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Abstract—This paper presents a study on making a statis-
tical comparison of multi-objective optimization algorithms
using an ensemble of quality indicators together with a deep
statistical comparison (DSC) approach. The DSC approach
has been recently proposed for statistically comparing meta-
heuristic stochastic optimization algorithms for single-objective
problems. The DSC ranking scheme is based on the whole
distribution, rather than on one statistic such as either the
average or the median. This study uses two ensemble combiners
to rank and compare algorithms using the DSC ranking scheme
for each quality indicator for a given problem. Experimental
results performed using 3 multi-objective optimization algo-
rithms on 16 test problems show that ensembles of quality
indicators with transformed DSC rankings give more robust
results than when the same ensembles are used with trans-
formed rankings obtained by some standard ranking schemes.

1. Introduction

In real-world applications, many problems involve multi-
objective optimizaiton [1]. Multi-objective optimization is
related to a mathematical optimization problem involving
more than one objective function to be optimized simultane-
ously. Because no single solution exists that simultaneously
optimizes each objective function, the objective functions
are said to be conflicting and there exists a set of alternative
solutions. Each solution that belongs to the set of alternative
solutions is optimal in a manner that no other solution from
the search space is superior to it when all objective functions
are considered. These solutions are known as Pareto-optimal
solutions and the set is the Pareto-optimal set. A represen-
tation of the Pareto-optimal set in the objective space is
called the Pareto-optimal front. Multi-objective optimization
algorithms (MOAs) [2] are assumed as powerful techniques

for finding a good approximation to the Pareto optimal front.
To date, many MOAs have been developed, but there is
no guarantee that optimal tradeoffs will be identified. They
can however, produce a good approximation i.e, a set of
solutions that is close to the optimal front. Experimental
analysis of the performance of any new algorithm is a crucial
task, and its performance must be compared with state-of-
the-art algorithms. The aim of the comparative studies is,
therefore, to explain the strengths and weaknesses of certain
approaches and to identify the most promising algorithms.

Working with single-objective optimization, the perfor-
mance of meta-heuristic stochastic optimization algorithms
is analyzed using the best algorithmic solution. For example,
in the case of minimization problems, the solution with
lowest value is the better one. However, in multi-objective
evolutionary algorithms, it is not clear what the quality of
a solution means in the presence of several optimization
criteria. The obtained result from a MOA is usually an
approximation of the Pareto-optimal front, called an approx-
imation set, and is analyzed according to different quality
aspects, for example the closeness to the optimal front,
coverage of a wide range of diverse solutions. Quality is
measured in terms of criteria that relate to properties of
convergence and diversity.

A large number of quality indicators, so-called per-
formance indicators or performance metrics, are used to
compare the performance of multi-objective stochastic opti-
mization algorithms in multi-objective optimization. These
indicators map the approximation sets to a set of real
numbers. The idea is to quantify quality differences between
approximation sets by applying common metrics from math-
ematics that result in real numbers. Quality indicators can be
either unary or binary, but in principle can take an arbitrary
number of arguments. An unary indicator is a real number
assigned to each approximation set that reflects a certain
quality aspect. A binary indicator is a real number that is
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assigned to pairs of approximation sets. The drawback of
using binary indicators is when more than two algorithms,
m, m > 2, need to be compared using a single binary
indicator. In such a case, m(m−1) different indicator values
are obtained, one per each pairwise comparison. This makes
the interpretation of the results more difficult in comparison
to the m values in the case of unary indicators.

In multi-objective optimization studies, researchers are
often interested in comparing the performance of algorithms
using a set of quality indicators. To consider the influence
of each used quality indicator, ensemble learning can be
applied [3]. In our case an ensemble learning involves
generating and combining multiple quality indicators to-
gether. Different techniques for combing quality indicator
results exist including for example, voting-based methods,
regression-based methods, and simple statistics.

