This is an Authors's Accepted manuscript of an article published in Science of the Total Environment: GRIČAR, Jožica, JEVŠENAK, Jernej, HAFNER, Polona, PRISLAN, Peter, FERLAN, Mitja, LAVRIČ, Martina, VODNIK, Dominik, ELER, Klemen. Climatic regulation of leaf and cambial phenology in Quercus pubescens : their interlinkage and impact on xylem and phloem conduits. Science of the total environment. 2022, vol. 802, pp. 1-13, https://doi.org/10.1016/j.scitotenv.2021.149968, DOI: 10.1016/j.scitotenv.2021.149968.

Title: Climatic regulation of leaf and cambial phenology in Quercus pubescens: their interlinkage and impact on xylem and phloem conduits

Running Title: Cambial and leaf phenology of Q. pubescens

[^0]This work was supported by the Slovenian Research Agency, Young Researchers Program (ML), research core funding Nos.: P4-0085 and P4-0107, and projects: J4-7203, J4-9297, J4-2540 and Z4-8217.

Article Type: Original Research

Abstract

Increased frequency and severity of stressful events affects the growth patterns and functioning of trees which adjust their phenology to given conditions. Here, we analysed environmental effects (temperature, precipitation, VPD and SWC) on the timing of leaf phenology, seasonal stem radial growth patterns, and xylem and phloem anatomy of Quercus pubescens in the sub-Mediterranean in the period 2014-2019, when various adverse weather events occurred, i.e. spring drought in 2015, summer fire in 2016 and summer drought in 2017. Results showed that the timings of leaf and cambium phenology do not occur simultaneously in Q. pubescens, reflecting different environmental and internal constraints. Although year-to-year variability in the timings of leaf and cambial phenology exists, their chronological sequence is fairly fixed. Different effects of weather conditions on different stages of leaf development in spring were observed. Common climatic drivers (i.e., negative effect of hot and dry summers and a positive effect of increasing moisture availability in winter and summer) were found to affect the widths of xylem and phloem increments with more pronounced effect on late formed parts. A legacy effect of the timing of leaf and cambial phenology of the previous growing season on the timing of phenology of the following spring was confirmed. Rarely available phloem data permitted a comprehensive insight into the interlinkage of the timing of cambium and leaf phenology and adjustment strategies of vascular tissues in Mediterranean pubescent oak to various environmental constraints, including frequent extreme events (drought, fire). Our results suggest that predicted changes in autumn/winter and spring climatic conditions for this area could affect the timings of leaf and stem cambial phenology of Q. pubescens in the coming years, which would affect stem xylem and phloem structure and hydraulic properties, and ultimately its performance.

Key words: pubescent oak, leaf development, radial growth, initial earlywood vessel, sieve tube, anatomy, cambial cell production, extreme weather events

1 Introduction

Environmental changes will affect phenology and consequently growth patterns and the functioning of trees (Chuine, 2010). The leaf phenology of deciduous trees has proven to be a reliable bio-indicator for climate change (Menzel et al., 2006). An important advantage of leaf phenological monitoring is the possibility of remote sensing-based phenology data acquisition (Hufkens et al., 2012). Rapid progress in these technologies has greatly improved the understanding of vegetation phenology, providing data from local to global scales (Piao et al., 2019; Fang et al., 2020). This approach is not yet suitable for observing phenology on some other levels, e.g., non-leaf tissue such as cambium activity, which as a consequence is less frequently reported in the literature (Antonucci et al., 2017; Correa-Díaz et al., 2019). Although the activities of different tree organs need to be coordinated for whole-tree function, the phenology of each organ/tissue is regulated by a combination of different environmental and internal factors (Delpierre et al., 2016). It is unclear how the interplay of these covarying factors will affect the ability of different tree species to respond to environmental constraints. In this respect phenology and functioning of structures which contribute/preserve hydraulic functions and support plant carbon budget (leaves, secondary vascular tissues) are of particular importance.

Temperature and photoperiod are generally considered to be the main drivers for spring leaf and xylem phenology (Huang et al., 2020; Savage and Chuine, 2021; Way and Montgomery, 2015). Summer-autumn pheno-phases, such as leaf autumn colouring and cessation of cambium activity have been reported to be influenced either directly by environmental factors such as temperature, soil water availability and mean vapour pressure deficit (Pérez-de-Lis et al., 2017), but even more so, these factors seem to act indirectly on plant assimilation output (Zani et al., 2020). However, the research findings on the importance of these factors are far from consistent. For example, summer drought periods with higher temperatures and evaporative demand are reported to either accelerate autumn senescence (Estiarte and Peñuelas, 2015), have no effects (Mariën et al., 2021) or delay this process (Leuzinger et al., 2005; Zani et al., 2020). The
climate sensitivity of spring and autumn plant phenological events (leaf unfolding and falling, flowering, fruit ripening and harvesting) also differ; relative to other seasons, spring events (leaf unfolding and flowering) are more sensitive to climatic variables, particularly temperature and precipitation (which are also reflected in more direct plant factors, such as soil water availability and vapour pressure deficit (VPD)), and consequently more climate induced alterations can be expected (Gordo and Sanz, 2010). Nevertheless, observations have revealed that the climate sensitivity of spring leaf phenology of temperate deciduous species has declined significantly over the past three decades, which indicates a reduced impact of global warming on the length of the growing season, and a reduced risk of late spring frost damage by avoiding premature leaf unfolding (Fu et al., 2015). In addition to external drivers, the sequence of leaf and cambial phenology depends on other factors, such as tree species, leaf habitat, wood porosity, tree part (e.g., Suzuki et al., 1996; Takahashi et al., 2015). The interactions between multiple drivers are quite complex because they are often correlated, which complicates the modelling and predictions of future phenological changes. Monitoring radial growth is crucial for understanding the impact of climate on phenology and consequent changes of xylem and phloem structure, which are good indicators of tree success and performance (Deslauriers et al., 2017).

For the function of the whole tree, the activities of the various tree organs, tissues must be coordinated. In this respect, the phenology and the function of the structures that contribute/maintain hydraulic functions and support the carbon balance of the plant are of particular importance. As plant develops, the requirements of various parts of the plant for water and carbohydrates change considerably. While buds and developing leaves are strong sinks for carbohydrates, they convert to sources when they are fully developed and produce an excess of photoassimilates. At the same time, their water requirements increase due to greater leaf area and transpiration losses. In seasonal environments, resumption of deciduous tree growth after winter dormancy requires remobilization of resources (water, nutrients) and transport of signalling molecules (hormones and proteins) that regulate carbon allocation between sources
(soil, roots, stems, branches) and sinks (growing buds, leaves, flowers, fruits) (Savage and Chuine, 2021). All of these transport functions must be supported by vascular tissues. In spring, efficient transport is achieved in part by the use of preformed conduits, their reactivation (e.g., callose breakdown in sieve cells) but in many species it is mainly supported by de novo formation of xylem and phloem. Xylem and phloem formation must therefore be synchronized with leaf phenology. It has been clearly shown that vascular phenology can be a limiting factor for certain phenological stages, such as leaf emergence. These relationships are quite well documented for xylem formation (e.g., Takahashi et al., 2015), whereas less information exists for phloem phenology and transport capacity (Gričar et al., 2017). However, for both tissues, research indicates that plants with xylem and phloem conduits that remain functional or rapidly resume function prior to cambial productivity in the spring may be able to support earlier growth.

The transport capacity of vascular tissues depends not only on their extent (e.g., cross-sectional area in the stem) but also on their functionality. This is of particular importance when a tree encounters environmental conditions that disrupt or even threaten its function. In arid environments, traits such as the size (diameter) of the vessels, the anatomy of the pits, the transition from earlywood to latewood are important for the maintenance of hydraulic functions (Gričar et al., 2017). In relation to leaf phenology or a whole tree ecophysiology, these traits are rarely reported (Lavrič et al. 2017; Vodnik et al. 2019).

In the study, environmental data (temperature, precipitation, VPD and SWC) were used to evaluate their effect on the timing of leaf phenology, seasonal radial growth patterns, and xylem and phloem anatomy in Quercus pubescens in the sub-Mediterranean region during six complete growing seasons, i.e., 20142019 and initial leaf and cambium phases in 2020. The extended 6-year dataset is unique because it also contains phloem phenology data. During the study period, various adverse weather events occurred, i.e. spring drought in 2015, summer fire in 2016 and summer drought in 2017, which offer an opportunity to study the responses of trees to such events. We hypothesised that: (H1) the timing of the studied leaf phenological phases and radial growth patterns are influenced by different environmental conditions, but
the chronological sequence of the timing of leaf and cambial phenology is fairly fixed; (H 2) impacts of adverse environmental conditions on the timing of leaf and cambial phenology are reflected in xylem and phloem anatomies; (H3) due to the legacy effect, weather-induced variation in leaf and cambial phenology in the previous growing season affect the timing of spring phenology in the following year.

