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Abstract: Surface roughness is one of the key characteristics of machined components as it affects
the surface quality and, consequently, the lifetime of the components themselves. The most common
method of measuring the surface roughness is contact profilometry. Although this method is
still widely applied, it has several drawbacks, such as limited measurement speed, sensitivity to
vibrations, and requirement for precise positioning of the measured samples. In this paper, machine
vision, machine learning and evolutionary optimization algorithms are used to induce a model
for predicting the surface roughness of automotive components. Based on the attributes extracted
by a machine vision algorithm, a machine learning algorithm generates the roughness predictive
model. In addition, an evolutionary algorithm is used to tune the machine vision and machine
learning algorithm parameters in order to find the most accurate predictive model. The developed
methodology is comparable to the existing contact measurement method with respect to accuracy,
but advantageous in that it is capable of predicting the surface roughness online and in real time.

Keywords: quality control; roughness measurement; machine vision; machine learning; evolutionary
algorithm; parameter optimization

1. Introduction

Demands for increased productivity and product quality in highly competitive in-
dustries, such as the automotive industry, have necessitated the use of online systems
for inspecting the quality of massively produced parts. One of the quality measures that
is especially challenging for online examination is surface roughness of machined parts.
Surface roughness is defined as an amplitude value measuring the vertical heights of the
surface deviations from a reference line [1]. Inadequate surface roughness of machined
parts can significantly affect the functionality of a product and can lead to a premature
failure. Moreover, measurement of surface roughness in production can reduce machining
costs, since the machining parameters, such as machining speed and the period between
the changes of machining tools, can be appropriately chosen.

The most widely used method of surface roughness measuring is contact profilom-
etry. This method uses a stylus type device that correlates displacements induced by
surface irregularities to the surface roughness of the inspected specimen. The method
is standardized and has been widely used in industrial laboratories and manufacturing
industry [2]. The technology of contact profilometry is well developed and can provide
measurements of surface roughness within the accuracy of a micrometer. However, this
method has several drawbacks. Since the stylus tip must be brought into contact with
the measured specimen, the measured surface can be altered by scratches. Moreover, this
method is time-consuming and sensitive to vibrations, and therefore not suitable for online
measurements in high-volume production processes. More details about stylus-based
roughness measurements and their advantages and shortcomings can be found in [3].
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To overcome the drawbacks of contact methods, several non-contact methods, such
as optical profilometry, scanning electron microscopy, atomic force microscopy, and laser
scanning microscopy, have been developed. These methods can provide very accurate
measurements of surface roughness and are becoming increasingly popular, also in the
automotive industry [4]. However, the methods still require the preparation of adequate
samples, are sensitive to vibrations and the measuring apparatuses are expensive. Con-
sequently, none of these methods can be used for online and real-time surface roughness
measurements.

This paper presents the development of a machine vision system for roughness evalu-
ation of graphite commutator mounting holes. The graphite commutators are components
of electric motors used in automotive fuel pumps. The final phase in the graphite com-
mutator production is the precise turning of the commutator mounting hole to achieve an
adequate hole inner diameter and surface roughness. Both characteristics, the diameter
and roughness, are important for reliable operation of a fuel pump. Several online meth-
ods for measuring the inner diameter of holes are applicable; however, online roughness
measurement of the hole surface roughness represents a major challenge.

Specifically, the work proposes combining machine vision (MV), machine learning
(ML) and optimization methods to build a predictive model capable of determining the
mounting hole roughness. The MV algorithm extracts the attributes from the commutator
mounting hole surface that are used by ML to build a roughness predictive model. However,
MV and ML methods depend on numerous parameters that notably affect the outcome
and are hard to set to their optimum values. To overcome this limitation, an optimization
algorithm is used to set the MV and ML algorithm parameters.

The paper is further organized as follows. Section 2 presents the related work in
MV-based systems for measurement of surface roughness. The design and development of
the online surface roughness measurement system are presented in Section 3. Section 4
describes the optimization methodology for automated tuning of MV and ML algorithm
parameters in the development process. Section 5 describes the experimental setup and
validation procedure used in the development. The experimental results are discussed in
Section 6. Finally, Section 7 concludes the paper with a summary of findings and ideas for
future work.

2. Related Work

The initial experiment with a setup similar to the one presented in this paper, combin-
ing MV, ML and optimization methods was carried out in [5]. The differential evolution
(DE) [6] algorithm was used to search for optimal MV parameter settings, such as binary
threshold and filter parameter values. Based on the attributes extracted from 300 images of
the commutator mounting holes, the ML algorithm was employed to build classification
and regression predictive models. The study found that in comparison to the domain
expert this methodology always finds better MV parameter settings. In the classification
task, the methodology was able to find a classification model of 100% accuracy in very few
examined generations, while the regression task proved to be more demanding.

