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Abstract

Observing and quantifying information at the atomic scale
plays an essential role in assessing the structure–property
relationships in electrocatalysis. Particularly, when studying
supported nanoparticulate fuel cell and electrolyzer electro-
catalysts, resolving nanoparticles’ structural features at the
atomic scale and their evolution as a response to external
stimuli is of great relevance. Atomically resolved electron mi-
crographs of identical locations before and after induced
changes are a still vastly unexplored resource of quantifiable
data that can be used to elucidate structure–activity and–
stability relationships of studied materials. In this short review,
we highlight the recent approaches and opportunities in
processing electron microscopy images and the development
of their analysis algorithms enabling the acquirement of un-
precedented structural information, focusing on systems of
metallic nanoparticles.
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Introduction
Understanding true structureeproperty relationships of
electrocatalysts requires atomistic insights into their
structure and dynamics. A typical representative is a
proton exchange membrane fuel cell catalyst used for
oxygen reduction reaction, consisting of supported Pt or
Pt-alloy nanoparticles. Despite many efforts, compre-
hensive prediction of their properties remains an unre-
solved challenge [1e4].

Real-world batches of fuel cell electrocatalysts contain
unimaginably large numbers of Pt-alloy nanoparticles

that exhibit a wide variety of atomic-scale differences in
sizes, morphologies, compositions, and crystal struc-
tures. More interestingly, a diverse range of defects,
crystal facets, twin boundaries, concave sites, steps,
kinks, and other anomalies influence the nanoparticles’
catalytic behavior [5]. Additionally, as the locations of
atoms often deviate from perfect lattice positions, and as
the composition in the surface layers can differ from the
one in the core, the resulting strain also affects the
catalytic activity [6]. It is crucial to recognize that those
parameters can not only be interconnected but can also

change during operation and that therefore degradation
mechanisms can have a large impact on catalyst perfor-
mance [1,7e9]. Such degradation phenomena occur
during operation and are linked to multiple parameters
besides the electrocatalyst structure and composition,
such as potential, pH value, temperature, purity of fuel,
start-up/shut-down states and other operation condi-
tions [7]. Figure 1 depicts a schematic representation of
the complexity of real-world systems and the multi-
faceted approach required to take on the challenge of
explaining their structureeproperty relationships.

Advanced transmission electron microscopy (TEM)
characterization techniques can reveal the structure and
chemical state of nanoscale materials, shedding light on
the investigation of the structureeproperty relation-
ships. Particularly, aberration-corrected scanning trans-
mission electron microscopy (AC-STEM) can provide
very local and highly precise surface and near-surface
Current Opinion in Electrochemistry 2022, 35:101052
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Figure 1

Schematic representation of the assessment protocol of the dynamics of supported nanoparticulate Pt-M (M = Fe, Cu, Co, or Ni) systems. Various
structural and chemical features, as well as degradation mechanisms, lead to a highly complex system. Structure–property relationships are established
via a chain of steps bringing together various disciplines.

2 Innovative Methods in Electrochemistry
structural information [10,11]. In order to accurately
track structural changes, it is essential to gather addi-
tional data regarding the dynamic changes occurring
during a reaction instead of just still images of chosen
sample regions, since not all nanoparticles exhibit the
same changes despite being exposed to the presumably
same external stimuli [1]. The temporal evolution of
materials is often studied with in-situ methods; however,

a better time resolution in TEM means sacrificing
atomic spatial resolution besides enduring beam damage
effects [8,12,13].

Identical location STEM (IL-STEM) offers a bottom-
up approach to study such systems by imaging the
same location before and after electrochemically
induced changes to draw reliable conclusions about
restructuring events [12]. Atomically resolved identical
location images are a rich resource of quantitative in-
formation and can offer a more detailed perspective of
the studied phenomena [14], which calls for new

custom-made image analysis algorithms to explore and
take full advantage of it. The goal of data-oriented (S)
TEM is to analyze the data in a way that enables
objectively and accurately observing meaningful con-
nections within datasets [15]. Additionally, as (S)TEM
follows today’s trends in generating big data, computer
algorithms are not only a smart way to lower the amount
of time that would be needed for manual analysis but
might sometimes also be the only way to analyze all
available data [15]. Thus, automated image analysis
Current Opinion in Electrochemistry 2022, 35:101052
refers to sequences of image processing steps that are
performed consecutively and successfully without any
need for human intervention. This short review provides
a summary of recent efforts of the scientific community
to improve the quality and gain physically meaningful
knowledge from atomically resolved electron micro-
graphs of nanoparticulate electrocatalysts, focusing on
extracting information about their structureeproperty
relationships and the importance of implementing
these advances in an automated manner.