In comparative studies, algorithms are used to solve a
number of benchmark problems followed by the application
of quality indicators to assess thier performance [4]. Meta-
heuristics are non-deterministic techniques, meaning there
is no guarantee that the result will be the same for every
run. To test the quality of an algorithm, therefore, it is
not enough to perform just one run, but to perform many
runs, from which conclusions can be drawn. By calculating
quality indicators for each approximation set, multivariate
data is transformed into univariate data. Additionally, this
data must be analyzed with some statistical tests to ensure
that the results are significant. If not, any conclusions drawn
may be wrong because differences between the algorithms
could have occurred by chance. Further, if algorithms need
to be compared over multiple multi-objective problems, for
each algorithm for each problem either the average or the
median of the quality indicator data needs to be calculated.
This value is then used as a representative value in a
multiple-problem scenario. Unfortunately, this can have a
negative affect on the results of a statistical test [5], because
averaging is sensitive to outliers that need to be considered
especially because the MOAs can have poor runs. Even
when there are no poor runs, the averages can be in some ε-
neighborhood, which is s set of all numbers whose distance
from a number is less than some specified number ε, and
the algorithms will obtain different rankings. Only in the
case of ties, average rankings are assigned. To overcome
this, medians are sometimes used because they are more
robust to outliers. However, medians can also be in some
ε-neighborhood, and accordingly the algorithms will obtain
different rankings. It can happen that the distributions of
the obtained quality indicator data from multiple runs on
one problem for the compared algorithms are the same, the
median values are in some ε-neighborhood, and because of
this the algorithms will have the same ranking. It can also
happen that the distributions are different, and the median
values are in some ε-neighborhood, and because of this
the algorithms need to obtain different rankings. If this is
the case, then the rankings of the algorithms are obtained
according to their averages or medians, so the algorithm
which has lower or higher value for either the average or
median, it depends from the quality indicator that is used,

is the better one.
For these reasons, in our previous work [6], an ap-

proach was used that removes the sensitivity of the simple
statistics to the data and enables the calculation of more
robust statistics without fearing the influence of outliers
or some errors inside the ε-neighborhood. This approach
is known as Deep Statistical Comparison (DSC) approach
and was developed to compare meta-heuristics stochastic
optimization algorithms for single-objective problems. The
term deep statistics derives from the ranking scheme that
is based on the whole distribution instead of using some
simple statistics such as either the averages or medians.

The aim of this study is an ensemble of quality indica-
tors using DSC for multi-objective optimization. First, for
each quality indicator, a DSC ranking scheme was used
to compare the obtained quality indicator data between
the algorithms for a single problem. By using DSC, each
algorithm obtains its ranking, which is robust to outliers
and some ε-neighbourhood. Then, by using an ensemble
combiner of the obtained rankings by each quality indicator,
the rankings of the algorithms on that problem are calcu-
lated. Further, the obtained rankings from the ensemble of
quality indicators for a single problem can be used together
with some statistical omnibus test for a multiple problem
scenario. The rest of the paper is organized as follows. In
Section II, an overview of the related works is presented.
In Section III, the DSC approach is reintroduced. Section
IV introduces the ensemble learning process that uses the
obtain rankings by each quality indicator involved in the
comparison. Section V presents the experimental study with
the discussion of the obtained results. The conclusions of the
paper are presented in Section VI.

2. Related work

There have been many studies addressing the problem of
how to compare approximation sets in a quantitative manner.
Some of them include unary indicators, while other studies
are based on binary indicators [7]. Another approach has
been to use an attainment function, which involves estimat-
ing the probability of attaining arbitrary goals in objective
space from multiple approximation sets [8]. Riquelme et
al. [7] presented a study of a large number of metrics
for comparing the performance of different multi-objective
optimization algorithms, and presented a review and an
analysis of fifty-four multi-objective optimization metrics
and a discussion about the advantages/disadvantages of the
most citied metrics in order to give researchers sufficient
information for choosing metrics is necessary. Additionally,
after calculating the quality indicator of interest, the data
must be analyzed using statistical tests [6], [9].

The idea of ensemble learning is used especially in the
domain of machine learning algorithms [3]. However, it
has also been used for optimization algorithms [10]. Such
an ensemble usually consists of very different optimization
algorithms, so it is able to solve more, different optimization
problems compared to each of the optimization algorithms
alone.