Much research and development has been carried out in the field of prediction and
control of surface roughness using MV. Regarding the way of calculating the roughness
parameters, these methods can be divided into analytical methods [7–11], where parame-
ters extracted from images are correlated to the measured roughness by a mathematical
function, and methods engaging artificial intelligence (AI) [12–19] to build the roughness
predictive models.

Shahabi and Ratnam [7] studied vision-based roughness measurements in a turning
process. They used back-light illumination to extract the line profiles of turned workpieces.
By varying the parameters on the lathe, such as the turning speed and feed rate, they
produced workpieces with various roughness values. They showed that after applying the
smoothing filter and performing linear regression data fitting, the extracted edge profile
of the workpiece can be directly correlated to the average surface roughness parameter
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Ra. The maximum difference of Ra between the MV-based estimate and the roughness
measured by the conventional stylus method was 10%.

Jeyapoovan and Murugan [8] developed an MV-based roughness measurement
method using Euclidean and Hamming distances of the surface features to determine
the value of the roughness parameter Ra. The Euclidean distance is a distance between two
points in a plane or space, while the Hamming distance represents a distance between two
items by the number of mismatches among their pairs of variables. These two parameters
were then compared to the values of the parameters in the database of specimen images
that were measured using a stylus instrument. The authors observed that the values of
the Euclidean and Hamming distances were very low for surfaces with similar surface
roughness values. Therefore, the roughness values can be successfully classified using
these two parameters.

Nithyanantham and Suresh [9] demonstrated that using the optical surface roughness
parameter Ga, the algebraic average of an image’s gray levels results in a strong correlation
between Ga and Ra. After applying a geometric search technique that enhanced the edges
detected in the images, the correlation coefficient between the parameters Ga and Ra was
significantly improved and was higher than 0.92.

Jibin and Arunachalam [10] studied the illumination compensation techniques for
surface roughness evaluation using MV. The acquired images of ground samples machined
at different parameter values were used for illumination compensation utilizing image
filtration techniques. Based on these images, the authors calculated the correlation between
the extracted surface texture parameters and the reference measurements carried out by
an optical profiler. The results of the study showed that by using additional lightning,
filtration techniques and statistical methods, the extracted texture parameters are highly
correlated to the measured roughness values. Therefore, such a system can be an integral
part of any grinding system to inspect the machined components.

Patel and Kiran [11] used the correlation approach to calculate the roughness parame-
ters for end-milled parts. The authors used the contrast, energy, entropy and homogeneity
features of the captured images to calculate the correlation with the reference measurements
of the roughness parameter Ra obtained by a surface profilometer. The authors gained the
best results using the correlation of image energy feature and roughness parameter Ra,
where the maximum relative error was 8%.

More advanced methodologies for vision-based roughness measurements incorpo-
rate AI methods. These methods are able to find more complex and consequently more
accurate models for the evaluation of surface roughness. Fadare and Oni [12] presented a
methodology that uses an artificial neural network (ANN) to predict the roughness values.
In contrast to the previously described analytical methods, several features are extracted
from images using the fast Fourier transform (FFT) analysis. Based on these features and
the tool wear index (TWI), a predictive ANN model was trained. The output of the ANN
model was the optical surface roughness parameter Ga, which was then correlated with
the Ra parameter value measured on the reference pieces. The authors reported that the
proposed MV system using the ANN model has acceptable accuracy for online monitoring
of surface roughness.

Instead of an ANN, Ravikumar et al. [13] used the algorithm for induction of decision
trees called C4.5. The classification model was built based on the histogram features ex-
tracted from sample images. Since the decision tree can only classify the given instances
into different quality classes, the authors determined three quality classes the instances be-
longed to. These classes were defined as acceptable workpieces, workpieces with scratches
and workpieces with major defects. The result of the classification model was validated
and compared to the manually determined classes. The misclassification of the decision
tree model was estimated to 8.6%.

Samtaş [14] used an ANN to train a predictive model for surface roughness estimation
after the face milling operation. The reference workpieces were firstly measured by the
surface roughness profilometer. Afterwards, images of the reference workpieces were
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captured and processed by an MV algorithm. Next, each image was converted to a binary
image and represented by a matrix of “0” and “1”, and further transformed to a single-
dimensional array which had a length of the number of pixels in the image. The ANN
was then trained to match the arrays of the measured workpieces with the arrays of the
reference workpieces in order to predict the roughness values. The author reported to
achieve the confidence of the roughness prediction above 99%.