2 Material and methods

2.1 Study site description

The study was conducted at Podgorski Kras ($45^{\circ} 32^{\prime} 56.3^{\prime \prime} \mathrm{N}, 13^{\circ} 54^{\prime} 36.1^{\prime \prime} \mathrm{E}, 430 \mathrm{~m}$ a.s.I.), a karst region in South-Western Slovenia. The site was used as pasture but abandoned about 30 years ago. Since then it has been encroached by various woody plant species with pubescent oak (Quercus pubescens Willd.) being one of the dominant tree species growing either in patches or as a solitary stand. The climate at the study site is sub-Mediterranean, characterised by harsh winter conditions and frequent dry periods in summer. In the 2014-2019 period, the average annual air temperature was $12.2^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{jan}}=3.4^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{jul}}=21.9^{\circ} \mathrm{C}\right)$. Precipitation is relatively abundant, about 1390 mm per year (2014-2019) usually with two peaks, in autumn and late spring. Shallow soil and regular wind reduce the impact of the relatively large volume of rainfall, which results in a large proportion of deep percolation loss of soil water and frequent droughts, especially in summer (Ferlan et al., 2016).

In the 2016-2019 study period, the wettest year was 2014, with annual precipitation exceeding 1700 mm (i.e. 24% above the long-term average), while the driest year was 2015 with only 875 mm of precipitation (i.e. 35% below the long-term average) (Supplementary Figure 1). In 2016, a forest fire occurred at the study site in early August. It was a low intensity fire with a high spread rate and non-uniform effects on
vegetation; certain areas of the site suffered little or no damage, whereas woody vegetation was significantly damaged in other areas (Gričar et al., 2020a). Trees for this study were selected in the undamaged areas of the site. In 2017, we observed severe drought between May and July with less than 200 mm of precipitation, which is 40% less than the long-term average. Despite the well-documented extreme summer drought in central and northern Europe in 2018 (Buras et al., 2020), the summer of 2018 was rather wet at our site, but with above-average temperatures.

2.2 Tree selection, sample collection and leaf phenology

At the beginning of each growing season, we selected six dominant pubescent oaks without any visible injuries on the tree surface. Due to the small diameters of the trees, new trees nearby were selected each year for sampling to avoid wound effects on their radial growth patterns. Tree-level properties were comparable: average diameter at breast height was $20.9 \pm 1.6 \mathrm{~cm}$, average height was $10.6 \pm 1.3 \mathrm{~m}$ and average age was 57.3 ± 7.3 years. Each growing season, leaf phenology (i.e. bud break, leaf emergence, leaf unfolding and autumn colouring) was observed on all oaks at 7-10-day intervals from March until September, and at 14-day intervals from September until December. A branch was selected on the north side of each tree for phenological observations. We observed the stages of leaf phenology according to a 10-stage scale: 1 - dormant buds, 2 - swollen buds, 3 - bud break, 4 - leaf emergence, 5 - leaf development, 6 - full leaf unfolding, 7 - flowering (beginning of opening of male flowers), 8 - initiation of autumn colouring (first leaves begin to turn from green to yellow, red and orange), 9 - abundant autumn colouring (>50\% of the leaves of the observed crown turn from green to yellow, red, orange and brown) and 10 - leaf fall (also divided as 10 - abundant leaf fall and 11 - full leaf fall) (Gričar et al., 2017). The extent and pattern of autumn senescence-related chlorosis differed from sporadic summer chlorosis. To
document leaf development, images of a selected portion of crown were captured on each sampling date with a digital camera.

2.3 Radial growth analysis

To assess the timings of xylem and phloem formation, 2.4 mm diameter microcores were collected using the Trephor tool (Rossi et al., 2006) on the dates of leaf phenological observations. The samples were taken from stems at 0.7-1.7 m above the ground in a helical pattern and separated by $3-5 \mathrm{~cm}$ to mitigate wound effects. Each microcore contained inner phloem, cambium, and at least the three youngest xylem rings. Immediately after removal, the microcores were put in 70\% ethanol. In the Laboratory for Wood Anatomy at the Slovenian Forestry Institute, sample cross-sections were prepared and stained with safranin and astra blue for light microscope observations of developing xylem and phloem tissues. The procedure is described by Gričar et al. $(2017,2020 a)$ along with appropriate definitions of the phenological phases and analysis protocol. The following developmental phases of xylem and phloem formation expressed in days of the year (DOY), were assessed: (1) onset/end date of cambial cell production; (2) appearance of first expanding xylem and phloem cells; (3) final size of initial early phloem sieve tube; (4) appearance of initial earlywood vessels in expansion phase; (5) onset date of secondary wall formation and lignification of initial earlywood vessels; (6) first mature initial earlywood vessels; (7) transition from earlywood to latewood; (8) transition from early to late phloem; (10) cessation date of wood formation.

Growth ring boundaries between phloem increments are visible only in the uncollapsed part of the phloem, i.e., the youngest and narrowest part of the secondary phloem. The uncollapsed phloem lies between the cambium and the wide collapsed phloem. Based on the differences in the morphological characteristics (i.e., dimensions) of the early and late phloem sieve tubes, it was possible to determine the boundaries of the growth rings and the early and late phloem in oak. Namely, the early phloem sieve tubes
generally have wider radial dimensions than the late phloem sieve tubes. In addition, the tangential walls of the initial sieve tubes of early phloem adjacent to the phloem increment formed the previous year are slightly rounded, whereas the terminal late phloem sieve tubes formed the previous year are often crushed. The transition from early to late phloem was characterised by the appearance of small, tangentially oriented groups of phloem fibres, usually 2-5 cell layers wide, separating the two parts of the phloem. The phloem fibres have thick lignified cell walls that stain red and exhibit birefringence in polarised light (Gričar et al., 2015).

On the cross-sections taken at the end of each growing season, the final widths of xylem and phloem increments were measured along three radial files (parallel to the rays) and then averaged. To assess the year-to-year differences in conduit size, the tangential diameter and area of the initial earlywood vessels (IEV) at the growth ring boundary were measured and mean values calculated. In phloem, the tangential diameter and area of 10 randomly selected initial sieve tubes of early phloem were measured and mean values calculated. All variables were calculated on a tree level. Observations and measurements of tissues were performed with an image analysis system comprising an Olympus BX51 (Tokyo, Japan) light microscope, a PIXElink, PL-A66Z digital camera, and the NIS-Elements Basic Research V.2.3 image analysis program (Tokyo, Japan).

2.4 Environmental data and weather-phenology relationships

For greater comparability with other studies our main source of environmental data, i.e., daily precipitation sums and mean daily temperatures, for our study site were extracted from the E-OBS gridded climate dataset (Cornes et al., 2018). E-OBS version 21.0e on a 0.1-degree regular grid was used. All climate variables were spatially interpolated by cokriging, with elevation as an additional explanatory variable (Adhikary et al., 2017). To account for specific soil effects of the karst terrain on rainfall availability, soil
water content (SWC, in $\mathrm{m}^{3} \mathrm{~m}^{-3}$) data were acquired from the eddy covariance tower, located on the investigated area. The ecophysiological effects of air humidity were assessed based on vapour pressure deficit (VPD in kPa) also acquired from the eddy tower (see more details in Ferlan et al., 2011).

To examine the effect of accumulated heat on initial and terminal cambium and leaf phenology, we calculated Growing Degree Days with $\mathrm{T}_{\text {base }}$ of $5^{\circ} \mathrm{C}\left(\mathrm{GDD}_{5}\right)$, Heat Degree Days (HDD) and Cooling Degree Days (CDD) (Richardson et al., 2006a; Richardson et al., 2006b). To calculate HDD, we set the parameter $\mathrm{T}_{\text {base }}$ to $5{ }^{\circ} \mathrm{C}\left(\mathrm{HDD}_{5}\right)$ and considered the heat accumulated during the 30 -day period preceding the mean DOY of bud break and mean DOY of the onset of cambial cell production. We used the fixed-window approach to avoid spurious conclusions resulting from direct dependence between temperature and time. HDD_{5} for onset of cambium and bud break was calculated as the accumulated heat between DOY 45 and 75, and DOY 75 and 105 respectively. CDD represents the thermal sum below the base temperature (Gill et al., 2015; Richardson et al., 2006a) and was used to evaluate the effect of accumulated heat on late phenological and cambium phases. To calculate CDD we considered all days from 1 August and 31 October and set $\mathrm{T}_{\text {base }}$ to $20^{\circ} \mathrm{C}\left(\mathrm{CDD}_{20}\right)$, as suggested by (Gill et al., 2015). We are aware that the selected timewindows may also be slightly variable, but based on our preliminary explanatory attempts, they optimally reflect the accumulated heat required to initiate the studied phases.