3. Deep Statistical Comparison

Deep Statistical Comparison (DSC) is a recently pro-
posed approach for comparing of meta-heuristic stochastic
optimization algorithms over multiple single-objective prob-
lems [6]. Its main contribution is its ranking scheme, which
is based on the whole distribution, instead of using only
one statistic to describe the distribution, such as either the
average or the median. The approach consists of two steps.
The first step uses a newly proposed ranking scheme to
obtain data in order to make a statistical comparison. The
ranking scheme is based on comparing distributions using a
statistical test, such as, the two-sample Kolmogorov-Smirnov
test or the two-sample Anderson-Darling test [11]. All pair-
wise comparisons between the compared algorithms must be
made, and the obtained p-values are organized in a matrix.
Further, because multiple pairwise comparisons are made,
these p-values are corrected using the Bonferroni correction
[9] in order to control the family-wise error, FWER [12].
The FWER is the probability of making one or more false
discoveries, or type I errors, among all hypotheses when
performing multiple hypotheses tests. The matrix is then
checked for transitivity, and on this basis the algorithms
obtain their rankings. In addition, some vectors that are
involved in the DSC ranking scheme need to be ordered
in ascending or descending order depending on the quality
indicator that is used. In the case of a single-objective
optimization, these vectors must be ordered in ascending
order, because the lowest value is the best solution assuming
a minimization problem. The second step is a standard
omnibus statistical test, which uses data obtained by the
DSC ranking scheme as the input data. By using the DSC,
wrong conclusions resulting from the presence of outliers
or misleading ranking scheme can be avoided.

4. Ensemble combiner

Ensemble learning is used to compare MOAs regarding
a set of quality indicators. However, before defining ensem-
bles, it is important to provide some details about the DSC
ranking scheme. The DSC ranking scheme produces data
to be used used by an omnibus statistical test, following
the idea of fractional ranking used in statistical tests. In
fractional ranking, items that compare equal receive the
same ranking, which is the average of what they would
have received under ordinal rankings. The benefit of using
a DSC ranking scheme is that the obtained rankings are
more robust because they are based on comparison of dis-
tributions. For example, if we compare three algorithms on
a given problem and the obtained DSC rankings are 1.50,
3.00, and 1.50, it means that the first and the third algorithm
perform equally and are better than the second algorithm.
However, to compare algorithms regarding a set of quality
indicators, we need to combine the DSC rankings obtained
by each quality indicator for each algorithm for a given
problem. An ensemble can work as a competition, so it can
combine the results of each quality indicator for a given
problem and at the end it will indicate which algorithm

wins. When combining DSC rankings, it does not matter if
the DSC rankings are 1.50, 3.00, and 1.50 or 1.00, 3.00, and
1.00 because having 1.00 or 1.50 means that the algorithm
is the best regarding some quality indicator. Since DSC
ranking scheme can never provide 1.00, 3.00, and 1.00
when comparing three algorithms (since it follows the idea
of fractional ranking), the DSC rankings for each quality
indicator must be transformed using a standard competition
ranking scheme, which is the adopted ranking scheme from
the literature used for competitions. In standard competi-
tion ranking, items that compare equally receive the same
ranking with a gap is left in the rankings. The number of
rankings that are left out in this gap is one less than the
number of items that compared equally. Each item ranking
is 1 plus the number of items ranked above it. Using the
standard competition ranking, it means that when two (or
more) competitors tie for a position in the ranking, the
position of all those ranked below them is unaffected.

Let us suppose that m MOAs are involved in the compar-
ison according to a set of quality indicators. Two ensemble
combiners, as competitions between the algorithms with
respect to a set of quality indicators, are proposed. Because
both ensembles are defined as competitions, they use a
transformed DSC rankings using a standard competition
ranking scheme according to the following equation:

RankT = Standard competition ranking(Rank), (1)

where Rank is a 1 × m vector that contains the DSC
rankings obtained for a given quality indicator for a given
problem, and RankT is a 1 × m vector that contains the
transformed DSC rankings using the standard competition
ranking.