Image analysis algorithms
There exist multiple approaches for automatic image
processing, spanning from various classical algorithms to
novel tools involving artificial intelligence [10,15,16].
When dealing with atomically resolved STEM imaging,
the goal is to extract quantifiable information about the
imaged structure. Nonetheless, we must keep in mind
certain challenges that come with data analysis, such as

the interpretability, the level of confidence in the prior
knowledge, and the inherent characteristics of the
analyzed sample, in order to correctly describe the in-
formation from the observed location and connect it to
the information from other sources, which is averaged
across the entire specimen [10].

Since a higher signal-to-noise ratio (SNR) of an image
improves our ability to identify and retrieve relevant
information about the structure and composition of the
studied material, it is desirable to improve the quality of
www.sciencedirect.com
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TEM processing for structure-property relationship Kam�sek et al. 3
the image before starting any further analysis. This can
be effectively done by different processing approaches.

Conventional and machine learning algorithms are two
paths one can take when attempting to quantify infor-
mation from electron microscopy datasets. Despite a
multitude of analytical approaches to complete such a
task, they often lack the efficiency compared to deep

learning methods and only achieve a performance similar
to that of an experienced human operator [10]. The main
conceptual difference between conventional and ma-
chine learning approaches lies in how they approach
problem solving. To yield the desired output, conven-
tional algorithms require input data and rules that govern
relationships between the input and output data. On the
contrary, machine learning algorithms do not require
those rules, as their main task is to figure them out and
make predictions about new data based on the knowl-
edge gained from the training data. Taking this inherent

difference between the two groups of algorithms into
account, machine learning is often better suited for
solving problems where rules are difficult to accurately
establish, but gathering a sufficient amount of training
data does not pose a problem. Among the machine
learning algorithms, supervised methods work with
labeled data while unsupervised methods work with
unlabeled data. They are becoming easier for domain
experts to use due to a range of freely available collec-
tions of pre-trained models and archived datasets [16].

Since high-throughput advances in STEM have enabled
a rapid generation of vast datasets, containing more in-
formation than ever, it is our belief that applying com-
puter algorithms from other fields to electron
micrographs of electrocatalysts presents an opportunity
worth exploiting. Extracting a physically meaningful
signal that provides results about the microstructure and
crystallography of the investigated sample can be, in our
opinion, greatly augmented. By harnessing the power of
tools, currently less familiar to the electrochemistry
community, it is possible to establish the
structureeproperty relationships of electrocatalysts.

Finally, the advantage of developing a reliable algorithm
for a specific task and dataset lies in its possibility to
reuse it as many times as needed, saving precious
researcher time and energy.

As the number of different implementations of similar
algorithms is very high, we chose to focus on those that
could be the most beneficial for atomic-scale studies of
nanoparticulate electrocatalysts. Here, it is worthwhile
to mention that while not all chosen algorithms were
implemented for STEM imaging of individual nano-

particles, the ideas behind them are often (fully or
partially) transferrable, and possess great potential to be
successfully employed in alternative purposes.
www.sciencedirect.com
Improving image quality
Raw bright field or annular dark field STEM images
often suffer from noise and distortions, and more
particularly when images are acquired in an attempt to
limit the radiation dose to prevent subsequent beam
damage to the sample. Aberrations, statistical and
scanning noise, along with possible sample drift and
beam damage, are artifacts that lower the image quality
[16]. In atomically resolved micrographs of nano-
particles, it is not only important to reduce the impact
from the listed factors, but also to emphasize the signal

from the atomic columns of the investigated nano-
particle and reduce the signal from the other parts of the
image, coming either from the support or from other
nanoparticles in the vicinity that are not in focus and
thus at atomic resolution. However, successful denois-
ing and deblurring of atomically resolved images are
challenging and sometimes conventional algorithms
cannot offer acceptable results, impacting on subse-
quent analytical steps [17]. For very noisy STEM
images, where low-contrast details are difficult to
recognize with a bare eye, deep-learning-based methods

are often more robust than conventional methods such
as edge detection and thresholding [16]. This is espe-
cially important to take into account when the sample
thickness is not uniform, leading to low-contrast atomic
columns on nanoparticle edges, a common challenge
when imaging carbon-supported Pt-based nano-
particulate catalysts [17].