2.5 Data analyses

Statistical relationships between all pairs of variables were assessed using the non-parametric Kendall's τ coefficients, which account for non-normally distributed data. The complete correlation plot is given as Supplementary Figure 2. For the selected key pairs of variables, we presented scatter plots. Principle component analysis (PCA) (Supplementary Figure 3) was used to transform variables into a new feature space to address their common variability, and to infer about the dependence of studied physiological processes from loadings plot. Unfortunately, PCA does not allow for the inclusion of variables with missing
values, so for this part of analysis we included data from the 2014-2019 period, skipping 2018 due to missing bud break information. Also, variable autumn colouring was not included due to missing observations in 2017. We show alternative loadings plot as Supplementary Figure 4 and argue that the effect of missing data is negligible.

In addition to HDD_{5} and CDD_{20} (see Section 2.4), we correlated the short-term effects of mean temperature, mean VPD and soil moisture availability (precipitation and SWC) on key phenological leaf and cambial phases. We tested time windows of different lengths, and obtained optimal results in terms of data flexibility with a 10-day window. We thus considered the 10 -day window preceding the phenological event for the calculation of aggregate weather parameters. Furthermore, the selected time window is in accordance with Gričar et al. (2006), who reported the onset of cambial activation from winter dormancy 10 days after heat treatment. One exception was implemented here: due to greater variability of autumn colouring (see Table 1) and seasonal weather dependence, we could not use a 10-day window, but instead considered weather conditions in the fixed season between DOY 210 and 240 to evaluate the weather effect for autumn colouring.

Finally, to evaluate the weather effect on xylem and phloem traits, we calculated mean site chronologies and compared those with weather using the variable response widow from the dendroTools R package (Jevšenak, 2020; Jevšenak and Levanič, 2018). We did not apply a standardization method because we had only six years of xylem and phloem measurements, none of which showing a problematic trend.

3 Results

3.1 The inter-annual variability of cambial and leaf phenological phases

Among all studied phases, the timing of bud break showed the lowest variability with min-max range of 18 days (Table 1). The onset date of cambial cell production always occurred prior to bud break and had a min-max range of 25 days. The transition dates from earlywood to latewood and from early phloem to late phloem had the same mean and standard deviation, indicating close occurrence, although they showed only minor inter-dependence (Supplementary Figure 2). In general, variability in the timing of leaf phenology, xylem phenology, and phloem formation increases with season. The greatest variability was observed for the timing of autumn colouring, which could occur at the beginning of September or end of November.
[Table 1 preferred position]

3.2 Relationship between leaf phenology and radial growth

The timings of spring leaf phenological phases interrelated, especially the timings of bud break and leaf emergence (Figure 1). Thus, the earlier bud break occurred, the earlier also leaves emerged. A longer duration of cambial cell production had positive effect on all analysed xylem and phloem traits (Supplementary Figure 2). We found negative correlations between the timing of leaf unfolding and the transition date from earlywood to latewood; thus, the earlier leaf unfolding occurred, the later the transition from earlywood to latewood was detected. The transition date from early phloem to late phloem showed no relation with the timing of leaf phenological phases in spring (Figure 1). Xylem and phloem widths showed a stronger dependence on the end date of cambial cell production rather than on the date of its onset, indicating that the difference in ring widths resulted mainly from cambial phenological events in late summer. The timing of previous autumn colouring showed a weak positive effect on the timing of bud break, but strong negative effect on the onset date of cambial cell production (Figure 2). Therefore,
compared to the timing of the early stages of leaf development in spring, favourable weather conditions from the previous autumn, were more important for the timing of the onset of cambial cell production, which also varied more than the timing of bud break (Table 1). Initial earlywood vessel and early phloem sieve tube areas were more dependent on the timing of the early stages of leaf development (bud break, leaf emergence) than on the timing of the onset of cambial cell production. The end date of cambial cell production in the previous year showed a strong negative effect on the timing of autumn leaf colouring in the following year. Thus, the earlier cambial activity stopped, the later autumn leaf colouring began the next year.

3.3 Effect of weather conditions on leaf and cambial phenology, and xylem and phloem anatomy

The effect of accumulated heat on initial cambium and leaf phenology, was first assessed using the GDD ${ }_{5}$. The calculated GDD_{5} for the onset date of cambial cell production it ranged from 105 to $247{ }^{\circ} \mathrm{C}$ and averaged $164{ }^{\circ} \mathrm{C}$, while for the timing of bud break ranged from 279 to $456{ }^{\circ} \mathrm{C}$ with an average of $364{ }^{\circ} \mathrm{C}$ (Supplementary Table 1).
GDD_{5} therefore significantly varied among the years, but it was not effective in explaining the timings of spring and autumn cambial and leaf phenological events. We therefore introduced Heat Degree Days $\left(\mathrm{HDD}_{5}\right)$ and Cooling Degree Days $\left(\mathrm{CDD}_{20}\right)$. The onset date of cambial cell production was negatively correlated with 10-day precipitation sums and SWC means, whereas temperature and VPD did not show significant effect on the timing of this phenological phase. Of all the variables, the onset date of cambial cell production was most strongly associated with the timing of the previous autumn colouring and was therefore more strongly related to the weather and phenological events at the end of the previous growing season. Thus, the later the autumn leaf colouring occurred, the earlier was the onset date of cambial cell production the following spring. When comparing the timing of bud break with HDD_{5} or 10 -day mean
temperature prior to each phenological observation, significant negative correlations were obtained (Figure 3), which indicates that short-term warm periods triggered the beginning of leaf development, rather than GDD_{5}, which measures accumulated heat in longer periods. The timing of leaf emergence and leaf unfolding phases were positively correlated with 10-day precipitation sums and SWC means (Figure 3 and Supplementary Figure 5), which indicates delay of leaf development in the case of wet spring. Transition date from earlywood to latewood showed negative and positive correlations with aggregated 10-day moisture availability and temperature and VPD means, respectively. Similarly, the transition date of early phloem to late phloem was positively correlated with 10-day temperature means. Both transition dates were therefore triggered by relatively warm and dry weather in the second half of May. The timing of the end of the cambial cell production period showed a positive correlation with 10 -day moisture availability and a negative correlation with 10-day temperature and VPD means. This positive effect of a cool and wet August on radial growth was later confirmed with daily correlations between aggregated environmental data and xylem (total and latewood) and phloem (total and late phloem) widths (Figure 4). The timing of autumn colouring also positively correlated with accumulated heat during the three-month period of August-October ($C D D_{20}$), clearly showing a delayed timing of autumn colouring in the case of a warmer end of the growing season.

All pairwise comparisons of xylem and phloem traits, i.e. widths of earlywood, latewood, early phloem and late phloem, and areas of initial earlywood vessels and early phloem sieve tubes, were positively correlated (Supplementary Figure 2) and had large positive loadings on component 1 (Figure 1), which primarily measures increase in radial increment and growing season length. Variables related to the widths of the xylem and phloem tissues showed common climatic drivers, with xylem and phloem widths being positively correlated with higher winter moisture availability and mean temperature, while late spring drought significantly reduced both, xylem and phloem widths (Figure 4). The latter effect was more
obvious for latewood and late phloem widths. Areas of earlywood vessel and early phloem sieve tubes showed only minor dependence on weather conditions. Earlywood vessel areas were sensitive to late winter droughts, which resulted in their smaller areas.

