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Abstract 

In a tolerant plant-virus interaction, viral multiplication is sustained without substantial effects on plant 

growth or reproduction. Such interactions are, in natural environments, frequent and sometimes even 

beneficial for both interactors. Here we compiled evidence showing that small RNAs modulate plant 

immune responses and growth, hence adjusting its physiology to enable a tolerant interaction. Importantly, 

the role of small RNAs in tolerant interactions resembles that required for establishment of a mutualistic 

symbiosis. Tolerance can become a sustainable strategy for breeding for virus resistance as selection 

pressure for emergence of more aggressive strains is low. Understanding the processes underlying 

establishment of tolerance is therefore important for the development of future crops. 

 

Introduction: Tolerance in-between disease and resistance 

Plant interactions with viruses rely on interplay of different processes; processes supporting viral 

amplification, plant defence responses and viral counter-defence mechanisms. The balance between these 

defines the outcome of the interaction, resulting in either resistance (no viral multiplication) or disease 

(virus spreads within the plant causing dysfunction of plant metabolism). Studies of virus-plant 

interactions in natural environments, however, showed that plants and viruses often coexist [1]. Although 

a significant virus load is supported, plant growth, yield and reproduction are only minimally affected and 

visible symptoms are either absent or mild. This type of interaction between plant and virus is termed 

tolerance. Tolerance can be explained as reaching an equilibrium between different defensive and 
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pathogenic processes to allow mutually advantageous compromises in host and virus fitness for long-term 

coexistence [2].  

Plant defence against virus infections is multilayered and includes  RNA silencing, pattern-triggered 

(PTI)- and effector-triggered (ETI)-immunity. Following virus entry into the plant cell, certain virus-

derived molecules are perceived as microbe-associated molecular patterns (MAMPs) by plant pattern 

recognition receptors (PRRs) and induce PTI [3–5]. Some viruses encode specialized effector proteins that 

are able to suppress this defence layer to promote their virulence [6]. In turn, many plants have evolved 

resistance (R) genes which usually code for nucleotide-binding site-leucine-rich repeat (NBS-LRR) 

receptor proteins that mediate intracellular specific recognition of viral effector proteins and initiate ETI 

[6,7]. RNA silencing is regarded as an adaptive form of antiviral immunity [8]. Inducers of RNA silencing 

are virus-derived dsRNAs, which are recognized by DICER-like (DCL) proteins and then processed into 

virus-derived small interfering siRNAs (vsiRNAs). vsiRNAs are recruited into different Argonaute (AGO) 

protein(s) forming RNA-induced silencing complex (RISC) that act against viral RNA molecules. Cleaved 

viral RNA further serves as a template for host RNA-dependent RNA polymerase (RDR) to synthesize de 

novo dsRNAs thus boosting antiviral silencing effect [9]. Many viruses however adaptively evolved to 

evade this type of immunity by encoding viral suppressors of RNA silencing (VSRs) as viral effectors that 

interfere with nearly every step of the RNA silencing pathway [10–12].  

RNA silencing also has an important function in regulation of plant endogenous processes (reviewed in 

[11]. Plants synthesize different small RNAs (sRNAs), classified into microRNAs (miRNAs) and small 

interfering RNAs (siRNAs) on the basis of their biogenesis and structures of their precursors. Both 

miRNAs and siRNAs bind to AGOs to mediate post-transcriptional gene silencing (PTGS) via sRNA-

directed mRNA cleavage or translational repression, or transcriptional gene silencing (TGS) via sRNA-

directed DNA methylation [13,14]. To date, a plethora of plant sRNAs was found to be involved in PTI 

and ETI [15], showing that RNA silencing, PTI and ETI are closely linked. Components of PTI/ETI can 

transcriptionally regulate activity of sRNAs and sRNAs regulate activity of PTI/ETI components 

posttranscriptionally. Functional characterization studies of sRNA´s role in plant immune responses were 

mainly performed in plant-bacteria or plant-fungi pathosystems [16], while knowledge of the relationships 

between sRNAs and immune responses against viruses is still scarce. There is a vast number of reports 

describing how viral infection perturbs the endogenous sRNA levels, but many of these, so-called virus-

responsive sRNAs, are yet to be functionally characterized [14].  

While molecular mechanisms in resistance against viruses were intensively studied [17–19], the molecular 

basis of tolerance is much less understood. Disease can be the consequence of ineffective runaway 

immune response, metabolism shifts and cell rearrangements caused by viral multiplication or viral toxic 



effects (reviewed in [20]). Thus modifying any of these can result in tolerance. On the other hand, 

tolerance can also be a result of active recognition of the virus by receptor kinases, tuning the responses 

towards the favourable outcome for both organisms.  