Denoising
Algorithms for improving the signal-to-noise ratio and
drift distortions in electron micrographs are plentiful
and have become extraordinarily successful even when
dealing with lower quality data [18,19]. A rigid regis-

tration approach was proposed for correcting a series of
low quality cryo-STEM images including possible unit
cell misalignment [20]. Similarly, scan artifacts in se-
quences of serially acquired STEM images can be
compensated via a non-rigid registration approach
[21,22], and via a Gaussian process-based regression
method to separate drift and random distortions [23].

While registration-based methods are immensely useful
when sequences of images are available, deep learning
comes in handy when analyzing individual noisy images.

Deep convolutional neural networks proved useful for
restoring low-dose images of metal clusters on lighter
support films [24] and an encoder-decoder-type deep
learning model was developed for noise reduction and
atomic column localization of different crystal struc-
tures, shown in Figure 2a [17].

Similarly, the concepts are transferrable to other types of
signal imaging, hence complementing the traditional
STEM imaging. A non-rigid registration approach
Current Opinion in Electrochemistry 2022, 35:101052
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Figure 2

a Original images with noise and background, denoised images with subtracted background and localized atomic columns performed by AtomSegNet on
synthetic images from the TEMImageNet library. Reproduced from Ref. [17]. Attribution 4.0 International (CC BY 4.0). b Original HAADF-STEM image of
a STO/Ge system (a) and the segmentation output (b). Scale bar = 5 nm. Reproduced from Ref. [34]. Attribution 4.0 International (CC BY 4.0). c Original
HAADF-STEM image of Mo–V-M-O material (a) and atomic columns, colored based on the defect type (yellow – single missing column, purple – two
adjoining missing columns, black – stacking fault) (b). Reproduced from Ref. [35]. Attribution 4.0 International (CC BY 4.0). d ADF-STEM image of a
AlMgSi precipitate in Al (a), and its εxx strain plot using geometric phase analysis (b). Reprinted from Ref. [36], copyright (2017) with permission from
Elsevier.

4 Innovative Methods in Electrochemistry
followed by principal component analysis was used to
denoise energy dispersive X-ray spectroscopy (EDS)
data, often acquired simultaneously with annular dark
field (ADF) STEM images [25]. Autoencoders, a type of
unsupervised neural network, were used together with a
classifier to denoise and classify electron energy loss

spectra [26]. Tensor singular value decomposition was
used to denoise a dataset comprised of EDS spectra and
atomically resolved 4D STEM images [27], the latter
being a large collection of full 2D diffraction patterns,
recorded at each pixel position of the probe [28]. A
frame averaging and Fourier filtration approach was used
in graphene liquid cell transmission electron microscopy
to subtract the graphene background and improve the
quality of serially acquired images [29].

Since the currently available denoising algorithms are

versatile and at the same time conveniently ready for
adaptation, they are of great value when analyzing
nanoparticle images because of the possible overlap of
the atomically resolved information with the rest of the
signal, and because of the presence of low-contrast col-
umns on the edges. Successfully holding all information
Current Opinion in Electrochemistry 2022, 35:101052
about the nanoparticle(s) under investigation is a step
towards reliable tracking of dynamic changes occurring
during a reaction.

Determining atomic column positions
Converting atomically resolved electron micrographs
into quantifiable information such as precise locations
of atomic columns is a necessary step in advanced

image analysis. Since catalytic reactions take place on
the nanoparticle surface, it is crucial to correctly
determine the positions of identified columns on the
nanoparticle edges. A golden standard in establishing
atomic column positions is by modelling the image with
2D Gaussian peaks [30]. Using a statistical parameter
estimation approach, atomic column locations were
determined also for images including light-element
atomic columns in the presence of heavier ones in
annular bright and dark field imaging [31] and for
images featuring single atoms [32]. Complementary

approaches to this task include utilizing an encoder-
decoder-type deep learning model [17] and an algo-
rithm based on structural similarity [33], both able to
surpass the 2D Gaussian fit method.
www.sciencedirect.com
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Extracting information from atomically resolved
electron micrographs
A precise determination of the observed structure by
converting atomically resolved images or movies into a
list of atomic coordinates or trajectories is a good starting
point for subsequent data analysis [37]. Structural in-
formation that can be learned from atomically resolved
images of nanoparticles includes crystallographic phase
and defect identification, strain analysis and 3D recon-
struction [1,15].

