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ABSTRACT
Min-max optimisation is a special instance of a bilevel problem.
It deals with the minimisation of the maximum output in all sce-
narios of a given problem. In this paper, numerical experiments
are conducted to assess the accuracy and efficiency of three bilevel
algorithms - known to perform well in general bilevel problems –
on 13 unconstrained min-max test-functions. This study aims to
bring the bilevel and min-max evolutionary community together
and create a common ground for both optimisation problems.
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1 INTRODUCTION AND DEFINITIONS
The bilevel optimisation problem (BOP) is an optimisation problem,
operating as the upper-level (UL), which has another optimisa-
tion problem as a constraint, namely the lower-level (LL) [4]. This
problem is usually challenging and complex to solve. Due to this
complexity, where a solution is hard to find when no assumptions
about the problem are made, the community has attempted to solve
them both with classical and evolutionary approaches.
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Min-max optimisation is a special instance of a BOP. It deals
with the minimisation of the maximum output in all scenarios of
a given problem. These problems arise naturally in optimisation
under uncertainty, where the LL plays the role of nature, which
reacts to the UL’s decisions in the most destructive way. Though
there are evolutionary algorithms designed specifically for min-
max problems, the evolutionary bilevel algorithms have -to the
best knowledge of the authors- never been tested on this kind of
problems. This study aims to bring bilevel and min-max evolution-
ary community and create the first steps for a common ground for
both optimisation problems. Furthermore, min-max synthetic and
real-world problems can be used to extend the bilevel benchmark
functions.

Bilevel Optimisation Problem: The mathematical representa-
tion is as follows:

min
𝑥 ∈𝑋,𝑦∈𝑌

𝐹 (𝑥,𝑦) subject to 𝐺𝑘 (𝑥,𝑦) ≤ 0, 𝑘 = 1, ..., 𝐾, (1)

where 𝐾 is number of constraint functions of UL and 𝑦 is the
solution of the LL problem from the set of solutions 𝑌 ⊆ 𝑅𝑛 , with
regard to solution from UL, 𝑥 from set of solutions 𝑋 ⊆ 𝑅𝑚 ,where

𝑦 ∈ arg min
𝑦∈𝑌

𝑓 (𝑥,𝑦) subject to 𝑔 𝑗 (𝑥,𝑦) ≤ 0, 𝑗 = 1, ..., 𝐽 , (2)

where 𝐽 is the number of constraint functions of the LL. 𝐹 repre-
sents UL’ s objective function, while 𝑓 represents the LL’ s objective
function. The problem becomes ill-defined when more than one LL
optimal solutions for all or some UL variables exist. One common
approach for the researchers to tackle this problem is to identify
two possible positions, namely the optimistic and the pessimistic
position [4].

Min-max Optimisation Problem: The general unconstrained
min-max problem can be described as:

min
𝑥 ∈𝑋

max
𝑦∈𝑌

𝑓 (𝑥,𝑦) (3)

and 𝑋 ⊆ 𝑅𝑚 represents the set of candidate solutions and 𝑌 ⊆ 𝑅𝑛

the set of all possible scenarios. UL and LL are sharing the same
objective function 𝑓 (𝑥,𝑦), where UL is minimising according to the
variables 𝑥 of the solution space and LL is maximising according to
the uncertain parameters 𝑦 of the scenario space [3]. They can be
symmetrical or asymmetrical [5].

2 EXPERIMENTAL SETUP
Three algorithms are considered to evaluate the performance of
bilevel evolutionary approaches to min-max problems. BLDE is a
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completely nested approach using the Differential Evolution algo-
rithm (DE) in both levels found in [1], while BLEAQ2 [4] is using
the approximations of 2 mappings; the LL rational reaction map-
ping and the LL optimal value function mapping along with a GA.
Last, BLCMAES[2], is a nested CMA-ES with a sharing distribution
mechanism that allows a priori knowledge of the LL optimisation
from the UL optimisation procedure. The algorithms were selected
for the following reasons:

• The performance of these algorithms on numerous bilevel
test functions is available and one can compare their perfor-
mance also for the min-max test functions.

• The original code for BLEAQ2 and BLCMAES can be found
online, which is valuable for the reproducibility of the exper-
iments. BLDE code was implemented by the authors since
the original is not available.

• The approach of the 2 mappings and CMA-ES with sharing
distribution, has -to the best of our knowledge- never been
implemented in min-max algorithms and can be beneficial
in reducing the cost of a nested approach.

The evolutionary methods in this paper assumed an optimistic
approach. This, nonetheless, is not affecting the min-max optimisa-
tion problems. Min-max problems are sharing the same function
and are pessimistic by default. That means that even in the case of
multiple LL global optima, whichever is taken into account is a UL
worst-case scenario.

We tested 13 unconstrained min-max test problems as collected
in [3]. The first 𝑓1 − 𝑓7 test functions are convex in the upper level
and concave in the lower. The dimensions range from 1 to 5 both
for the upper and lower levels. All functions are symmetrical except
for the functions 𝑓9 − 𝑓11, which are asymmetrical.

Please note this is not meant to be a benchmarking assessment
among them, but a preliminary idea on how they perform. All
algorithms are independently run 31 times on each test function.
For the test function 𝑓10 and algorithm BLEAQ2 one run is reported,
as an error was stopping the runs. Further investigation on why is
this happening is ongoing.