The first ensemble combiner is based on the average
of the transformed DSC rankings. Each algorithm obtains
a ranking for each problem, which is the average of its
transformed DSC rankings by each quality indicator for that
problem. The algorithm with the lowest ranking is the best
one. The disadvantage of this combiner is the sensitivity of
the average to the presence of outliers and in order to avoid
this the median can be used instead.

The second ensemble combiner is a hierarchical majority
vote. First, the combiner checks which algorithm wins in
the most quality indicators or which algorithm is ranked in
the most number of times with the best transformed DSC
ranking. If the winner is only one algorithm, it will be ranked
number 1. Then the other algorithms are checked according
to their transformed DSC rankings, starting the comparison
again from the best transformed DSC ranking. If there exists
more than one algorithm with the same number of wins,
then these algorithms are checked according to which of
them is better according to the next ranking, or which of
them is, in the most cases, ranked with the next transformed
DSC ranking. This is recursively repeated until all of the
algorithms obtain their rankings.



5. Results and discussion

In this section, we start by explaining the experimental
setup, followed by a presentation of two experiments. In the
first experiment, the first ensemble combiner is used and in
the second experiment, the second ensemble combiner is
used.

5.1. Experimental setup

The experimental data is the same as that used in
[13] in which data is available for six algorithms. For this
study, three out of the six algorithms are randomly selected:
DEMOSP2, DEMONS−II, and NSGA-II. To compare the
presented algorithms, 16 test problems are used. The first
consists of the first seven DLTZ test problems in [14] and
the second of the nine WFG test problems presented in
[15]. The number of objectives is set to 4. More about
the parameters of the test problems and the parameters
of the algorithms can be found in [13]. All test problems
assume minimization of all objectives. Each algorithm was
run for each problem 30 times. Before calculating the quality
indicators, each approximated Pareto front was normalized.
The quality indicators included the hypervolume, epsilon
indicator, r2 indicator, and generational distance. All used
quality indicators are unary indicators. For calculating the
hypervolume, the reference point (1,. . . , 1) is used, while
for the other quality indicators, the reference set consists of
all non-dominated solutions already known from all runs for
each algorithm for a given problem.

Because the DSC ranking scheme involves a statistical
test for comparing distributions, for our experiments, the
two-sample Anderson-Darling (AD) test is used. The bene-
fits of using it are presented in [11]. The significance level
for the AD test is set to 0.05.

5.2. First experiment

In this experiment, an example of using an ensemble of
quality indicators based on the average of the transformed
DSC rankings is presented. First, for each quality indicator,
the DSC ranking scheme is used to compare the obtained
quality indicator data for a single problem. The obtained
DSC rankings are presented in Table 1 and are further com-
pared with the Friedman rankings. For Friedman rankings,
for each algorithm an average of each quality indicator data
is calculated over 30 runs for a problem and it is further
used by the Friedman ranking scheme. The algorithm with
the best average value obtains the ranking 1, the second best
average the ranking 2, and so on. Only in the case of a tie,
an average ranking will be assigned. The Friedman rankings
are presented in Table 2.

Using tables 1 and 2, there are problems for which the
obtained rankings by the DSC and the Friedman ranking
schemes differ. For hypervolume the differences appear
for the problems: DTLZ3, DTLZ5, WFG8, and WFG9,
for r2 indicator: DTLZ4, DTLZ5, WFG2, WFG3, WFG4,
WFG5, and WFG9, for epsilon indicator: DTLZ3, DTLZ5,

WFG2, WFG3, WFG6, WFG7, WFG8, and WFG9, and for
generational distance: DTLZ3, WFG2, WFG3, and WFG6.
This happens because in the case when the averages and
the Friedman ranking scheme are used, the average of the
quality indicator data for a given problem can be affected
by the presence of outliers, or because it could be in
some ε-neigbourhood along with the averages of the quality
indicator data for the other algorithms for that problem.
In this case, obtained rankings will be different (Table
2). Only in the case of ties will an average ranking be
assigned. In the DSC approach, instead of comparing the
averages, distributions of the quality indicator data obtained
by the algorithms for a single problem are compared and
if found to be the same, the algorithms will obtain the
same ranking even in the case when their averages are
in some ε-neighbourhood. This makes the DSC rankings
more reliable, since they are more robust to outliers and
some ε-neighbourhood. To show this difference, in Figure 1,
cumulative distributions (step functions) of the hypervolume
of 30 runs of each algorithm for the WFG8 problem and
average values (horizontal lines) of the hypervolume of 30
runs of each algorithm for the same problem are presented.
From Figure 1, we can see that no statistical significant