4 Discussion

In this study, observations of the timing of leaf and cambial phenology, as well as xylem and phloem formation in pubescent oak, collected in the 2014-2019 (2020) period are presented. The observations were linked to xylem and phloem anatomy and environmental conditions to highlight their common drivers and interdependence. Despite fairly large between-tree variability in the timing of leaf and cambial phenological phases and wood and phloem anatomical traits we have succeeded to extract some important inferences about phenological regulation of Quercus pubescens trees at our study site. Generally, rarely available data on phloem phenology and anatomy, including early phloem conduits, permitted a comprehensive insight into adjustment strategies of vascular tissues in Mediterranean oak to various environmental constraints, including frequent extreme events (drought, fire). We confirmed our first hypothesis (H1), that the timing of the studied leaf phenological phases and radial growth patterns was influenced by different environmental conditions. However, although temporal variability existed within each phenological phase, chronological sequence of the timing of leaf and cambial phenology was fairly fixed. In the second part of the growing season, variability in cambial and leaf phenology was higher compared to the first part of the growing season. The second hypothesis $(\mathrm{H} 2)$ that the impacts of adverse environmental conditions on the timing of leaf and cambial phenology were reflected in xylem and phloem anatomies was confirmed. We found different effects of weather conditions on different stages of leaf development in spring. Common climatic drivers (i.e., negative effect of hot and dry summers and a positive effect of increasing moisture availability in winter and summer) were found to affect the widths
of xylem and phloem increments. Furthermore, weather effect was more pronounced on latewood and late phloem widths (i.e., on the end date of cambial cell production), while earlywood and early phloem were generally less sensitive to weather conditions. The third hypothesis (H3) on the legacy effect of the previous growing season on the following spring phenology was also confirmed. This effect was the strongest for the onset date of cambial cell production, which was strongly affected by the timing of autumn colouring in the previous growing season. In addition, the end date of cambial cell production in the previous year showed a strong negative effect on the timing of autumn leaf colouring in the current year.

4.1 Chronological sequence of initial leaf and cambial developmental phases

Our study showed that the onset date of leaf phenology was not correlated with the onset date of cambial cell production. It seems that the onset dates of these two phenological phases in the crown (bud break) and in the stem (cambial cell production, and subsequent initial xylem and phloem formation phases) are partly controlled by different environmental factors. Consequently, the temporal sequences of the studied phenological phases of leaves and stem radial growth do not occur simultaneously in Q. pubescens. Our results contrast with the close relationship between the timing of bud break, cambial resumption and initial earlywood vessel formation in spring reported by Pérez-de-Lis et al. (2016) for temperate Quercus robur and Quercus pyrenaica growing in mixed stands along a transitional gradient in the northwest lberian Peninsula. This discrepancy could be explained by: (i) differences in site conditions, in particular soil water holding capacity or (ii) species-specifics, where (sub)-Mediterranean oaks adjust growth patterns to local, often stress conditions, while the hydraulic properties of temperate Q. robur are more associated with weather conditions.

Generally, lower year-to-year variability in the timing of leaf and cambial phenology was observed in spring than in summer/ autumn (Table 1). Inter-annual differences were especially pronounced in leaf phenology; a difference of 19 days was observed in the case of bud break, and 78 days in the case of the timing of autumn colouring, which in our case proved to be primarily driven by accumulated heat in the second half of summer. In the case of warm August and September, the timing of autumn colouring is delayed up to the middle of November. For cambial cell production, a difference of 25 days was observed in the case of onset date, and 32 days in the case of its end date. In addition to weather conditions, other drivers (e.g. photoperiod, crown social status) might thus influence the timing of leaf and cambial phenological events. As previously observed in Q. pubescens (Lavrič et al., 2017; Zweifel et al., 2006), cambial cell production started a month before bud break. The formation of initial earlywood vessels starts before bud break and their development was completed before full leaf unfolding to be ready for water transport by that time (Gričar et al., 2020a). This order is important in ring-porous species because earlywood conduits from the previous growing seasons are mostly blocked with tyloses therefore hydraulic functioning largely depends on the conduits formed in the current growing season (Kitin and Funada, 2016; Savage and Chuine, 2021). Similar to the initial earlywood vessels, the development of early phloem sieve tubes in ring-porous oak also relies on storage reserves and reach their final size at the time of swollen buds (Gričar et al., 2020a). Sieve tubes are functional for only 1-2 growing seasons (Prislan et al., 2018); hence, their rapid formation in early spring is essential for ensuring the long-distance transport of photosynthates and signalling molecules among different developing organs/tissues (Savage, 2020). Although well-known involvement of sieve tubes in non-collapsed phloem in source (leaves)-to-sink (meristems) transport of carbohydrates, phloem developmental patterns are generally very rarely compared with leaf phenology. In this sense, our 6-year phloem phenology data for pubescent oak from the sub-Mediterranean in this sense represent an important contribution to the understanding of the links among phloem phenology and anatomy in relation to environmental cues.

4.2 Transition from earlywood to latewood and from early phloem to late phloem

The transition dates from earlywood to latewood and from early phloem to late phloem were generally close to each other, but they showed different dependence on leaf phenology. In xylem, the transition date was negatively related to the timing of leaf unfolding. The transition date from earlywood to latewood was positively correlated with the onset date of cambial cell production and the appearance of the first xylem cells. Formation of initial xylem cells starts after the onset of cambial cell production in spring, which is reflected in the correlation of these processes. In contrast, the timing of the transition in the phloem was not dependent on the timing of spring leaf and cambial phenology. Initial sieve tube development generally begins at the time of cambial cell production from overwintered cells formed in the previous autumn, which starts to differentiate (e.g., cell expansion) in the spring of the next growing season (Prislan et al., 2018). Our analyses revealed that the differentiation of initial sieve tubes appears to be independent of the timing of leaf and cambial phenology.

Structural changes in xylem and phloem associated with these transitions are generally explained by differences in hormonal signals induced by young and mature leaves. Auxin produced in young leaves stimulates the development of xylem and phloem conduits, whereas gibberellins induced by mature leaves provoke fibre formation (Aloni, 2015). In agreement with our findings that the analysed phenological stages of leaves and radial growth were influenced by different weather conditions (see chapters 4.5 and 4.6.), it follows that the interplay of internal and external factors influences developmental processes in trees. Since hormonal regulation affects cell characteristics (wall thickness and cell size) and the proportions of different cell types (vessel, axial parenchyma, fibres), this aspect should be considered in future studies of vascular differentiation and tree development. Such information would help to better decipher the process-related response of trees to climatic-phenological changes, and their effects on
xylem and phloem structures, which are good indicators of tree success and performance (Deslauriers et al., 2017).

4.3 Effect of cambial phenology on xylem and phloem increments

The duration and the end of the period of cambial cell production showed a generally positive effect on all analysed xylem and phloem variables. The effect of the onset date of cambial cell production was most pronounced in subsequent stages of xylem formation, i.e., the first expanding xylem cells and the initial earlywood conduits, while it did not affect the xylem and phloem widths nor the width of the early or late formed parts. Thus, the earlier the cambial cell production started, the earlier the first expanding xylem cells and the initial earlywood conduits appeared. We found that the end date of cambial cell production had a strong impact on both, xylem and phloem increment widths. According to our data from 2014-2019, cambial cell production in pubescent oak ended between mid-July and mid-August depending on weather conditions (see chapter 4.6). In the Mediterranean region, bimodal xylem growth pattern was often detected in various tree species (e.g., Campelo et al., 2018; de Luis et al., 2007; Pérez-de-Lis et al., 2017; Vieira et al., 2019). It results from summer interruption of cambial cell production, typically triggered by stress conditions due to high temperatures, low soil water availability and low air humidity, and an autumnal resumption of cambial cell production in the case of favourable growing conditions. Bimodal growth is reflected in intra-annual density fluctuations in xylem rings (e.g., de Luis et al., 2007). No such pattern was observed in Q. pubescens at our sub-Mediterranean site, which could be explained by relatively short favourable periods in the autumn (sufficient temperature combined with favourable SWC and VPD regimes) and harsh winter conditions with frequent short snow events.

Thus, year-to-year differences in ring widths were strongly dependent on the end date of cambial cell production, with the widths of latewood and late phloem closely related to the annual ring widths of the
xylem and phloem, respectively. Interestingly, the widths of earlywood and early phloem were more strongly related to the duration of cambial activity suggesting that the rate of cell production and transition dates also influence the widths and structure of xylem and phloem increments. The majority of xylem and phloem increments in Q. pubescens was formed between April and mid-June, indicating its adaptation to local conditions to avoid possible summer drought during the period of most intense radial growth (Gričar et al., 2017; Zweifel et al., 2006). Thus, part of the stem growth (i.e., initial earlywood vessels and early phloem sieve tubes) was finished before leaves started to unfold to be available for transport. Large earlywood and early phloem conduits, which ensure an efficient conducting system in the tree (Kiorapostolou and Petit, 2018; Tyree and Zimmermann, 2010) were thus formed during a more stable period with less frequent stress events. Small latewood and late phloem conduits are less efficient but important for transport as both, earlywood and early phloem conduits are dysfunctional within a year of their formation (Kitin and Funada, 2016; Prislan et al., 2018). Latewood vessels can remain functional for many years and prevent complete transport failure in the case of stress events (Taneda and Sperry, 2008), while late phloem conduits formed in the previous growing season are still functional in the first weeks of the following growing season to ensure an adequate phloem transport system for developing tree tissues and organs (Prislan et al., 2018).