3 RESULTS
Table 1 reports the numerical results obtained from the 3 algorithms
in terms of median accuracy. Accuracy is |𝑓 − 𝑓 ∗ |, where 𝑓 is the
optimal function value and 𝑓 ∗ is the one obtained during a run. In
the same table, the median number of total function evaluations
needed is reported. In most of the test instances, the algorithms
manage to converge to the optimal min-max solution. What is
interesting, is that for 𝑓10, except for the non-convergence/ error
of BLEAQ2, BLCMAES also performs poorly. BLDE manages to
converge to near-optimal solutions wasting all the computational
budget it had. 𝑓10 is a function with many local optima. BLCMAES
seems to be trapped to local optima of the upper level, agreeing with
the observation made in [2], where it states that the efficiency of
the algorithm is low on problems with many local optima in the UL,
as CMAES, in general, prefers exploitation rather than exploration.
BLEAQ2’ s one run yields to a solution far from the real optimal as
well.
1Results for BLEAQ2 after only 1 run for 𝑓 10

Problems BLEAQ2 BL-CMAES BL-DE

𝑓1
Accuracy 3.33e-05 3.33e-05 3.33e-05
TotalFEs 4767 51884 1552440

𝑓2 Accuracy 1.69e-05 1.69e-05 1.69e-05
TotalFEs 5998 73098 1548570

𝑓3 Accuracy 3.31e-05 2.46e-05 1.67e-07
TotalFEs 7123 71865 1147080

𝑓4 Accuracy 3.39e-05 3.39e-05 3.39e-05
TotalFEs 8644 69624 1553370

𝑓5 Accuracy 2.99e-04 2.99e-04 6.35e-07
TotalFEs 8823 76725 1468560

𝑓6 Accuracy 3.02e-05 3.03e-05 3.59e-04
TotalFEs 11978 92829 1561620

𝑓7 Accuracy 7.90e-2 7.90e-2 9.36e-2
TotalFEs 35526 182646 1561620

𝑓8 Accuracy 5.09e-16 1.51e-07 4.55e-07
TotalFEs 2849 9066 366180

𝑓9 Accuracy 5.47e-3 6.40e-07 0
TotalFEs 42435 12605 87450

𝑓10 Accuracy [2.25e-2]1 1.89e-1 3.027e-7
TotalFEs [129803] 50639 1561620

𝑓11 Accuracy 7.6e-3 5.34e-4 4.00e-3
TotalFEs 121803 29828 1561620

𝑓12 Accuracy 5.55e-15 7.64e-07 2.08e-07
TotalFEs 5525 45749 733500

𝑓13 Accuracy 6.45e-3 6.78e-07 4.09e-04
TotalFEs 11249 142950 1561620

Table 1: Median Accuracy and Function Evaluations Results

4 CONCLUSIONS
In this paper, we presented a preliminary study on solving min-max
problems with evolutionary bilevel algorithms. The fundamental
idea was that sincemin-max is a special instance of bilevel problems,
the evolutionary bilevel algorithms should be able to perform well
also in this kind of problem. To the best of our knowledge, this is
the first time bilevel evolutionary algorithms are tested on min-max
test functions. It was shown that in most of the test instances the
algorithms manage to converge to the optimal min-max solution.
Further investigating and interpreting the current results of this
study is the next step of our research. Future work includes testing
the bilevel algorithms to more complex min-max functions, such as
with higher dimensionality and constraints. Since some knowledge
about the problem is available for min-max problems, modifying
the bilevel algorithms to perform more efficiently on this kind of
problem is also an important aspect to be further investigated.

ACKNOWLEDGMENTS
The authors would like to thank the developers of BLEAQ2 and
BLCMAES for making their code available online.

This work is funded by the European Commission’s H2020 pro-
gram, through the UTOPIAE Marie Curie Innovative Training Net-
work, H2020-MSCA-ITN-2016, Grant agreement no. 722734 and
partially funded by the Slovenian Research Agency, Research core
funding No. P2-0098.

REFERENCES
[1] Jaqueline S Angelo, Eduardo Krempser, and Helio JC Barbosa. 2013. Differen-

tial evolution for bilevel programming. In 2013 IEEE Congress on Evolutionary
Computation. IEEE, 470–477.

[2] Xiaoyu He, Yuren Zhou, and Zefeng Chen. 2018. Evolutionary bilevel optimiza-
tion based on covariance matrix adaptation. IEEE Transactions on Evolutionary
Computation 23, 2 (2018), 258–272.

[3] Julien Marzat, Eric Walter, and Hélène Piet-Lahanier. 2013. Worst-case global
optimization of black-box functions through Kriging and relaxation. Journal of
Global Optimization 55, 4 (2013), 707–727.



Solving Min-Max Optimisation Problems by Means of Bilevel Evolutionary Algorithms GECCO ’20, July 8–12, 2020, Cancun, Mexico

[4] Ankur Sinha, Zhichao Lu, Kalyanmoy Deb, and Pekka Malo. 2020. Bilevel op-
timization based on iterative approximation of multiple mappings. Journal of
Heuristics 26, 2 (2020), 151–185.

[5] Siyan Xiong and Ruimin Gao. 2015. NewApproaches to the Problems of Symmetric
and Asymmetric Continuous Minimax Optimizations. In International Conference
on Intelligent Computing. Springer, 36–46.


	Abstract
	1 Introduction and Definitions
	2 Experimental Setup 
	3 RESULTS 
	4 Conclusions
	Acknowledgments
	References