0.3 0.4 0.5 0.6 0.7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Value

C
um

ul
at

iv
e 

di
st

irb
ut

io
n

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

M
ea
n

DEMO-SP2
DEMO-NS-II
NSGA-II

Figure 1. Cumulative distributions (step functions) and average values
(horizontal lines) for hypervolume obtained for WFG8

difference exists between DEMONS−II and NSGA-II, so
they receive the same ranking, but their cumulative distribu-
tions differ from the cumulative distribution of DEMOSP2.
Because a minimization problem of all four objectives is
considered, the algorithm that has bigger hypervolume is
the best, so it follows that DEMOSP2 will be ranked 1,
and DEMONS−II, and NSGA-II will be ranked 2.50, despite
the small difference that exists between their hypervolumes.



TABLE 1. DSC RANKINGS FOR EACH QUALITY INDICATOR OF THE ALGORITHMS, A1=DEMOSP2 , A2=DEMONS−II , AND A3=NSGA-II

F
Hypervolume r2 Epsilon

Generational
distance

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

DTLZ1 2.00 1.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00
DTLZ2 2.00 1.00 3.00 3.00 1.00 2.00 2.00 1.00 3.00 2.00 1.00 3.00
DTLZ3 1.50 1.50 3.00 2.00 1.00 3.00 1.50 1.50 3.00 1.50 1.50 3.00
DTLZ4 1.00 2.00 3.00 1.00 2.50 2.50 1.00 2.00 3.00 1.00 2.00 3.00
DTLZ5 2.50 2.50 1.00 1.50 1.50 3.00 2.00 2.00 2.00 1.00 3.00 2.00
DTLZ6 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 1.00 2.00 3.00
DTLZ7 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00
WFG1 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 3.00 2.00
WFG2 1.00 2.00 3.00 1.00 2.50 2.50 1.00 2.50 2.50 1.50 3.00 1.50
WFG3 1.00 3.00 2.00 1.00 2.50 2.50 1.00 2.50 2.50 1.00 2.50 2.50
WFG4 1.00 2.00 3.00 2.50 1.00 2.50 2.00 1.00 3.00 3.00 2.00 1.00
WFG5 3.00 2.00 1.00 3.00 1.50 1.50 1.00 3.00 2.00 3.00 2.00 1.00
WFG6 1.00 2.00 3.00 2.00 1.00 3.00 1.00 2.50 2.50 3.00 1.50 1.50
WFG7 1.00 2.00 3.00 2.00 1.00 3.00 1.00 2.50 2.50 3.00 2.00 1.00
WFG8 1.00 2.50 2.50 1.00 2.00 3.00 1.00 2.50 2.50 1.00 3.00 2.00
WFG9 1.00 2.50 2.50 1.50 1.50 3.00 1.00 2.50 2.50 3.00 2.00 1.00

TABLE 2. FRIEDMAN RANKINGS FOR EACH QUALITY INDICATOR OF THE ALGORITHMS, A1=DEMOSP2 , A2=DEMONS−II , AND A3=NSGA-II,
OBTAINED ON AVERAGES OF EACH QUALITY INDICATOR OVER 30 RUNS