4.4 Legacy effects in phenological processes

The onset date of cambial cell production and the subsequent stages of xylem formation showed a strong negative link with the timing of the previous autumn colouring; later leaf colouring resulted in earlier onset date of cambial cell production. This carry-over effect is a well-documented phenomenon (Delpierre et al., 2017; Marchand et al., 2020a,b), in which trees accumulate large amounts of carbohydrates during the autumn in the case of favourable weather conditions, and these stored reserves are then available at the
beginning of the next growing season (Barbaroux and Bréda, 2002). Since radial growth in Q. pubescens starts before leaf development, i.e. before the onset of assimilate production in leaves, stored carbohydrates are crucial for the development of earlywood and early phloem (Gričar et al., 2018). Moreover, the carry-over effect of the timing of previous autumn colouring was more important for the beginning of cambial cell production than for the onset of leaf development. However, this relationship may differ among tree species depending on porosity and site specifics (Delpierre et al., 2017; Marchand et al., 2020b).

We found that the onset date of cambial cell production varied more than the timing of bud break between study years. Although highly variable, the timing of autumn leaf colouring showed a strong negative link to the end date of cambial cell production in the previous year. This argues for a strong inter- and intraannual linkage between the timings of leaf and cambial phenology in terms of carbon supply (leaves), demand (meristems) and storage. It follows that large inter-annual variabilities at the onset date of autumn colouring result in significant year-to-year differences of the annual carbon balance and carbon allocation patterns in individuals, which depend on the timing of cessation of cambial cell production in the previous growing season and affect the onset date of radial growth in the following growing season. Trees need to coordinate the use of the limited supply of carbohydrates for metabolic and structural demands (Dietze et al., 2014). In deciduous trees that shed their leaves seasonally, storage reserves are important for maintenance during the leafless season, like respiration and dormancy-related physiological processes (Fadón et al., 2020). Furthermore, our sub-Mediterranean site is characterised by frequent summer droughts and fire events; storage reserves are important for coping with such disturbances (MartínezVilalta et al., 2016), as demonstrated by altered radial growth dynamics and increment widths in firedamaged trees in 2017, one year after the occurrence of summer fire (Gričar et al., 2020a).

4.5 Effect of weather conditions on leaf phenology

The onset dates of bud break and cambial cell production were associated with different GDD_{5} values, which were highly variable among the study years for both phenological phases, indicating that GDD_{5}, which measures accumulated heat from 1 January, is not the optimal variable for predicting the timings of initial cambium and leaf phenological phases. A few random warm days early in the year increased the GDD_{5} variable, but had little effect on ecophysiological processes in trees. We therefore used HDD_{5} and CDD_{20} variables, which are more flexible and measure accumulated heat in a pre-defined time window. To explain the effect of accumulated heat on phenological events in Q. pubescens, we tested different time windows, but the highest explanatory power was obtained with 30-day windows (see Section 2.4 for details).

We found different effects of weather conditions on different stages of leaf development in spring. Bud break was triggered by a short-term increase in temperature and VPD, while the timings of leaf emergence and leaf unfolding were negatively correlated with precipitation and SWC, which delayed leaf development. The positive effect of temperature on the initial stages of leaf development was previously confirmed, but with great variability in the strength of response among species (Fu et al., 2014; Lukasová et al., 2020; Morin et al., 2010; Savage and Chuine, 2021). Similarly, the effect of water availability on leaf phenology is inconsistently discussed in the literature (Lukasová et al., 2020; Morin et al., 2010; Sherry et al., 2007). Anticipated warmer spring temperature would potentially increase the risk of frost damage by triggering bud break (Augspurger, 2009), but in ring-porous pubescent oak bud break occurs one month later than in diffuse porous species Ostrya carpinifolia (Gričar et al., 2020b), which would be more exposed to such unfavourable events. However, Fu et al. (2015) reported that the sensitivity of leaf development to climate warming has generally decreased in recent decades indicating a slowdown in the advance of tree spring phenology to winter warming. The authors attribute this reduction in sensitivity to reduced
chilling and to mechanisms related to photoperiod, which may ultimately become limiting if leaf unfolding occurs too early in the season.

The timing of autumn leaf colouring was positively influenced by higher temperature and accumulated heat, while moisture availability and VPD showed no significant effect on this phenological stage. Summer drought is characterised by lack of precipitation and high evapotranspirational demands, which can advance leaf senescence (Lukasová et al., 2020). Although water deficit frequently occurs at our site during the summer months (July-August), this did not seem to affect the timing of autumn leaf colouring. In this respect our study does not support the results by Zani et al. (2020) who recently showed, using a massive trans-European phenological database for five deciduous tree species, that more productive conditions during growth period and less stress inflict earlier autumn senescence possibly due to tree sink limitation (full carbohydrate reserves, seized radial growth and cell wall thickening etc.). In general, data in the literature on the influence of environmental conditions on leaf phenology are contradictory. Morin et al. (2010) found no effect of temperature and soil water content on the date of leaf colouring. In contrast, Gill et al. (2015) found that in boreal and temperate deciduous forests, October temperature was the strongest predictor of senescence date (i.e., positive relationship), especially at low latitudes. Warming would delay leaf senescence, resulting in enhanced net carbon uptake (Keenan, 2015). The positive effect of autumn temperature on leaf senescence was also confirmed in Mediterranean tree species. Del Río García et al. (2015) reported delayed leaf senescence due to warmer autumn conditions in four coexisting Mediterranean Quercus species. This may lead to smaller differences in the length of productive leaf life of deciduous species compared to evergreen species, thereby improving the competitive ability of the former (del Río García et al., 2015).
4.6 Effect of weather conditions and extreme events on the growth and structure of vascular tissues

We used daily response functions to analyse weather conditions and extreme events on the radial growth and xylem and phloem anatomy. Although the traditional dendroclimatological analyses usually rely on longer time series, the variable response window showed expected and significant results, indicating the potential of applying these functions to shorter intra-annual growth series. The influence of weather conditions was reflected in xylem and phloem widths, and to lesser extent in the conduit areas (Table 1 and Figure 4). The widths of xylem and phloem increments showed common climatic signals, i.e. negative effect of hot and dry summers and a positive effect of increasing moisture availability in winter and summer. In addition, latewood and late phloem widths were more sensitive to weather conditions than earlywood and early phloem, respectively. Xylem and phloem widths were generally promoted by higher winter precipitation and temperature, while late spring drought significantly inhibited their widths, especially those of latewood and late phloem. Wet and cool summers resulted in a longer growing season and, consequently in wider xylem and phloem increments. The difference between the timing of end of cambial cell production in the study years was one month, between mid-July and mid-August. In comparison to the least favourable year (2017), xylem and phloem were on average 2.5 -fold and 1.5 -fold wider, respectively, in the most favourable year (2014). Our analyses confirmed our previous conjectures (Gričar et al., 2018, 2020a) that weather conditions had more influence on the second part of the growing season, i.e. the period of latewood and late phloem formation, than on the first part of the growing season, which was less weather-dependent. Thus, the period of most intense growth, when the earlywood and early phloem conduits were formed, was concentrated in months with favourable weather conditions, which is a good prerequisite for successful growth in drought-prone Mediterranean environments, avoiding potentially stressful summer conditions and not affecting the trees' hydraulic and carbohydrate systems.