Extracting crystallographic information
Crystallographic analysis of nanoparticulate electro-

catalysts is often focused on investigating the presence
of different crystallographic phases in the sample, since
the presence of an intermetallic crystal structure is one
of the parameters influencing its catalytic properties
[1]. For instance, being able to, automatically determine
the mass ratio of ordered and disordered alloy in a
sample, would enable a more quantitative understand-
ing of this aspect of electrocatalysts’ structureeproperty
relationships. A machine learning approach exploring
different algorithms and a deep learning approach were
developed to segment high angle annular dark-field

(HAADF) STEM images into separate phases as shown
in Figure 2b [34,38]. Furthermore, a deep convolutional
neural network was trained to determine the Bravais
lattice symmetry in an image based on classifying 2D
fast Fourier transformations [39].

In a typical population of nanoparticles, different crystal
defects such as twin boundaries, stacking faults, impu-
rities and vacancies can be found, manifesting them-
selves in HAADF STEM images as local deviations in
the contrast and lattice periodicity. A number of studies

tackled the challenge of automatic defect detection,
including those utilizing a support vector machine as an
unsupervised machine learning method [40], geometric
graph theory as shown in Figure 2c [35], a weakly su-
pervised approach with a deep neural network [41], and
a convolutional neural network [42].

Strain analysis
For Pt-alloy nanoparticles, the formation of a coreeshell
structure, where the outermost atomic layers are richer
in Pt than the nanoparticle core, the resulting
compressive surface strain can improve the catalyst
performance. Understanding the strain dependence on
the distribution of atoms can be achieved by precisely

evaluating atomic column displacements on the nano-
particle surface and close to structural defects [1,6].

Displacement and strain analysis in atomically resolved
images can be performed by measuring shifts in indi-
vidual column positions and comparing the measured
positions with those of an ideal lattice to reveal facet
contraction and expansion [1,22,30,36]. Fourier-space
www.sciencedirect.com
geometric phase analysis as shown in Figure 2d [36],
a localised method where an effective lattice parameter
is determined for each atomic column based on its first
neighbors [43], and a method for determining local
strain by using multiple references with different lat-
tice symmetries [44] were all used as methods for
strain analysis.

Accessing 3D information
When imaging nanoparticles with STEM, it is important
to keep inmind that images are 2D representations of 3D

objects. Therefore, obtaining information in three di-
mensions is inherently more difficult, however under
certain conditions accessible [11]. As changes to the
nanoparticle structure and composition occur in 3D,
obtaining that information results in a more comprehen-
sive overview of the structureeproperty relationships.

Electron tomography is a powerful tool for exploring the
3D morphology and composition of materials, including
but not limited to studying crystal defects such as dis-
locations, steps, kinks, grain boundaries, chemical order,

and strain. Both experimental tomography methods and
reconstruction algorithms for small species investigation
are undergoing fast development and today offer
acquiring information also at the atomic scale [45,46].
Typically, a tilt series of projections is acquired and then
reconstructed into a 3D model. However, conventional
electron tomography sample holders do not always offer
a full tilt range of 180� with small tilt increments due to
the limited space inside the objective lens in a micro-
scope and the limited number of projection images that
can be taken before the electron beam damage may take

place [46].

Nonetheless, reconstructions can still be accurately and
promptly determined for tilt ranges of �75� [37,47]. To
minimize possible artifacts, arising during the recon-
struction of a large and compact assembly of metallic
nanoparticles, an improved reconstruction method was
proposed by acquiring and merging two tilt series [48].
Also, information from both real and reciprocal space was
used to determine a 3D reconstruction of objects from a
limited number of projections [49]. Retrieving the co-

ordinates of the corresponding atomic sites in 3D means
going one step further, as shown in Figure 3a, where
chemical ordering and grain boundaries in an alloyed
nanoparticle were accurately determined [50]. Like-
wise, atomic-scale 3D reconstruction and strain map-
ping was achieved for elemental nanocrystals, imaged
with graphene liquid cell transmission electron micro-
scopy, as shown in Figure 3b [29].