F
Hypervolume r2 Epsilon

Generational
distance

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

DTLZ1 2.00 1.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00
DTLZ2 2.00 1.00 3.00 3.00 1.00 2.00 2.00 1.00 3.00 2.00 1.00 3.00
DTLZ3 1.00 2.00 3.00 2.00 1.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00
DTLZ4 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00
DTLZ5 3.00 2.00 1.00 2.00 1.00 3.00 1.00 2.00 3.00 1.00 3.00 2.00
DTLZ6 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 1.00 2.00 3.00
DTLZ7 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00
WFG1 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 3.00 2.00
WFG2 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 3.00 2.00
WFG3 1.00 3.00 2.00 1.00 3.00 2.00 1.00 2.00 3.00 1.00 3.00 2.00
WFG4 1.00 2.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 3.00 2.00 1.00
WFG5 3.00 2.00 1.00 3.00 1.00 2.00 1.00 3.00 2.00 3.00 2.00 1.00
WFG6 1.00 2.00 3.00 2.00 1.00 3.00 1.00 2.00 3.00 3.00 2.00 1.00
WFG7 1.00 2.00 3.00 2.00 1.00 3.00 1.00 2.00 3.00 3.00 2.00 1.00
WFG8 1.00 3.00 2.00 1.00 2.00 3.00 1.00 3.00 2.00 1.00 3.00 2.00
WFG9 1.00 3.00 2.00 1.00 2.00 3.00 1.00 2.00 3.00 3.00 2.00 1.00

Using the averages values of the hypervolume on the same
problem, the Friedman rankings will be 1.00 for DEMOSP2,
3.00 for DEMONS−II and 2.00 for NSGA-II.

Next, the first ensemble combiner is used, which is based
on the average of the transformed rankings. This means
that each algorithm will obtain a ranking for each problem,
which is an average of its transformed rankings by each
quality indicator for that problem. To see the differences,
the ensemble combiner is used separately with a transfor-
mation of the DSC rankings and the Friedman rankings.
Table 3 presents the transformed DSC rankings using the
standard competition ranking scheme, while the transformed
Friedman rankings using the standard competition ranking
scheme remain the same (Table 2). The obtained rankings
by the ensemble combiner are given on the left side of
Table 4. The smallest ranked algorithm for each problem
has the best performance. For example, for the problem
WFG8 (Table 4) and the ensemble combiner based on the
average of the transformed DSC rankings, the rankings
of algorithms, DEMOSP2, DEMONS−II, and NSGA-II, are
1.00, 2.250, and 2.250, respectively. This means, that for
this problem, the performance of the DEMOSP2 differs
from the performance of DEMONS−II and NSGA-II, so
this algorithm has a better performance than the other two

algorithms because it has smallest ranking, however there
is no difference between the performance of the algorithms
DEMONS−II, and NSGA-II, because they have the same
ranking according to the used ensemble of quality indicators.
But this is not the case for transformed Friedman rank-
ings where NSGA-II outperforms DEMONS−II according to
Friedman rankings. For some problems, the rankings differ,
but the orders are the same. There are, however, problems
for which the orders also differ: DTLZ3, DTLZ5, WFG2,
WFG6, WFG8, and WFG9. This happens because for those
problems the rankings for some quality indicators by both
ranking scheme differ, but the DSC ranking scheme gives
more robust rankings.

For multiple problem scenario, where we compare the
algorithms over multiple multi-objective problems, the ob-
tained rankings by the ensemble combiner need to be used
with an omnibus statistical test. This means, for making a
comparison between the three algorithms, the Friedman test
is the most appropriate because the required conditions for
safe use of the parametric test are not satisfied. The test is
used separately with the ensemble rankings obtained by each
ranking scheme. In both cases, the p-value obtained by the
Friedman test is 0.00, which means that there is a significant
statistical difference between the performances of the algo-



