessian matrix. Geometrically, these eigenvalues correspond,
respectively, to the shortest and longest principal axis of the contour ellipsoids.

The bbob test suite contains ill-conditioned functions with a typical conditioning
of 106. We believe this is a realistic requirement, while we have seen practical problems
with conditioning as large as 1010 (Collange et al., 2010).

A.2 Balancing Problem Difficulties

It is worth noting that in several existing single-objective test suites, some of the easier
properties are overrepresented. For example, in the CUTEr/CUTEst test suite (Gould
et al., 2005), 202 (54%) out of the 375 functions, that are labeled as unconstrained or
bound constrained, are of the “sum of squares” type, a further 58 (15%) are quadratic.
Furthermore, out of the 191 problems with a fixed dimension, there are 49 (26%) that
have only two variables while only 31 (16%) have a dimension larger than 10.

Such an overrepresentation is not a big problem per se, but when making state-
ments on algorithm performance aggregated over all functions in a suite, one has to
keep in mind that the performance of the better algorithms might simply come from
the fact that they are tailored towards simpler problems.

With the bbob test suite, all problems are scalable in dimension and belong to a

Evolutionary Computation Volume x, Number x 27



D. Brockhoff et al.

certain problem group, sharing similar difficulties. It is therefore possible to aggre-
gate performance data only over a subset of the functions sharing the same properties.
Having all problem groups of similar size also avoids problems of overfitting to certain
difficulties if aggregated results are presented.

A.3 Function Instances

All bbob functions come naturally in the form of instances. That is to say, each function
optimized by an algorithm takes the form:

f(x) = H1 ◦ . . . ◦Hk1(fraw(T1 ◦ . . . ◦ Tk2(x)))

where fraw is a raw function—usually the simplest representative of the function class
(like the sphere function with optimum in zero)—and where Ti : Rn → Rn are search
space transformations and Hi : R → R are function value transformations that are
applied to the raw function. For example search space transformations can be rotations
or translations of the optimum and for example, a function-value transformation can
be translating the function by a scalar. Each of those transformations applied to the
raw function are actually (pseudo-)random, e.g. when applying a translation in the
search space, the vector by which the search point is shifted is randomly sampled. The
resulting functions can be seen as instances of a parametrized transformation.

In an abstract manner, the functions optimized are instances of a parametrized
function F θ (as introduced in Section 2); the parameter θ is instantiated (pseudo-
)randomly from an integer number, the so-called instance number, as well as poten-
tially from the function number. We refer to a function class as a set of functions
{F θ : θ ∈ Θ} and we often name the function class after its raw function.

Transformations that are shared by all bbob functions are shifts in the optimal
function value and a pseudo-random location of the optimum. In addition, several of
the non-separable functions are created by pseudo-random rotations of the search space
and many of the simpler functions are made less regular by non-linear transformations
in both search and objective space. See Hansen et al. (2009) for more details.

Though the potential set of instances for a given bbob function is unbounded (and
can be indexed by any positive integer), numerical benchmarking experiments are typ-
ically advised on 10–15 of those instances. Default instances in the COCO implementa-
tion might change from year to year to avoid overfitting. Note also that in some cases,
single instances might be more difficult/easier to solve than others. However, in gen-
eral, the differences in difficulty among instances of the same bbob function are smaller
than among different functions.

A.4 Normalization and Target Difficulties

All bbob functions are normalized in the sense that the given target function val-
ues/difficulties around the optimal function value are comparable over functions and
instances. Functions are provided with an f -offset such that the optimal function value
is, loosely speaking, a realization of a Cauchy distribution with median zero and in-
terquartile range 200. The optimal function value is furthermore rounded to two deci-
mal places and set to±1000 if its absolute value exceeds 1000 (Hansen et al., 2009). The
target difficulties are computed as a set of differences to the optimal function value.
The differences are equally spaced on the log scale and the same for all functions and
instances. Algorithms however are not allowed to use or exploit any of this information
(Hansen et al., 2016b).

28 Evolutionary Computation Volume x, Number x

https://github.com/numbbo/coco


Using SO-Functions in MOO Test Suites

B Proof of Lemma 1 (page 14)

Proof. For v, w ∈ Rn, we have

‖v + w‖2 =
∑
i

(vi + wi)
2 =

∑
i

(v2i + 2viwi + w2
i ) = ‖v‖2 + 2

∑
i

viwi + ‖w‖2

= ‖v‖2 + ‖w‖2 + 2〈v, w〉 = ‖v‖2 + ‖w‖2 + 2 cos(v, w)‖v‖‖w‖ ,

where ‖v‖‖w‖ cos(v, w) is defined as zero if ‖v‖‖w‖ = 0. If both vectors are non-zero,
we get ∥∥∥∥ v

‖v‖
+

w

‖w‖

∥∥∥∥2 = 1 + 1 + 2 cos(v/‖v‖, w/‖w‖)

= 2(1 + cos(v, w))

Evolutionary Computation Volume x, Number x 29


	Introduction
	Preliminaries
	Review of Existing Multiobjective Test Suites
	The Single-Objective bbob Functions
	The Proposed Biobjective Test Suites
	The bbob-biobj Test Suite
	Function Domain
	Normalization of Objectives
	Instances

	The bbob-biobj-ext Test Suite
	The bbob-biobj-ext Functions and Function Groups
	Normalization and Instances

	Reference Implementation

	Insights into Problem Properties
	Plots of Pareto Set and Front Approximations
	Investigations on Necessary Optimality Conditions
	Dominance-Based Plots
	Gradient-Based Plots
	Summary of Observed Problem Properties

	On Reporting Algorithm Performance
	Conclusions
	On the Single-objective bbob Functions
	Real-World Function Properties
	Balancing Problem Difficulties
	Function Instances
	Normalization and Target Difficulties

	Proof of Lemma 1 (page 14)