Elangovan et al. [15] studied the prediction of surface roughness using vibration
signals in a turning process. The data for roughness prediction consisted of the cutting
parameters, the flank wear and the captured vibration signal parameters. Based on these
data and using a ML regression algorithm, a model for predicting the roughness parameter
Ra was built. Several combinations of input attributes were studied; however, the best
results were gained after applying the principal component analysis (PCA) [20]. The
reported root mean square error (RMSE) was about 0.35.

In a paper by Simunovic et al. [16], an adaptive neuro-fuzzy inference system (ANFIS)
for roughness assessment was proposed. In the experiment, the input variables were
represented by the face milling machining parameters: spindle speed, feed per tooth, and
depth of cut. In addition, for every set of the input variables the roughness parameter
Ra was measured. Based on the attributes extracted from the captured grayscale images,
fuzzy rules mapping the grayscale image attributes to roughness parameter values were
generated. The authors reported high accuracy in determining the roughness value, which
is reflected in a low normalized root mean square error (NRMSE) value of 6.98%.

An alternative method for roughness measurement was presented by Yi et al. [17].
The authors proposed a visual method where light from the red and green color block
is projected at a predetermined angle to the grinding workpiece surface. From the color
difference (CD), i.e., the difference in the values of the red and green components of each
point, the authors calculated the correlation between the CD value and the roughness
parameter Ra. For this purpose, they used a support vector machine (SVM) [21]. The re-
ported accuracy calculated as a relative difference between the measured and the predicted
roughness values was over 90%.

Morales Tamayo et al. [18] used an ANN model to predict the steel surface roughness
in the dry turning process of stainless steel. The researchers produced the specimens by
varying the cutting parameters during the turning process. These parameters were then
used as an input for the ANN model to predict the surface roughness parameter Ra. The
results were analyzed by calculating the mean absolute error (MAE) and R2 value between
the reference and predicted values of the Ra parameter. The minimum reported MAE was
2.87% and the maximum achieved R2 value 99%. Based on these results, the authors claim
that this methodology can be used to predict the surface roughness in dry turning of steel.

Recently, Lin et al. [19] presented surface roughness modeling for machined parts
considering the cutting parameters and machining vibration in the end-milling process.
Predictive models were developed using multiple regression analysis and ANN modeling.
In addition to the cutting parameters, the authors also measured the machining vibration
and used it as an input parameter for the ANN model. Utilizing the built ANN model,
they predicted the surface roughness parameter Ra and compared it to the reference
measurements. The comparison between the prediction performance of the multiple
regression and ANN models revealed that the latter achieved higher prediction accuracy.
Based on the RMSE and mean absolute percentage error (MAPE) values, the authors
state that the ANN predictive model can serve as base for an on-line surface roughness
measurement system.

According to the reviewed literature, we can state that there is no unique method
suitable for online MV-based roughness measurements. In contrast to our application,
where the roughness of the inner hole surface has to be measured, in most previous studies,
roughness was measured on a flat surface or at the outer diameter of workpieces. The inner
diameter of a commutator mounting hole amounts to only a few millimeters, what makes
our application especially challenging.
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As already mentioned, we initially treated the roughness determination problem as
a classification task which was to distinguish acceptable and unacceptable commutators,
and as a regression task where the roughness parameter Rz was predicted [5]. Since the
regression task has proved to be much more demanding than the classification task, this
work further extends the scope of the research for predicting the Rz parameter value.

3. Online Surface Roughness Measurement System

The proposed system for online prediction of the commutator mounting hole rough-
ness operates in the following steps (see Figure 1):

• Online capturing of images;
• Preprocessing of images;
• Extraction of attributes from the preprocessed images;
• Prediction of commutator mounting hole roughness based on the ML model.

Image

preprocessing

Attribute

extraction

Rz parameter

prediction

Online

image

capturing

Camera and
illumination
settings

Preprocessing
MV settings MV settings ML model

Manual setup Automated setup

Figure 1. Steps of predicting the mounting hole roughness.

A preparatory step in designing the online roughness prediction system was the
selection of representative specimens. In addition, the roughness value of each specimen
was measured to obtain the reference roughness values. These were later used to assess
the prediction accuracy. A detailed description of each step of the proposed approach is
presented in Sections 3.1–3.4.

The parameter settings of image capturing and image preprocessing steps were deter-
mined by a domain expert, based on a trial-and-error method. The criterion in the online
image capturing step was to find the camera-illumination setup, where the features of the
commutator mounting hole surface were emphasized the most. In the image preprocessing
step, the hole surface region was extracted from the original captured image. The MV oper-
ators were selected in a way that the MV algorithm always extracts the most informative
region, regardless of its absolute position in the original image.