Contrasting year-to-year weather conditions and frequent extreme events, such as drought periods (2017), heat waves (2015), and fires (2016), which are typical of the region, enables an insight into the impact of
different extreme events on the timing of these processes and consequently on xylem and phloem anatomy. We found that initial earlywood vessels and early phloem conduits showed little dependence on weather conditions. Earlywood vessel areas were sensitive to late winter dry periods, which was reflected in their smaller areas. This can be explained by the positive effect of water availability on turgor pressure in the expanding vessels. In contrast, water deficit causes a reduction in turgor pressure, resulting in smaller xylem conduits (Zweifel et al., 2006; Hölttä et al., 2010). However, a relative independence of earlywood and early phloem conduits from weather conditions is consistent with the results of Pérez-deLis et al. (2016) in Quercus pyrenaica confirming the strategy of Mediterranean oaks to adjust their growth patterns to local environmental conditions with frequent stress events and maintain a more conservative hydraulic architecture. This contrasts with temperate oaks, where the hydraulic properties of earlywood vessels are influenced by the timing of their enlargement, which is determined by winter and spring weather conditions (Tardif and Conciatori 2006; Fonti et al., 2010; Pérez-de-Lis et al., 2016).

Our results revealed that the timings of the studied phenological phases of leaves and stem radial growth are partly controlled by different environmental factors, which is reflected in the anatomy of xylem and phloem and hydraulic properties. It was demonstrated that, in addition to inter-individual and year-toyear variation, there are strong inter- and intra-annual interlinkages between some phenological events. Here, cambial phenology was monitored at the stem base level. Whether similar connections can be found in other tree parts remains to be clarified in future analyses taking into account the whole-tree.

5. Conclusions

To the best of our knowledge, the extended 6-year dataset of cambium and leaf phenology used in this study is one of the longest of its kind. In addition, it includes phloem data, which provides a unique insight into the ecophysiological processes of the studied tree species and beyond. It provides an opportunity to
study the interlinkage of cambium and leaf phenology in combination with favourable and unfavourable weather events and their effects on vascular tissues in mature trees. We found that the timings of leaf and cambium phenology do not occur simultaneously in Q. pubescens, reflecting different environmental and internal constraints. Although year-to-year variability of the timings of leaf and cambial phenology exists, their chronological sequence is fairly fixed. Our results suggest that predicted changes in autumn/winter and spring climatic conditions for this area (IPCC, 2014) could affect the timings of leaf and cambial phenology of Q. pubescens in the coming years, which would affect xylem and phloem structure. Shifts in plant phenology due to climate change have been reported in the Mediterranean region (Gordo and Sanz, 2010). This species is predicted to expand its range in the warmer future, thus a better understanding of climate-growth interactions in Q. pubescens is important to more accurately assess its future economic and ecological role (Buras and Menzel, 2019; Hanewinkel et al., 2013).

Acknowledgements

The authors gratefully acknowledge the help of Gregor Skoberne, Andreja Vedenik, Boštjan Zupanc, Gabrijel Leskovec and Robert Krajnc in the field and laboratory. We thank Zlatko Rojc for his permission to perform the study on the plot. We thank the reviewers for their valuable comments and suggestions, which importantly improved the quality of the paper.

Conflict of Interest: The authors declare that they have no conflict of interest.

Author contributions statements

JG and JJ contributed equally to this work and are to be considered co-first authors. All authors conceived and designed the work; all authors collected the samples; JG, ML and PH carried out analyses of radial
growth; ML and PH collected leaf phenological data; JJ and KE performed the statistical analyses, JJ prepared the figures and tables; JG and JJ wrote the manuscript; all authors critically revised the manuscript; all authors approved the final version of the manuscript to be published.

References

Adhikary SK, Muttil N, Yilmaz AG. Cokriging for enhanced spatial interpolation of rainfall in two Australian catchments. Hydrological Processes 2017; 31: 2143-2161.
Aloni R. Ecophysiological implications of vascular differentiation and plant evolution. Trees 2015; 29: 1-16.
Antonucci S, Rossi S, Deslauriers A, Morin H, Lombardi F, Marchetti M, et al. Large-scale estimation of xylem phenology in black spruce through remote sensing. Agricultural and Forest Meteorology 2017; 233: 92-100.
Augspurger CK. Spring 2007 warmth and frost: phenology, damage and refoliation in a temperate deciduous forest. Functional Ecology 2009; 23: 1031-1039.
Barbaroux C, Bréda N. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiology 2002; 22: 1201-1210.
Buras A, Menzel A. Projecting Tree Species Composition Changes of European Forests for 2061-2090 Under RCP 4.5 and RCP 8.5 Scenarios. Frontiers in Plant Science 2019; 9.
Buras A, Rammig A, Zang CS. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 2020; 17: 1655-1672.
Campelo F, Gutiérrez E, Ribas M, Sánchez-Salguero R, Nabais C, Camarero JJ. The facultative bimodal growth pattern in Quercus ilex - A simple model to predict sub-seasonal and inter-annual growth. Dendrochronologia 2018; 49: 77-88.
Chuine I. Why does phenology drive species distribution? Philosophical Transactions of the Royal Society B: Biological Sciences 2010; 365: 3149-3160.
Cornes RC, van der Schrier G, van den Besselaar EJM, Jones PD. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. Journal of Geophysical Research: Atmospheres 2018; 123: 9391-9409.
Correa-Díaz A, Silva LCR, Horwath WR, Gómez-Guerrero A, Vargas-Hernández J, Villanueva-Díaz J, et al. Linking Remote Sensing and Dendrochronology to Quantify Climate-Induced Shifts in HighElevation Forests Over Space and Time. Journal of Geophysical Research: Biogeosciences 2019; 124: 166-183.
de Luis M, Gričar J, Čufar K, Raventós J. Seasonal dynamics of wood formation in from dry and semi-arid ecosystems in Spain. IAWA Journal 2007; 28: 389-404.
del Río García T, Mediavilla S, Silla F, Escudero A. Differences in the environmental control of leaf senescence of four Quercus species coexisting in a Mediterranean environment. 2015 2015; 24.
Delpierre N, Guillemot J, Dufrêne E, Cecchini S, Nicolas M. Tree phenological ranks repeat from year to year and correlate with growth in temperate deciduous forests. Agricultural and Forest Meteorology 2017; 234-235: 1-10.
Delpierre N, Vitasse Y, Chuine I, Guillemot J, Bazot S, Rutishauser T, et al. Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Annals of Forest Science 2016; 73: 5-25.

Deslauriers A, Fonti P, Rossi S, Rathgeber CBK, Gričar J. Ecophysiology and Plasticity of Wood and Phloem Formation. In: Amoroso MM, Daniels LD, Baker PJ, Camarero JJ, editors. Dendroecology: Tree-Ring Analyses Applied to Ecological Studies. Springer International Publishing, Cham, 2017, pp. 13-33.
Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, et al. Nonstructural Carbon in Woody Plants. Annual Review of Plant Biology 2014; 65: 667-687.
Estiarte M, Peñuelas J. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Global Change Biology 2015; 21: 1005-1017.
Fadón E, Fernandez E, Behn H, Luedeling E. A Conceptual Framework for Winter Dormancy in Deciduous Trees. Agronomy 2020; 10: 241.
Fang J., Lutz J.A., Wang L., Shugart H.H., Yan X Using climate-driven leaf phenology and growth to improve predictions of gross primary productivity in North American forests. Global Change Biology, 2020; 26: 6974-6988.
Ferlan M, Alberti G, Eler K, Batič F, Peressotti A, Miglietta F, et al. Comparing carbon fluxes between different stages of secondary succession of a karst grassland. Agriculture, Ecosystems \& Environment 2011; 140: 199-207.
Ferlan M, Eler K, Simončič P, Batič F, Vodnik D. Carbon and water flux patterns of a drought-prone midsuccession ecosystem developed on abandoned karst grassland. Agriculture, Ecosystems \& Environment 2016; 220: 152-163.
Fonti P, von Arx G, García-González I, Eilmann B, Sass-Klaassen U, Gärtner H, et al. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytologist 2010; 185: 42-53.
Fu YH, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 2015; 526: 104-107.
Fu YSH, Campioli M, Vitasse Y, De Boeck HJ, Van den Berge J, AbdElgawad H, et al. Variation in leaf flushing date influences autumnal senescence and next year's flushing date in two temperate tree species. Proceedings of the National Academy of Sciences 2014; 111: 7355-7360.
Gill AL, Gallinat AS, Sanders-DeMott R, Rigden AJ, Short Gianotti DJ, Mantooth JA, et al. Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of autumn phenology studies. Annals of Botany 2015; 116: 875-888.
Gordo O, Sanz JJ. Impact of climate change on plant phenology in Mediterranean ecosystems. Global Change Biology 2010; 16: 1082-1106.
Gričar J, Hafner P, Lavrič M, Ferlan M, Ogrinc N, Krajnc B, et al. Post-fire effects on development of leaves and secondary vascular tissues in Quercus pubescens. Tree Physiology 2020a; 40: 796-809.
Gričar J, Jagodic Š, Prislan P. Structure and subsequent seasonal changes in the bark of sessile oak (Quercus petraea). Trees 2015; 29: 747-757.
Gričar J, Lavrič M, Ferlan M, Vodnik D, Eler K. Intra-annual leaf phenology, radial growth and structure of xylem and phloem in different tree parts of Quercus pubescens. European Journal of Forest Research 2017; 136: 625-637.
Gričar J, Vedenik A, Skoberne G, Hafner P, Prislan P. Timeline of Leaf and Cambial Phenology in Relation to Development of Initial Conduits in Xylem and Phloem in Three Coexisting Sub-Mediterranean Deciduous Tree Species. Forests 2020b; 11: 1104.
Gričar J, Zavadlav S, Jyske T, Lavrič M, Laakso T, Hafner P, et al. Effect of soil water availability on intraannual xylem and phloem formation and non-structural carbohydrate pools in stem of Quercus pubescens. Tree Physiology 2018; 39: 222-233.
Gričar J, Zupančič M, Čufar K, Koch G, Schmitt U, Oven P. Effect of local heating and cooling on cambial activity and cell differentiation in stem of Norway spruce. Annals of Botany 2006; 97: 943-951.

Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann NE. Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change 2013; 3: 203207.

Hölttä T, Mäkinen H, Nöjd P, Mäkelä A, Nikinmaa E. A physiological model of softwood cambial growth. Tree Physiology 2010; 30: 1235-1252.
Huang J-G, Ma Q, Rossi S, Biondi F, Deslauriers A, Fonti P, et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences 2020; 117: 20645-20652.
Hufkens K, Friedl M, Sonnentag O, Braswell BH, Milliman T, Richardson AD. Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sensing of Environment 2012; 117: 307-321.
IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Core Writing Team, Pachauri RK, Meyer LA, editors. IPCC, Geneva, Switzerland, 2014, pp. 151.
Jevšenak J. New features in the dendroTools R package: Bootstrapped and partial correlation coefficients for monthly and daily climate data. Dendrochronologia 2020; 63: 125753.
Jevšenak J, Levanič T. dendroTools: R package for studying linear and nonlinear responses between treerings and daily environmental data. Dendrochronologia 2018; 48: 32-39.
Keenan RJ. Climate change impacts and adaptation in forest management: a review. Annals of Forest Science 2015; 72: 145-167.
Kiorapostolou N, Petit G. Similarities and differences in the balances between leaf, xylem and phloem structures in Fraxinus ornus along an environmental gradient. Tree Physiology 2018; 39: 234-242.
Kitin P, Funada R. Earlywood vessels in ring-porous trees become functional for water transport after bud burst and before the maturation of the current-year leaves. 2016; 37: 315.
Lavrič M, Eler K, Ferlan M, Vodnik D, Gričar J. Chronological Sequence of Leaf Phenology, Xylem and Phloem Formation and Sap Flow of Quercus pubescens from Abandoned Karst Grasslands. Frontiers in Plant Science 2017; 8.
Leuzinger S, Zotz G, Asshoff R, Körner C. Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiology 2005; 25: 641-650.
Lukasová V, Vido J, Škvareninová J, Bičárová S, Hlavatá H, Borsányi P, et al. Autumn Phenological Response of European Beech to Summer Drought and Heat. Water 2020; 12: 2610.
Marchand L, Dox I, Gričar J, Prislan P, Leys S, Van den Bulcke J, et al. Inter-individual variability in spring phenology of temperate deciduous trees depends on species, tree size and previous year autumn phenology. Agricultural and Forest Meteorology 2020a; 290: 108031.
Marchand LJ, Dox I, Gričar J, Prislan P, Van den Bulcke J, Fonti P, et al. Timing of spring xylogenesis in temperate deciduous tree species relates to tree growth characteristics and previous autumn phenology. Tree Physiology 2020b.
Mariën B, Dox I, De Boeck HJ, Willems P, Leys S, Papadimitriou D, et al. Does drought advance the onset of autumn leaf senescence in temperate deciduous forest trees? Biogeosciences 2021; 18: 33093330.

Martínez-Vilalta J, Sala A, Asensio D, Galiano L, Hoch G, Palacio S, et al. Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. Ecological Monographs 2016; 86: 495-516.
Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, et al. European phenological response to climate change matches the warming pattern. Global Change Biology 2006; 12: 1969-1976.
Morin X, Roy J, Sonié L, Chuine I. Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytologist 2010; 186: 900-910.

Pérez-de-Lis G, Olano JM, Rozas V, Rossi S, Vázquez-Ruiz RA, García-González I. Environmental conditions and vascular cambium regulate carbon allocation to xylem growth in deciduous oaks. Functional Ecology 2017; 31: 592-603.
Pérez-de-Lis G, Rossi S, Vázquez-Ruiz RA, Rozas V, García-González I. Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks. New Phytologist 2016; 209: 521-530.
Piao S, Liu Q, Chen A, Janssens IA, Fu Y, Dai J, et al. Plant phenology and global climate change: Current progresses and challenges. Global Change Biology 2019; 25: 1922-1940.
Prislan P, Mrak P, Žnidaršič N, Štrus J, Humar M, Thaler N, et al. Intra-annual dynamics of phloem formation and ultrastructural changes in sieve tubes in Fagus sylvatica. Tree Physiology 2018; 39: 262-274.
Richardson AD, Bailey AS, Denny EG, Martin CW, O'KEEFE J. Phenology of a northern hardwood forest canopy. Global Change Biology 2006a; 12: 1174-1188.
Richardson AD, Schenck Bailey A, Denny EG, Martin CW, O'Keefe J. Phenology of a northern hardwood forest canopy. Global Change Biology 2006b; 12: 1174-1188.
Rossi S, Anfodillo T, Menardi R. Trephor: a new tool for sampling microcores from tree stems. IAWA Journal 2006; 27: 89-97.
Savage JA. It's all about timing—or is it? Exploring the potential connection between phloem physiology and whole plant phenology. American Journal of Botany 2020; 107: 848-851.
Savage JA, Chuine I. Coordination of spring vascular and organ phenology in deciduous angiosperms growing in seasonally cold climates. New Phytologist 2021; 230: 1700-1715.
Sherry RA, Zhou X, Gu S, Arnone JA, Schimel DS, Verburg PS, et al. Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of Sciences 2007; 104: 198-202.
Sparks TH, Menzel A. Observed changes in seasons: an overview. International Journal of Climatology 2002; 22: 1715-1725.
Suzuki M, Yoda K, Suzuki H. Phenological comparison on the onset of vessel formation between ringporous and diffuse-porous deciduous trees in a Japanese temperate forest. IAWA Journal 1996; 17: 431-444.
Takahashi S, Okada N, Nobuchi T. Relationship between vessel porosity and leaf emergence pattern in ringand diffuse-porous deciduous trees in a temperate hardwood forest. Botany 2015; 93: 31-39.
Taneda H, Sperry JS. A case-study of water transport in co-occurring ring- versus diffuse-porous trees: contrasts in water-status, conducting capacity, cavitation and vessel refilling. Tree Physiology 2008; 28: 1641-1651.
Tardif J. C. FC. Influence of climate on tree rings and vessel features in red oak and white oak growing near their northern distribution limit, southwestern Quebec, Canada. Canadian Journal of Forest Research 2006; 36: 14.
Tyree MT, Zimmermann MH. Xylem structure and the ascent of sap. Berlin Heidelberg New York: SpringerVerlag, 2010.
Vieira J, Moura M, Nabais C, Freitas H, Campelo F. Seasonal adjustment of primary and secondary growth in maritime pine under simulated climatic changes. Annals of Forest Science 2019; 76: 84.
Vodnik D, Gričar J, Lavrič M, Ferlan M, Hafner P, Eler K. Anatomical and physiological adjustments of pubescent oak (Quercus pubescens Willd.) from two adjacent sub-Mediterranean ecosites. Environmental and Experimental Botany 2019; 165: 208-218.
Way DA, Montgomery RA. Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant, Cell \& Environment 2015; 38: 1725-1736.
Zani D, Crowther TW, Mo L, Renner SS, Zohner CM. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 2020; 370: 1066-1071.
Zweifel R, Zimmermann L, Zeugin F, Newbery DM. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. Journal of Experimental Botany 2006; 57: 1445-1459.