Thanks to modern algorithm development, a number of
studies successfully reconstructed the 3D model of an

object from only a few 2D projections. Since the image
contrast in HAADF STEM imaging is dependent on the
Current Opinion in Electrochemistry 2022, 35:101052
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Figure 3

a 3D representation of a FePt nanoparticle and grains of different phases making up the nanoparticle. Reprinted by permission from Springer Nature
Customer Service Centre GmbH: Springer Nature [50] , copyright 2017. b 3D density maps of reconstructed Pt nanocrystals, radial strain maps and their
slice representation. Scale bar = 1 nm. Reproduced from Ref. [29]. Attribution 4.0 International (CC BY 4.0). c ADF-STEM image of a Au nanorod, atom
counts for each individual atomic column, and 3D atomic resolution reconstructions along different viewing directions with colors corresponding to the
nearest-neighbor coordination of atoms. Reproduced from Ref. [54] with permission from the Royal Society of Chemistry.

6 Innovative Methods in Electrochemistry
composition and thickness of the studied material, pixel
intensities can be used to determine the composition
and count the number of atoms in an atomic column

[30,51]. Small differences in local image intensity
cannot be distinguished visually but play an important
role in measuring dynamic changes, which can be
studied also using a hidden Markov model, as shown for
Pt nanoparticles [52]. Furthermore, the atom counting
approach was combined with depth sectioning to
reconstruct the 3D morphology of nanoparticles [53],
while combining it with molecular dynamics algorithms
enabled a 3D nanoparticle reconstruction from a single
projection as shown in Figure 3c [54,55].

It is worth noting that there remain certain limitations
to atomic-level tomography. A limited amount of pro-
jections lowers the reconstruction reliability in the
Current Opinion in Electrochemistry 2022, 35:101052
missing wedge direction [48,49]. This can to some
extent be solved with compressive sensing by filling in
the missing data [16], however subtle variations in the

structure can still remain uncovered [49]. It was found
that the results are more accurate when the nano-
particle in question is isotropic and without any voids
[49,54]. Additionally, multiple scattering may affect
the quality of the reconstruction [49], especially on the
particle surface and when reconstructing larger parti-
cles [29]. Provided that the atomic columns in a
nanoparticle are made up of different chemical ele-
ments, this increases the number of free parameters
and makes the 3D reconstruction more complex,
however still achievable [29,50]. Once again, we note

that the presented algorithms are not limited to a
specific material, but are rather adjustable to diverse
nanoparticulate systems.
www.sciencedirect.com
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Studying structure–property relationships of
electrocatalysts
Applying previously discussed image analysis algorithms
to sets of identical location or in-situ images of nano-
particles, undergoing structural changes, is beneficial in
trying to explain the mechanisms affecting both catalyst
activity and stability since the atomic configuration of a
nanoparticle can evolve during operation [1]. This sec-
tion focuses on presenting several studies featuring
automated image processing to quantify the information
pertaining to nanoparticles’ structural characteristics or

their dynamic changes in various environments.

Atomic scale particle evolution and crystal phase analysis
for PtCo nanoparticles were performed by Hrnjic et al.
on images acquired by IL-STEM before and after
electrochemical activation as shown in Figure 4a [56].
With this study, the authors showed specifically which
facets of a particle suffered from dissolution and/or
redeposition. In another investigation by Xin et al.,
restructuring and strain evolution of PtCo nanoparticles
Figure 4

a Identical location images of a PtCo nanoparticle before and after electroche
nanoparticle on both images (b), and a density plot representing its evolution d
(CC BY 4.0). b 3D reconstructions of Pt nanoparticles at 300 �C in vacuum (a
surface facet (blue for {100} facets, pink for {110}, purple for {111} and gray for
2018 by the American Chemical Society. Further permissions, related to the m
3D coordination number maps of Pt nanocrystals (a), 2D coordination numbe
coordination numbers of all constituent atoms. Scale bar = 1 nm. Reprinted w

www.sciencedirect.com
were tracked with environmental TEM during their
reaction with oxygen and hydrogen gases [57]. Using
fast dynamic STEM combined with a denoising algo-
rithm, Henninen et al. revealed trends in the nucleation
of Pt clusters [58]. Finally, thermal motion and coales-
cence dynamics of Au nanoparticles were tracked using
graphene liquid cell electron microscopy in studies from
Kang et al. and Bae et al. [59,60]. The mentioned

studies took advantage of the quantifiable information,
available in 2D atomically resolved micrographs, and
associated it with the main processes driving nano-
particle dynamics. In such reports, image analysis algo-
rithms are used as an efficient and reliable way to
quantify the data, however, the interpretation remains
in the domain of a human expert.