Extraction of attributes from an image and roughness prediction based on the extracted
attributes are the crucial steps in designing the online roughness measurement system. The
inputs are the MV algorithm settings and the ML model obtained during the optimization
process in the development phase of the proposed system. In order to obtain the most
appropriate MV and ML algorithm settings, the optimization procedure presented in
Section 4 was carried out.

3.1. Data Preparation

The design of the online system for roughness measurements started with selecting
representative samples and performing the reference roughness measurements. Surface
roughness can be determined by several parameters that are categorized into amplitude
parameters, spacing parameters, and hybrid parameters [22]. The commutator concerned
in this study has a hole roughness defined by the parameter Rz; hence, this parameter
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was used as a roughness measure in the experiments. Rz represents the height difference
between the maximum peak height and the maximum valley depth of a line profile on a
predetermined sampling length.

The samples were selected from a recalled batch of commutators with inadequate hole
roughness values. The dataset contained 700 instances, which is significantly higher than
the dataset in our initial study [5]. The dataset was split into the training set (630 instances)
and hold-out set (70 instances) used for the result evaluation. The hold-out set was selected
manually and represented 10% of all available instances. To achieve a representative
distribution of instances with regard to the roughness parameter Rz, all 700 instances were
sorted by the Rz parameter value in ascending order and every tenth instance was moved
to the hold-out set (systematic sampling).

The reference roughness measurements were performed by the contact profilometer
Mitutoyo Surftest SJ-210. To reduce the measurement error originating from the previously
described stylus sensitivity, the reference Rz values were calculated as an average of
three measurements. Commutators with the roughness parameter value Rz ≤ 16 µm are
considered acceptable, while the ones with Rz > 16 µm unacceptable. The distribution of
instances with regard to the Rz value is shown in Figure 2.
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Figure 2. Distribution of instances with respect to the value of Rz.

3.2. Image Capturing and Preprocessing

The inner diameter of the commutator mounting hole concerned in this study is
only 6 mm. This fact represented a major challenge in capturing the hole surface images.
However, after the validation of several camera-illumination setups, the setup shown in
Figure 3 was established.

Grayscale images of all 700 commutator mounting holes were manually captured and
labeled with the corresponding reference roughness values. The 8-bit grayscale image of the
mounting hole surface has a resolution of 2592× 1944 pixels. However, to be able to extract
the attributes that are correlated with the Rz roughness value, additional preprocessing of
the images has to be performed. The purpose of preprocessing is to extract only the portion
of the image where the hole surface treatment is clearly visible. The sequence of the MV
operators used in the image preprocessing step is shown in Figure 4. The operators, their
parameter settings and their sequence in the preprocessing step were determined based on
the expert knowledge, gained in the development of similar MV applications.
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Camera
Scheimpflug

lens

Commutator

mounting hole

Back-light

illumination

Figure 3. Camera-illumination setup.
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Threshold

applied

(user-defined
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Computing

image

centroid

Coordinate

system 

positioning
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(cropped 

image)

(700 x 300 px)

Figure 4. Image preprocessing algorithm.

The initial step in preprocessing the images is binarization, where a binary threshold
is applied to the 256-grayscale image. In the next step, the resulting binary image is used
to calculate the image intensity centroid. Since the camera-illumination setup is designed
in such a way that the hole surface image contains the highest proportion of high-intensity
pixels, the calculated coordinates of intensity centroid are always positioned at about the
same location of the mounting hole, regardless of its absolute position in the image. The
coordinate system for precise positioning of an image mask is then applied to the calculated
centroid position. Finally, the extraction mask positioned at the coordinate system origin
is applied to the image, and the region of the mask size (700× 300 pixels), i.e., the region
of interest (ROI), is extracted from the original grayscale image. An example of the image
with marked and extracted ROI can be seen in Figure 5.

3.3. Attribute Extraction

The attribute extraction algorithm consists of four image operators that require four
parameters to be set. Similarly as in the image preprocessing, the operators and their
sequence were determined manually, based on the expert knowledge and experience. The
operators and their sequence in the attribute extraction algorithm are outlined in Figure 6.
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Figure 5. Captured image with marked ROI (top) and extracted part of the image (bottom).