	Observation	Unit	Mean	Std	Min	Max	Data availability
	Bud break	DOY	108	5	97	116	2014 - 2020*
	Leaf emergence	DOY	114	7	104	127	2014 - 2019*
	Leaf unfolding	DOY	134	4	124	142	2014-2019
	Autumn colouring	DOY	287	28	246	324	2014-2019**
	Onset CA	DOY	75	7	62	87	2014-2020
	First xylem cells	DOY	89	7	71	98	2014-2019
	First expanding EW vessels	DOY	98	6	87	109	2014-2019
	Transition EW-LW	DOY	144	9	129	156	2014-2019
	Transition EP-LP	DOY	144	9	127	160	2014-2019
	End CA	DOY	209	9	187	219	2014-2019
	Duration CA	DOY	133	11	105	149	2014-2019
$\frac{\varepsilon}{\frac{\varepsilon}{\lambda}}$	EW width	$\mu \mathrm{m}$	422	106	242	634	2014-2019
	IEV area	$\begin{aligned} & \mu \mathrm{m}^{2} \\ & 10^{2} \end{aligned}$	598	133	315	865	2014-2019
	LW width	$\mu \mathrm{m}$	412	335	94	1447	2014-2019
	Xylem width	$\mu \mathrm{m}$	834	408	387	2039	2014-2019
$\begin{aligned} & \frac{\varepsilon}{\omega} \\ & \frac{0}{\frac{1}{2}} \end{aligned}$	EP width	$\mu \mathrm{m}$	145	27	89	191	2014-2019
	EP mean sieve tube area	$\begin{aligned} & \mu \mathrm{m}^{2} \\ & 10^{2} \end{aligned}$	115	15	73	142	2014-2019
	LP width	$\mu \mathrm{m}$	122	43	48	202	2014-2019
	Phloem width	$\mu \mathrm{m}$	267	58	150	360	2014-2019
* Observations missing for 2018							

шәоІчд
EP mean sieve tube area
LP width $\quad \mu$
Phloem width
$\mu \mathrm{m}^{2}$
10^{2}
$\begin{array}{llllll}\mu \mathrm{m} & 122 & 43 & 48 & 202 & 2014-2019\end{array}$
$\begin{array}{llllll}\mu \mathrm{m} & 267 & 58 & 150 & 360 & 2014-2019\end{array}$

TABLES

Table 1: Basic descriptive statistics with mean and standard deviation (Std), and minimum and maximum range. Abbreviations: CA (cambial cell production), EW (earlywood), LW (latewood), EP (early phloem), LP (late phloem), IEV (initial earlywood vessel).

FIGURE CAPTIONS

Figure 1: Loading plot of first two principal components (Dim1 and Dim2) of PCA showing the interdependence of studied ecophysiological variables. Positively correlated variables point to the same direction, negatively correlated variables diverge and form an angle close to 180°, while unrelated variables meet each other at approximately 90°. Abbreviations: CA (cambial cell production), EW (earlywood), LW (latewood), EP (early phloem), LP (late phloem), IEV (initial earlywood vessels).

Figure 2: Kendall's tau correlations and their significance, and linear regression models with 95\% confidence interval among selected key pairs of leaf and cambium phenological phases, and xylem and phloem traits. Individual observations are of sampled Quercus pubescens trees in each year during the 2014-2019 (2020) period. The colour of the regression lines indicates the group of variables on the y-axis: Leaf phenology (green), cambial phenology (blue), xylem phenology (orange) and phloem phenology (red). Abbreviations: Prev. (previous), CA (cambial cell production), EW (earlywood), LW (latewood), EP (early phloem), LP (late phloem), IEV (initial earlywood vessel).

Figure 3: Scatterplots of leaf phenology (green colour) and radial growth (blue colour) plotted against different weather parameters (Heat Degree Days (HDD5), Cooling Degree Days ($C^{20} D_{20}$), 10-day mean temperature, vapour pressure deficit (VPD), soil water content (SWC) and precipitation sum before the phenological phase). Here we show only more significant variables of SWC/precipitation and temperature/VPD pairs, while remaining panels are shown in Supplementary Figure 5. For autumn colouring we considered a fixed season between DOY 210 and 240 . Each observation is shown per tree. Abbreviations: CA (cambial cell production), EW (earlywood), LW (latewood), EP (early phloem), LP (late phloem).

Figure 4: The effect of mean temperature, precipitation sums, soil water content (SWC) and vapour pressure deficit (VPD) on xylem and phloem traits in the 2014-2019 period. We show only significant correlations ($p<0.05$) between the pairs of xylem/phloem variable and aggregated daily environmental data. Abbreviations: IEV (initial earlywood vessel), EP (early phloem).

833 Days ($\left.G_{D D_{5}}\right)$, Heat Degree Days (HDD_{5}) and Cooling Degree Days (CDD_{20}). Abbreviation: CA (cambial cell production).

Year	Spring phenological observations	DOY	GDD $_{5}\left[{ }^{\circ} \mathbf{C}\right]$	$\mathbf{H D D}_{5}\left[{ }^{\circ} \mathbf{C}\right]$	Autumn phenological observations	DOY	CDD $_{20}\left[{ }^{\circ} \mathbf{C}\right]$
	Onset CA	79	247	236	End CA	219	1274
2014	Onset CA	73	143	137	End CA	216	847
2015	Onset CA	80	177	142	End CA	211	746
2016	Onset CA	77	143	141	End CA	192	967
2017	Onset CA	79	116	67	End CA	209	1088
2018	Onset CA	68	148	154	End CA	208	965
2019	Onset CA	66	175	171	End CA Autumn colouring	-	289

Supplementary Figure 1: Monthly mean temperature and precipitation sums, including cumulative sums based on daily precipitation data for the analysed years 2014-2019.

Supplementary Figure 2: Kendall's τ coefficients among xylem and phloem traits and phenology of leaf, xylem and phloem. Only significant coefficients with $p<0.05$ are shown. Abbreviations: Prev. (previous), CA (cambial cell production), EW (earlywood), LW (latewood), EP (early phloem), LP (late phloem), IEV (initial earlywood vessel).

Supplementary Figure 3: Scree plot showing the percentage of explained total variance for the first ten principal components.

Supplementary Figure 4: The interdependence of the studied ecophysiological variables was analysed with the alternative loadings plot, where variables bud break and leaf emergence are excluded and the year 2018 is included. We can observe the effects of the studied variables on PC component one and two. Positively correlated variables point in the same direction, negatively correlated variables diverge and form an angle close to 180°, while unrelated variables meet each other at approximately 90°. Abbreviations: CA (cambial cell production), EW (earlywood), LW (latewood), EP (early phloem), LP (late phloem), IEV (initial earlywood vessels).

Supplementary Figure 5: Scatterplots of leaf phenology (green colour) and radial growth (blue colour) plotted against different weather parameters (Heat Degree Days (HDD_{5}), Cooling Degree Days $\left(\mathrm{CDD}_{20}\right)$, 10 day mean temperature, vapour pressure deficit (VPD), soil water content (SWC) and precipitation sum before the phenological phase). Here we show only less significant variables of SWC/precipitation and temperature/VPD pairs, while remaining panels are shown in Figure 3. For autumn colouring we considered a fixed season between DOY 210 and 240. Each observation is shown per tree. Abbreviations: CA (cambial cell production), EW (earlywood), LW (latewood), EP (early phloem), LP (late phloem).

[^0]: Authors: Jožica GRIČAR ${ }^{\text {a1* }}$, Jernej JEVŠENAK ${ }^{\text {a1 }}$, Polona HAFNER ${ }^{\text {a }}$, Peter PRISLAN ${ }^{\text {b }}$, Mitja FERLAN ${ }^{c}$, Martina LAVRIČa ${ }^{\text {a }}$, Dominik VODNIK ${ }^{\text {d }}$, Klemen ELER ${ }^{\text {c,d }}$
 ${ }^{\text {a D Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, }}$ Slovenia
 ${ }^{\text {b }}$ Department of Forest Techniques and Economics, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
 ${ }^{\text {c D Department of Forest Ecology, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia }}$ ${ }^{\text {d }}$ Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
 *Correspondence: Jožica Gričar, Department of Yield and Silviculture, Slovenian Forestry Institute, Slovenia, E-mail: jozica.gricar@gozdis.si, Phone: +386 12007853
 ${ }^{1}$ Jožica Gričar and Jernej Jevšenak contributed equally to this work and are to be considered co-first authors.

 ## Funding