Going a step further, a number of studies elucidated
atomic-scale restructuring in three dimensions. Atomic-
scale 3D transformations of Pt nanoparticles were stud-

ied by Altantzis et al. under the flow of selected gases to
observe the evolution of their faceted morphology as
mical activation (a), phase analysis of atomic columns comprising the
uring activation (c). Reproduced from Ref. [56]. Attribution 4.0 International
), 5% H2 in Ar (b, d), and O2 (c, e) with colors corresponding to the type of
higher index facets). Reproduced with permission from Ref. [61], copyright
aterial excerpted, should be directed to the American Chemical Society. c
r maps of surface atoms in spherical coordinates (b), and histograms of
ith permission from Ref. [68]. Copyright 2021 American Chemical Society.

Current Opinion in Electrochemistry 2022, 35:101052
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shown in Figure 4b [61]. Similarly, Liu et al. [62] and
Albrecht et al. [63] investigated 3D structural evolution
at high temperature for Au and Au/Pd nanoparticles to
evaluate their thermal stability. In another study, the
course of FePt nanoparticles’ early-stage nucleation was
studied by Zhou et al. [64]. In-situ tomographic studies
were done for investigating the oxidation mechanism and
hollow/porous structures of NieFe nanoparticles by Xia

et al. [65], for studying the structural heterogeneity
including defects and strains of Pt nanocrystals in solu-
tion by Kim et al. [66] and for studying the shape and
order evolution of PtCu nanoframes during heating by
Gong et al. [67]. Finally, Gong et al. created 3D maps of
surface atoms’ coordination numbers for Pt nanocrystals
to expose the link between local coordination structure
and catalytic performance as shown in Figure 4c [68] and
Lee et al. determined the 3D structure, the surface strain
map and the ORR activity map of a twinned Pt nano-
particle [69]. Including atomically resolved 3D informa-

tion enables a transition from identifying restructuring
events to directly establishing links to the local 3D
structure as well as providing an accurate structural
model for subsequent calculations.
Conclusions and outlook
Nowadays, we are fortunate enough to take advantage of
both advanced catalysis synthesis and advanced charac-
terization techniques that generate large amounts of
potentially valuable data. Our goal should be to extract as
much information out of these datasets as possible by
automated data analysis algorithms. The obtained infor-
mation should work hand-in-hand with theoretical
computational methods, such as kinetic Monte Carlo or
density functional theory, which will, in turn, provide the
necessary feedback for better elucidation of materials
properties. Among such computational methods, kinetic

Monte Carlo is, in our opinion, of especial value as it can
be employed to investigate the evolution of the atomic
structure using information, extracted from electron mi-
crographs as an initial condition for the simulation. If the
IL-STEM and kinetic Monte Carlo results match, this
can serve as an indication of which processes contribute
the most to dynamic structural changes. Understanding
the high complexity and interrelations between different
structural changes, such as dissolution and facet devel-
opment, can help substantially in explaining the
structureeproperty relationships of electrocatalysts.

An approach of particular interest is coupling atomically
resolved identical location and/or in-situ (S)TEM with
the development of novel 3D reconstruction techniques
and machine learning algorithms to identify changes in
morphology, chemical composition, strain, crystal and
electronic structure of electrocatalysts. Furthermore,
automated data analysis for large datasets from, for
example, 4D STEM is no longer an option, but a ne-
cessity, making such techniques an ideal playground for
Current Opinion in Electrochemistry 2022, 35:101052
using advanced image analysis including machine
learning algorithms to resolve functionalities of mate-
rials at the atomic level.

In conclusion, recent progress in advanced algorithms
for the extraction of information in electron micrographs
has led to new insights and brings a great opportunity for
breakthroughs in the field of electrocatalysis, where the

understanding of structureeproperty relationships is a
fundamental step for improving the materials design.
We believe that by combining domain expertise from
different fields spanning from materials science to data
science, a highway towards better electrocatalyst un-
derstanding and thus more effective development
is emerging.
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