Image FFT

computation 

and frequency

truncation

Surface line 

profile

measurements

Binary

threshold

(Niblack

algorithm)

Image

smoothing

filter

(box filter)

Extracted

attributes

Possible values

Filter size X 
[1-200]

Possible values

Filt. size X [1-25]
Filt. size Y [1-25]

Possible values

Threshold
value [0-255]

DE solution vector (MV settings)

Figure 6. The attribute extraction algorithm.

First, a box filter with a varying kernel size {1, 2, . . . , 200} is applied to the image. Due
to the inhomogeneities of the thermoset material used in commutator body manufacturing,
some “salt-and-pepper” noise is present in the image. The box filter reduces this noise and
emphasizes the features describing the mounting hole roughness. Next, the FFT filtering is
applied, truncating a certain portion of high frequencies and thus additionally emphasizing
the features that result from the machine treatment of the hole. The FFT filter enables to set
the filter kernel size in both X and Y directions in the image, in the range of {1, 2, . . . , 25}.
Afterwarsd, line profile measurements analog to the contact profilometer measurements
are performed on the grayscale image and the image attributes are extracted. An additional
set of attributes is extracted after applying the Niblack binarization algorithm [23]. The
threshold of the Niblack algorithm is set in the range of {1, 2, . . . , 255} and outputs a binary
image consisting of the stripes representing the “peaks” and “valleys” on the commutator
hole surface (see Figure 6).
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In total, 24 numerical attributes describing the properties of the commutator mounting
hole surface were extracted from each image. Specifically, 20 attributes were extracted
from the grayscale images and four from the binary images. The grayscale attributes were
describing the highest and the lowest grayscale value of a pixel in a selected line profile,
the number of grayscale peaks and valleys along the line profile, and the mean grayscale
value of all the peaks and valleys. In addition, four attributes representing the roughness
parameter estimates were calculated from the grayscale line profile. These were Rt, Ra, and
Rz (ISO and DIN variants). Here, Rt (maximum profile height) is determined as

Rt = rmax − rmin, (1)

where rmax is the highest grayscale value representing the highest peak and rmin the lowest
grayscale value representing the lowest valley. Ra (arithmetic mean of profile values) is
calculated as

Ra =
1
n

n

∑
1

ri, (2)

where n is the number of values in the line profile and ri the i-th value in the profile. RISO
z

is obtained as

RISO
z =

1
5

5

∑
j=1

(rmax
j − rmin

j ), (3)

where rmax
j and rmin

j represent the highest peak and the lowest valley in the j-th profile,

respectively. Similarly, RDIN
z is determined as

RDIN
z =

1
N

N

∑
j=1

(rmax
j − rmin

j ), (4)

where N is the number of considered profiles. Details on these roughness parameters can
be found in [3].

Moreover, the maximum, the minimum and the average peak and valley grayscale
values were calculated. Lastly, two additional grayscale attributes, the maximum value of
a grayscale image signal and its corresponding index, were extracted by the FFT algorithm.
Finally, the four attributes extracted from the binary images were the percentage of pixels
representing the peaks, the percentage of pixels representing the valleys, and the average
peak and valley width in the image.

3.4. Roughness Prediction

The task in this research was to predict the value of the roughness parameter Rz
considering the attributes extracted from the images. An MV algorithm with given settings
(Figure 6) was applied to the commutator mounting hole images to create a dataset of
attributes. In the roughness prediction step, the ML predictive model was applied to the
extracted attributes dataset, and the value of the roughness parameter Rz is predicted. For
Rz prediction, algorithms for building regression trees and ensembles of regression trees
were used. The reason for using the regression trees was in that they can be interpreted and
their implementation in the online roughness measurement system is not overly complex.

Besides the MV parameter settings, the ML parameter settings influence the ML
prediction accuracy too. In order to find suitable MV and ML algorithm settings, the
optimization procedure presented in Section 4 was applied. The goal of this procedure was
to find the ML model with the highest prediction accuracy.

The chosen evaluation metric was the root relative squared error (RRSE), which has
already been used in [5]. It measures the error of the induced ML model in comparison
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to the error of a simple predictor which ignores the predictions and always outputs the
average of the actual values. It is defined as

RRSE =

√
∑n

i=1(pi − ai)2

∑n
i=1(ai − a)2 (5)

where n is the number of instances, pi the predicted value of i-th instance, ai the actual
value of i-th instance, and a the average actual value. The final results of the experiments
were additionally assessed with respect to the mean absolute error

MAE =
1
n

n

∑
i=1
|pi − ai| (6)

that is informative for practical considerations as it is expressed in µm.

4. Optimization of Algorithm Parameters

In contrast to manual search for suitable MV and ML algorithm parameter settings,
the task can be formulated as an optimization problem where the goal is to find the MV
and ML algorithm settings that minimize the roughness prediction error. The optimization
procedure that produces the most accurate predictive model is shown in Figure 7.