TABLE 3. TRANSFORMED DSC RANKINGS FOR EACH QUALITY INDICATOR OF THE ALGORITHMS, A1=DEMOSP2 , A2=DEMONS−II , AND

A3=NSGA-II

F
Hypervolume r2 Epsilon

Generational
distance

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

DTLZ1 2.00 1.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00
DTLZ2 2.00 1.00 3.00 3.00 1.00 2.00 2.00 1.00 3.00 2.00 1.00 3.00
DTLZ3 1.00 1.00 3.00 2.00 1.00 3.00 1.00 1.00 3.00 1.00 1.00 3.00
DTLZ4 1.00 2.00 3.00 1.00 2.00 2.00 1.00 2.00 3.00 1.00 2.00 3.00
DTLZ5 2.00 2.00 1.00 1.00 1.00 3.00 1.00 1.00 1.00 1.00 3.00 2.00
DTLZ6 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 1.00 2.00 3.00
DTLZ7 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00
WFG1 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 3.00 2.00
WFG2 1.00 2.00 3.00 1.00 2.00 2.00 1.00 2.00 2.00 1.00 3.00 1.00
WFG3 1.00 3.00 2.00 1.00 2.00 2.00 1.00 2.00 2.00 1.00 2.00 2.00
WFG4 1.00 2.00 3.00 2.00 1.00 2.00 2.00 1.00 3.00 3.00 2.00 1.00
WFG5 3.00 2.00 1.00 3.00 1.00 1.00 1.00 3.00 2.00 3.00 2.00 1.00
WFG6 1.00 2.00 3.00 2.00 1.00 3.00 1.00 2.00 2.00 3.00 1.00 1.00
WFG7 1.00 2.00 3.00 2.00 1.00 3.00 1.00 2.00 2.00 3.00 2.00 1.00
WFG8 1.00 2.00 2.00 1.00 2.00 3.00 1.00 2.00 2.00 1.00 3.00 2.00
WFG9 1.00 2.00 2.00 1.00 1.00 3.00 1.00 2.00 2.00 3.00 2.00 1.00

TABLE 4. ENSEMBLE COMBINER FOR THE ALGORITHMS, A1=DEMOSP2 , A2=DEMONS−II , AND A3=NSGA-II

F
Based on average Hierarchical majority vote

DSC Friedman DSC Friedman
A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

DTLZ1 1.250 1.750 3.000 1.250 1.750 3.000 1.000 2.000 3.000 1.000 2.000 3.000
DTLZ2 2.250 1.000 2.750 2.250 1.000 2.750 2.000 1.000 3.000 2.000 1.000 3.000
DTLZ3 1.250 1.000 3.000 1.250 1.750 3.000 2.000 1.000 3.000 1.000 2.000 3.000
DTLZ4 1.000 2.000 2.750 1.000 2.000 3.000 1.000 2.000 3.000 1.000 2.000 3.000
DTLZ5 1.250 1.750 1.750 1.750 2.000 2.250 1.000 2.500 2.500 1.000 2.000 3.000
DTLZ6 1.750 1.250 3.000 1.750 1.250 3.000 2.000 1.000 3.000 2.000 1.000 3.000
DTLZ7 2.000 1.000 3.000 2.000 1.000 3.000 2.000 1.000 3.000 2.000 1.000 3.000
WFG1 1.000 2.250 2.750 1.000 2.250 2.750 1.000 2.000 3.000 1.000 2.000 3.000
WFG2 1.000 2.250 2.000 1.000 2.250 2.750 1.000 3.000 2.000 1.000 2.000 3.000
WFG3 1.000 2.250 2.000 1.000 2.750 2.250 1.000 3.000 2.000 1.000 3.000 2.000
WFG4 2.000 1.500 2.250 2.000 1.500 2.500 2.000 1.000 3.000 2.000 1.000 3.000
WFG5 2.500 2.000 1.250 2.500 2.000 1.500 3.000 2.000 1.000 3.000 2.000 1.000
WFG6 1.750 1.500 2.250 1.750 1.750 2.500 2.000 1.000 3.000 1.000 2.000 3.000
WFG7 1.750 1.750 2.250 1.750 1.750 2.500 1.000 2.000 3.000 1.000 2.000 3.000
WFG8 1.000 2.250 2.250 1.000 2.750 2.250 1.000 2.500 2.500 1.000 3.000 2.000
WFG9 1.500 1.750 2.000 1.500 2.250 2.250 1.000 2.000 3.000 1.000 3.000 2.000

rithms according to the ensemble of quality indicators. At
the single problem level, there are differences when using
the ensemble with a transformation of the DSC rankings
and the Friedman rankings. However, in this example, i.e,
a multiple problem scenario, there is no difference in the
results obtained. In general the differences at the single
problem level can influence the result for a multiple problem
scenario.