In this review, we will succinctly summarize current knowledge of sRNAs’ functions governing tolerance. 

We also present the available knowledge on the roles of sRNAs in disease recovery, a tolerant state plants 

may acquire at later stages of certain plant-virus interactions. We additionally compare the involvement of 

sRNAs in establishment of tolerance and mutualistic symbiosis, as we argue that tolerance can be 

regarded as an intermediate state in symbiotic the continuum between antagonistic and mutualistic 

relationships. 

 

sRNAs at a crossroad: disease or tolerance 

Interestingly, many sRNAs found to date associated with the tolerance are closely interconnected either 

ETI or PTI immune signalling. Alternatively, tolerance promoting sRNAs are balancing trade-offs 

between growth and immunity. 

In rice, miR444 promotes tolerance to rice stripe virus (RSV) infection. miR444 reduces accumulation of 

its targets, transcripts encoding MIKCC-type MADS box proteins, MADS23, MADS27, and MADS5, 

which are transcriptional repressors of the RDR1 gene (Figure 1) thus boosting RNA-silencing against the 

virus. Over-expression of miR444 resulted in milder symptoms and reduced accumulation of RSV [21]. 

Another monocot-specific miRNA, miR528, is involved in tolerant interaction of rice to RSV. In contrast 

to miR444, miR528 seems to act as a negative regulator by cleaving L-ascorbate oxidase (AO) mRNAs, 

thereby reducing AO-mediated accumulation of reactive oxygen species (ROS). ROS is an important 

signalling component in antiviral immunity [22]. mir528 mutant plants displayed milder symptoms and 

accumulated less virus, whereas miR528 overexpression lines were more susceptible to RSV infection 

[23]. Similarly, in interaction with rice black-streaked dwarf virus (RBSDV), increased accumulation of 

miR528 contributed to much more severe disease symptoms, higher disease incidence and increased levels 

of viral RNA, whereas miR528 deficiency enhanced antiviral defence against RBSDV infection [23]. 

miR528 was found to be negatively regulated by the ROS, hydrogen peroxide [24], indicating that redox 

homeostasis is important in promoting tolerance. In diseased maize, miR528 was up-regulated after 

sugarcane mosaic virus infection, while miR444 was downregulated, further supporting their role as 

positive and negative regulators of antiviral immunity in monocots [25]. The MIR528 gene is 

transcriptionally activated by the SQUAMOSA Promoter-Binding-Like 9 (SPL9) transcription factor. 

Similarly, as the increased level of miR528, SPL9 overexpression leads to severe disease symptoms, 

higher disease incidence and increased virus accumulation [26]. Moreover, SPL9 is targeted by miR156, 



which when downregulated, has been linked to disease symptom occurrence in rice and maize plants in 

response to RSV and RBSDV (Figure 1) [27,28].  

 

Figure 1: Role of sRNAs in plant tolerance to viral infection. Regulatory sRNA/transcript modules 
identified in monocots (upper panel) and in dicots (lower panel) are shown. Thick arrows indicate 
increase/decrease in abundance of signalling components (blue arrows) and symptoms development 
(green arrows), black thin arrows denote activation and bar-headed lines denote inhibition. SPL9 - 
SQUAMOSA Promoter-Binding-Like 9 transcription factor, AO - L-ascorbate oxidase, ROS - reactive 
oxygen species, MADS - MIKCC-type MADS box protein, RDR - RNA-dependent RNA polymerase, SA 
- salicylic acid, JA - jasmonic acid, TCP - Teosinte branched1/cycloidea/proliferating bHLH transcription 
factor, GAMYB – MYB transcription factor controlling gibberellin signalling, LOX2 - lipoxygenase 2, 
RLK - receptor-like kinases.  

 

In dicots, however, miR156 seem to function as a negative effector of immunity.  Increased levels of 

miR156 were found to correlate with severity of disease symptoms in Nicotiana benthamiana in response 

to potyviruses potato virus Y (PVY) and plum pox virus, and potexvirus potato virus X [29]. Similarly, 

miR156 levels were significantly increased by tobacco mosaic virus, and its levels correlated with 

symptom severity in tobacco (Nicotiana tabacum) [30]. miR156 levels were also upregulated in tobacco 

plants infected with PVY [31]. Recently, miR156/SPLs regulatory module was found to control innate 



immunity by regulating ROS accumulation and activating the salicylic acid (SA) signalling pathway in 

Arabidopsis. mir156 suppression mutants or SPL9 overexpression mutants exhibited increased ROS levels 

and decreased expression of SA signalling genes [32]. When challenged with virulent Pseudomonas 

syringae pv. tomato DC3000strain the same plants showed less severe symptoms and lower bacterial 

proliferation. SA- and ROS-signalling pathways were crucial also in antiviral immunity [22,33]. Since 

SPL9 also negatively regulates jasmonic acid (JA) response [34] the miR156/SPL9 module must be 

important in controlling tolerance responses by regulating immune signalling networks through multiple 

connections in dicots. Even though the module has not been yet functionally characterized in response to 

viral infections, the elevated levels of miR156 often detected in diseased dicot plants imply that the 

module might function similarly as in response to bacteria [30,31,35].  