Image
preprocessing

Set of original
images

Extracted image
hole surface
region

Initialize
optimization
algorithm

MV and ML
settings

Apply MV
algorithm

Extracted
attributes

ML model and
model error

no

yes

Apply ML
algorithm

Propose new
MV and ML
settings

Stop optimization

Best found Rz
predictive model,
MV and ML
settings

Stopping
criterion
met?

Figure 7. Optimization procedure that searches for the best MV and ML algorithm settings and
outputs the best Rz predictive model.
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The input to the optimization procedure are images of the commutator mounting
hole surfaces. First, the images are preprocessed to extract the part of the image where
the mounting hole is located. During the first run of the optimization procedure, the
initial MV and ML algorithm settings are set by the optimization algorithm. Based on
these settings, the MV algorithm extracts the attributes from the images and creates an
attribute file. The number of instances in the file corresponds to the number of input images.
Next, the attribute file together with the previously initialized ML settings is passed to the
ML algorithm. The output of the ML algorithm is a roughness predictive model and its
objective function value, that is the RRSE prediction error. While the stopping criterion
is not met, the optimization algorithm keeps generating new populations of solutions.
The procedure of generating a new population depends on the employed optimization
algorithm. In our case, solutions represent the MV and ML parameter settings, which
are passed to the MV and ML algorithms and are in the next iteration evaluated by the
optimization algorithm. The optimization procedure stops when a predefined number
of solution evaluations is completed. The output of the optimization procedure is the
best found roughness predictive model with the corresponding MV and ML algorithm
parameter settings.

5. Experimental Setup and Validation Procedure
5.1. Setup

The software environment used in the experiments consisted of MV algorithms for
image preprocessing and attribute extraction, the open-source data mining tool Weka [24],
and the optimization algorithm jDE [25]. The components were integrated through an
interface written in the C++ programming language.

The MV algorithms were implemented using the Open Computer Vision (OpenCV)
library [26] and utilizing the CUDA parallel computing platform and programming mod-
ule [27]. CUDA supports the use of graphical processing units (GPUs) for accelerated
algorithm execution.

Weka was selected as a data mining tool since it is easy to call from the C++ inter-
face. Two regression algorithms available in Weka were used to generate the roughness
predictive models:

• M5P [28] for building regression trees, and
• RandomForest (RF) [29] for constructing forests of random trees.

Both algorithms involve various parameters that influence the training of predictive
models and, consequently, the predictive model accuracy. In this study, the ML algorithm
parameters were subject to an automated optimization procedure and, therefore, the best
ML parameter values were found by the optimization algorithm.

The following parameters of the M5P algorithm and their values were considered in
the optimization procedure:

• M, the minimum number of instances per leaf in the tree, {1, 2, . . . , 20};
• N, use of tree pruning, {true, f alse};
• U, use of smoothing in predictions, {true, f alse}.

The parameters and their values for the RF algorithm were as follows:

• Depth, the maximum depth of the tree, {1, 2, . . . , 150};
• K, the number of attributes to randomly investigate, {1, 2, . . . , 25};
• I, the number of iterations, {20, 21, . . . , 200};
• B, randomly breaking the ties when several attributes are equally good, {true, f alse}.

The optimization algorithm jDE was used to search the MV and ML parameter decision
spaces. jDE is a variant of differential evolution (DE) [6], where only the population size
and the stopping condition need to be set manually, while the differential weight and the
crossover rate are set through self-adaptation [25]. In all the experiments, the population
size was set to 50 and 100 generations were examined, resulting in 5000 evaluated solutions
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per optimization run. The population size and the number of generations were determined
empirically by monitoring the solution improvement over generations.

The decision space size in the case of optimizing the MV and M5P algorithm param-
eters was 2.6 · 109 (number of possible MV and ML algorithm parameter settings, which
is equal to the number of possible values multiplied over all parameters). In the case of
optimizing the MV and RF algorithm parameters, it was even larger, i.e., 4.3 · 1013.

5.2. Validation Procedure

To build the most accurate roughness predictive model, the optimization was per-
formed over the MV parameters, and the M5P and RF algorithm parameters. The optimiza-
tion procedure was run ten times for each ML algorithm. Based on the extracted dataset of
attributes, for each solution, namely ML and MV parameter settings, a regression predictive
model was built. The prediction error, i.e., the RRSE value, of each built predictive model
was calculated using 10-fold cross-validation (CV). This error was used as the predictive
model accuracy estimate and was the optimization objective to be minimized. In Figure 8,
the RRSE values averaged over ten optimization runs are denoted with suffix “OPT”. The
error during the optimization runs could also be assessed using the hold-out set, but as
shown in [30], in general, minimizing the error estimated with single CV also minimizes
other error estimates.

R
R

S
E

 [
%

]

Generations

M5P-OPT
M5P-EXP

RF-OPT
RF-EXP

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 0  20  40  60  80  100

Figure 8. Roughness prediction error (RRSE) estimates for regression trees, random forests and the
expert-defined setting. Error estimates for the optimized regression trees and random forests are
averaged over ten runs and marked with suffix “OPT”. Error estimates for the expert defined setting
are marked with “EXP”. For details see Section 5.2.

After each run of the optimization procedure, the accuracy of the best found predictive
model was assessed using the hold-out set. In addition, the same RRSE assessment was
performed for the M5P and RF predictive models built using the expert-defined MV
settings. In this case, the expert settings were defined just for the MV parameters, while the
parameters of the ML algorithms were set to their default values. Since a single predictive
model is constructed in this way, the related result in Figure 8 is represented by a straight
line and marked with the suffix “EXP”.

6. Results and Discussion

Observing the progress of optimization in terms of RRSE over generations for different
algorithms and setups shown in Figure 8, one can draw several conclusions on the resulting
predictive models and their accuracy.
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First, the manual setup of the MV algorithm parameters does not result in optimal
parameter settings. Comparison of the final RRSE values for the manual and optimized
settings shows a major difference in the accuracy of the roughness predictive models.
The results clearly show that the optimization of the MV parameter settings increases the
prediction accuracy.

Next, using different ML algorithms results in predictive models of quite different
prediction accuracy, i.e., average RRSE 28.2% for M5P and 25.9% for RF. Recall that the
expert parameter settings of the MV algorithm in these runs were kept constant and the
ML algorithm parameters were set to their default values. Given the fact that the default
values of ML algorithm parameters are not optimized for a specific ML task, it can be
expected that the optimization of the ML algorithm parameters improves the accuracy of
the predictive model.

Finally, the comparison of the RRSE values averaged over the optimization runs for
the M5P and RF algorithms shows that RF achieves better prediction results. In these runs,
both the MV and ML algorithm parameters are subject to optimization. As a result, the
average RRSE for M5P is 22.9% and for RF 22.4%.

Table 1 shows the comparison of the predictive models validation results between the
expert and optimized MV parameters settings. The models were validated by 10-fold CV
and by the hold-out set, and averaged over ten runs of each algorithm. The best average
prediction accuracy was achieved by the “RF-OPT” algorithm. However, based on the
comparison of the RRSE estimates for each ML algorithm, we can observe that the hold-out
set validation always yields lower RRSE value than the 10-fold CV. This may be due to the
performed systematic sampling of the instances in the hold-out set and relatively small
size of the hold-out set (70 instances). The related MAE values were proportional to the
RRSE results.

Table 1. Prediction error estimates.

Algorithm
10-Fold CV Hold-Out Set

RRSE [%] MAE [µm] RRSE [%] MAE [µm]

M5P-EXP 28.2 0.82 26.1 0.84
RF-EXP 25.9 0.80 23.9 0.83
M5P-OPT 22.9 0.74 22.5 0.71
RF-OPT 22.4 0.71 21.9 0.70

To better understand the difference between the expert-defined MV settings and MV
settings found by the optimization algorithm, we compared the MV algorithm output
images. The differences between the original image and the images processed using
the expert-defined and the jDE-optimized MV parameter settings are shown in Figure 9.
The images processed using the expert-defined and the jDE-optimized MV settings are
in comparison to the original image filtered and smoothed. They are very similar from
the human eye perspective. However, based on the differences in the output image, a
predictive model with a substantially better prediction accuracy is built in the latter case.
This indicates that even small differences in image preprocessing arising from different
MV parameter settings can result in improved prediction accuracy.

In addition, we analyzed the most informative attributes appearing in the predictive
models. The analysis was performed in Weka [24] for the M5P and RF algorithms. The
most informative attributes were always selected from the grayscale image attributes
mostly describing the geometrical properties of the commutator mounting hole. These
properties result from the final treatment of the commutator mounting hole. Regardless
of the used ML algorithm, the five most frequent attributes were the number of detected
valleys in the image, the number of detected peaks in the image, the lowest grayscale
value of a pixel in the valley, and the minimum and the average valley width. Recall that
the roughness parameter Rz, which we are trying to predict, represents the maximum
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difference between the peak height and the valley depth along the measured line profile.
Based on this knowledge, the connection between the geometrical properties extracted
from the image and the Rz parameter can be interpreted. However, other attributes were
also used to build the predictive models, but their selection varied depending on the used
algorithm and specific run.