Furthermore, sRNAs link immune signalling with growth. In response to PVY infection, tolerant potato 

plants exhibited increased levels of miR167 and a secondary siRNA (phasiRNA931) that target transcripts 

encoding two gibberellin (GA) biosynthesis genes, and miR319 (closely related to Arabidopsis miR159), 

which targets MYB33, which encodes a GAMYB transcription factor involved in GA signal transduction 

[36]. In Arabidopsis, a GAMYB-targeting miR159 was reported to be involved in limiting disease 

symptoms in response to a severe strain of CMV. Derepression of miR159 targets MYB33 and MYB65 

resulted in exacerbated disease symptoms, whereas myb33/myb65 double knockout resulted in ameliorated 

symptoms [37]. Similarly, a diminished level of miR159 was detected in N. tabacum leaves displaying 

disease symptoms after CMV infection [38], further confirming the positive role of miR159/miR319 in the 

antiviral response. Additionally, there is a link between GA signalling and R gene expression, supporting 

the hypothesis that viral perception is actively modulated in tolerant interactions. In the potato-PVY 

interaction, downregulation of miR6022 (targeting LRR-RLKs) occurs, which is linked to downregulation 

of GA signalling as GAMYB binding sites were discovered in the MIR6022 promoter region [36]. The 

miR159/miR319 family also targets Teosinte branched1/cycloidea/proliferating (TCP) bHLH 

transcription factor which targets lipoxygenase 2 (LOX2) involved in JA biosynthesis [39] (Figure 1).  

In monocots, by contrast, miR319 negatively regulates tolerance responses of rice to rice ragged stunt 

virus and of wheat to RBSDV. miR319 overexpression facilitates infection and symptom development, 

whereas blocking its activity results in milder symptoms and lower virus levels [39]. Similar to miR156 

and miR319, miR166 is another conserved miRNA that displays a contrasting regulatory role in antiviral 

responses in monocot and dicot species. In dicots, suppression of miR166 expression attenuates symptom 

development [30,40,41]. On the other hand, decreased miR166 levels were detected in symptomatic virus-

infected rice and maize [25,42]. 

 



Symbiosis and tolerance: are they more similar than we think? 

Rhizobial and plant arbuscular mycorrhizal (AM) symbioses represent two of the most researched 

mutualistic interactions, leading to development of nitrogen-fixing nodules and mycorrhizal arbuscules, 

respectively [43]. Recent evidence suggests that a plethora of plant sRNAs are involved in both types of 

symbiosis [44,45]. One set of regulated sRNAs is associated with negative control of R genes (i.e. NBS-

LRRs), which is in line with the hypothesis that balancing of plant immune responses is required to 

tolerate invasion and proliferation of beneficial microorganisms. Decreased disease resistance gene 

expression and increased levels of legume-specific miRNAs targeting them (e.g. miR5213, miR5281) 

were observed during AM symbiosis in Medicago truncatula [46]. Moreover, miR482, which targets 

NBS-LRR transcripts was reported to be induced during establishment of symbiosis between soybean and 

Bradyrhizobium japonicum [47]. Notably, miR482 which targets NBS-LRR transcripts was upregulated 

following PVY infection in the tolerant potato-PVY interaction [36]. Similarity in regulation of certain 

sRNAs should not be so unexpected because in both, the tolerant response to viruses and mutualistic 

interactions, plants need to tolerate the presence of microorganisms (Figure 2).  

Many miRNAs, reported to regulate rhizobial and AM symbioses, are implicated in the direct or indirect 

regulation of auxin signalling genes[46,48]. This is not surprising since auxin levels are crucial for proper 

legume nodule and arbuscule development [49,50]. Interestingly, many miRNAs, namely miR160, 

miR164, miR167, miR390, miR393 were found to be similarly regulated during tolerance response of 

potato to PVY [36]. Also, decreased GA levels were shown to be regulated by a miRNA/phasiRNA circuit 

in the potato tolerance response [36] and shown to be involved in rhizobial and mycorrhizal signalling 

network [51–53]. This is yet another similarity between the response of plants in mutualistic symbiosis 

and in the tolerance response (Figure 2). Several other miRNAs that were upregulated in tolerant response 

to PVY in potato, such as miR169, miR171 and miR319, also regulate nodulation and AM symbiosis in 

different legume species [46,54]. miR171 was linked to tolerance in several viral pathosystems [30,55–

57]. Rice overexpressing miR171 is less susceptible to RSV and shows attenuated disease symptoms, 

whereas reducing miR171 accumulation leads to development of disease symptoms [57].  