Figure 9. Comparison of the processed images using the expert and the optimized settings: the origi-
nal extracted image (top), the image processed with expert-defined MV parameter settings (center),
and the image processed with MV and ML parameters set by the optimization algorithm (bottom).

To verify the prediction results of the M5P and RF algorithms using the optimized
settings, the best model found by each algorithm was identified and applied to predict
the roughness of all 700 instances. This was done separately for the training set and
the hold-out set. The results of prediction for the two learning algorithms are shown in
Figures 10 and 11, respectively.

The results of the M5P regression tree show that the accuracies on the training set and
the hold-out set are similar. The estimated RRSE of the best regression tree found on the
training set was 21.2%, while the RSSE achieved on the hold-out set was 22.5%. The MAE
of this predictive model assessed on the hold-out set was 0.71 µm, which is an acceptable
result for practical application.
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Figure 10. Comparison of the measured and predicted values of Rz for the training and hold-out set,
using the best found regression tree model.
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Figure 11. Comparison of the measured and predicted values of Rz for the training and hold-out sets,
using the best found random forest model.

Comparison of the prediction accuracy of the M5P and RF models shows that the
spread of prediction error is much lower in the case of RF. The best found RF model has the
RRSE measured on the training set equal to 8.6%, while the estimated RRSE of the same
model on the hold-out set is 22.1%. The MAE of this model assessed on the hold-out set is
0.70 µm.

In addition, we compared the accuracy of the best found predictive model and the
accuracy of the existing contact method. Recall that the reference value of the roughness
parameter Rz was calculated as an average of three measurements performed with a contact
profilometer. The MAE of these measurements was calculated as a difference between a
randomly selected one of the three measurements and the average value of these three
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measurements. The resulting value was 0.60 µm. The MAE of the best RF model was
0.70 µm, which is comparable to the accuracy of the contact measurements. In addition,
it was confirmed by a customer that the method is appropriate to perform the statistical
process control (SPC) in the commutator production.

The proposed MV-based roughness measurement method has, in comparison to the
existing contact method, several advantages. Performing a single measurement with a
contact profilometer takes at least 10 seconds, while a complete MV-based measurement,
which consists of capturing the image, extracting the attributes and predicting the rough-
ness value, is performed in approximately one second. Since the MV-based method is very
efficient and enables contactless measurements, it is suitable for online implementation. In
addition, if the method is used in SPC, it enables to perform a higher number of roughness
measurements per batch, resulting in a higher reliability of SPC.

7. Conclusions

This paper presents a novel method of measuring the surface roughness of specific
machined parts for the automotive industry. The method is based on the MV quality
control that enables online and real-time roughness measurements. In addition to MV, the
methodology combines ML and evolutionary optimization to build an accurate model
for predicting the Rz roughness parameter. The evolutionary optimization algorithm
searches for appropriate MV and ML parameter settings to produce a predictive model of
acceptable accuracy.

During the development of the MV-based roughness measurement system, two ML
algorithms were tested: an algorithm for building the regression trees and a random forest
algorithm. The random forest algorithm proved to be more repeatable and accurate on
average than the regression tree algorithm; however, the best solutions found by both algo-
rithms were comparable. During the MV and ML parameter optimization, the prediction
error was assessed by 10-fold cross-validation. After the optimization, the accuracy of
the final predictive models was tested on a hold-out set of previously unseen instances.
The validation showed that the found predictive models achieved comparable accuracy
on training and hold-out datasets. In addition, it was confirmed, that the optimization
methodology is beneficial in setting of the MV parameters for reliable quality control.

The best found RF predictive model has the RRSE value of 22.1%, resulting in the
absolute mean prediction error of 0.70 µm. This result is satisfactory and comparable to
the accuracy of the SPC contact roughness measurement systems currently installed in
the commutator production. However, the developed methodology enables to perform
the roughness measurement on the production line and control the quality of the turning
process online and in real-time.

The optimization methodology presented in this work can be applied to any MV
algorithm to tune its settings and build a predictive model. Nonetheless, the MV operators
and their sequence used in the optimization procedure were determined manually, relying
on the expert knowledge and experience. Therefore, they may not be optimally selected,
and consequently, the prediction error of the best found regression model, in the case of
using alternative MV operators and their sequence, could be even lower. Accordingly,
our future work will focus on upgrading the presented methodology with automated MV
algorithm construction where expert assistance will no longer be needed.
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