 

Figure 2: sRNA regulation links immunity and developmental processes in tolerance similarly as in 
establishment of mutualistic symbiosis. All examples of processes regulated by sRNAs in both types of 
interaction currently known are presented. Both, immune response and growth/developmental hormonal 
networks are regulated by sRNAs in both types of interaction. All regulatory levels are however tightly 
intertwined. miRNAs are represented by red triangles, phasiRNA is represented by a brown triangle. 
Arrows present relationship between sRNAs and receptors (blue ovals) or signalling modules (green 
rectangles), black for the regulation of transcripts by sRNA and blue for the regulation of sRNA by 
transcription factor in one of the modules. NBS-LRR - nucleotide-binding site-leucine-rich repeat 
proteins, RLK – receptor-like kinases, ROS reactive oxygen species, SA – salicylic acid, JA – jasmonic 
acid, – AUX – auxin, GA – gibberellin.  

 

 

sRNA and disease recovery: it is never too late 

Some virus-infected plants are able to recover from the disease at later stages of infection. This outcome is 

known as symptom recovery and is characterized by emergence of asymptomatic leaves following a 

systemic symptomatic infection, despite persistence of the virus [58–60]. The plant recovery phenotype 

thus mimics the tolerant phenotype, and disease recovery can be therefore regarded as an inducible form 

of tolerance [20]. One of the characteristics of recovery is that recovered leaves exhibit resistance to 

reinfection by a related but not unrelated viruses, suggesting that recovery is governed by a sequence-

specific defence mechanism such as RNA silencing [9]. Indeed, recovery depends on AGO1 [61], the core 

component of antiviral silencing, on DCL4/RDR6/SGS3 PTGS pathway and on two TGS components, 

RDR2 and RNA polymerase IV, which are involved in the maintenance and spread of silencing [62]. 

Based on that, Kørner et al., proposed a model for disease recovery suggesting, that the dose of so-called 



antiviral siRNAs in tissues undergoing recovery needs to surpass a critical threshold to saturate the VSR 

and block its activity, ultimately allowing the recovery [62]. Antiviral siRNA are thought to primarily 

originate from symptomatic tissues, as they contain high amounts of viral RNA available for degradation. 

Accordingly, removal of symptomatic leaves was shown to delay recovery [60]. Since recovery correlated 

with increased vsiRNA level in recovered leaves, it was suggested that vsiRNAs are the crucial molecules 

causing the VSR saturation [62–64]. However, the putative involvement of plant secondary siRNAs which 

are also produced by DCL4/RDR6/SGS3 pathway [65] was not considered. Recent sRNA-ome analysis of 

PVY-infected tomato before and after symptom recovery identified many differentially regulated 

endogenous miRNAs and secondary siRNAs, suggesting that besides vsiRNAs, plant sRNAs seem to be 

important for the transition from diseased to recovered conditions as well [59]. In the case of DNA 

viruses, such as geminiviruses, plants additionally employ a TGS pathway [66,67]. sRNA-mediated 

methylation of viral genome function in restriction of the transcription and movement of the virus and also 

promotes a recovery process [68,69].  

 

Conclusions 

For breeders, resistance is traditionally preferred over tolerance, as tolerant crops represent a virus 

reservoir, which might affect the sensitive varieties [20]. It was however reported that under some abiotic 

or biotic stress condition the latent viral infection can be even beneficial for the plant, enhancing the 

fitness of the host and offer protection against a larger spectrum of isolates compared to resistance [70]. 

Moreover, tolerance may also have an advantage over resistance for crop protection because it does not 

actively prevent virus infection and/or replication, therefore the selection pressure for the emergence of 

more aggressive strains is reduced, and it is thus likely to be more evolutionary stable than resistance [20]. 

sRNAs are known to modulate both immune response as well as growth and developmental signalling 

[36,71]. Increasing evidence shows that sRNAs govern the establishment of mutualistic symbiosis as well 

as tolerance, thus representing interesting markers for breeding. sRNAs, however, seem to act in complex 

ways, individually only contributing to a subtle effect, but by acting through multiple action points they 

gain their regulatory power. It seems that sRNAs are engaged with transcription factors and hormone 

pathways into a large network that coregulates the trade-offs between growth and immunity [72] (Figure 

2). We contend that understanding this multilayered response is thus crucial for design of agriculturally 

efficient crops in the future.  
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