One weakness of this ensemble combiner is that the av-
erage of the obtained rankings for each quality indicator can
be affected by the presence of outliers, especially when the
number of compared algorithms increases. One way to avoid
this is to use the median instead of the average because it
is more robust to outliers. For this reason, another ensemble
combiner is proposed, called the hierarchical majority vote.

5.3. Second experiment

In the second experiment, an ensemble combiner based
on the hierarchical majority vote is presented. First, unique
rankings from a set of all transformed rankings obtained
from all quality indicators involved in the ensemble for a

given problem are acquired. Then for each algorithm, it is
counted how many instances of each of the selected unique
rankings it has. The algorithm with the lowest ranking per-
forms the best. Then, the combiner checks which algorithm
is ranked in the most cases with the best ranking. If the
winner is only one algorithm, it will obtain a ranking of
1, and the other algorithms need to be compared using
their rankings starting again by comparing them from the
best ranking. If there exist more than one algorithm that
have the same number of wins, then these algorithms are
compared with regards to the next ranking. In the case of
same number of wins according to each unique ranking, the
algorithms will obtain an average ranking. This is then re-
cursively repeated until all algorithms obtain their rankings.
The obtained rankings using the hierarchical majority vote
with the transformed DSC and the transformed Friedman
rankings are presented on the right side of Table 4. As in
the first experiment, the algorithms rankings differ, when
the ensemble combiner is used with the transformed DSC
rankings and the transformed Friedman rankings. Looking
at the right side of the Table 4, there are problems for which
rankings on a single problem level differ: DTLZ3, DTLZ5,



TABLE 5. HIERARCHICAL MAJORITY VOTE FOR TWO PROBLEMS AND THE ALGORITHMS, A1=DEMOSP2 , A2=DEMONS−II , AND A3=NSGA-II

DSC Friedman
DTLZ3 WFG8 DTLZ3 WFG8

Ranking A1 A2 A3 Rank A1 A2 A3 Ranking A1 A2 A3 Rank A1 A2 A3

1.00 3 4 0 1.00 4 0 0 1.00 3 1 0 1.00 4 0 0
2.00 1 0 0 2.00 0 3 3 2.00 1 3 0 2.00 0 1 3
3.00 0 0 4 3.00 0 1 1 3.00 0 0 4 3.00 0 3 1
Final 2.00 1.00 3.00 1.00 2.50 2.50 1.00 2.00 3.00 1.00 3.00 2.00

WFG2, WFG6, WFG8, and WFG9. To see what happens for
a single problem the hierarchical majority vote is presented
in Table 5 for the problems, DTLZ3 and WFG8, for both
ranking schemes, separately.

For the DTLZ3 problem, the unique rankings from the
set of all transformed rankings using all quality indicators
are selected for both ranking schemes. By using the trans-
formed DSC rankings (Table 3), the unique rankings are
1.00, 2.00, and 3.00, and are the same for the transformed
Friedman rankings. Then for each algorithm, the number of
times each unique ranking is obtained is counted. Using the
left side of Table 5, for the DTLZ3 problem, the algorithms
are compared first according to which has the best ranking,
which is 1. Accordingly, the DEMONS−II wins against the
other two algorithms, i.e., it has the best transformed DSC
ranking, and it is ranked 1. Then, the other two algorithms
are compared. From this comparison the DEMOSP2 wins be-
cause it wins against the NSGA-II according to four quality
indicators, so it obtains the final ranking 2, and the NSGA-II
obtains the final ranking 3. The hierarchical majority vote
for the same problem but with the transformed Friedman
rankings is presented on the right side of Table 5. The
unique rankings are 1.00, 2.00, and 3.00. In this case, the
DEMOSP2 wins against the other two algorithms according
to three quality indicators and it obtains a final ranking 1.
The DEMONS−II is ranked 2nd because it wins against
the algorithm NSGA-II according to the best transformed
Friedman ranking. For the WFG8 problem, according to the
best transformed DSC ranking, the DEMOSP2 wins against
the other two algorithms according to four quality indicators
and it obtains ranking 1. Then the other two algorithms are
compared. Because they are the same according to the best
transformed DSC ranking, the comparison continue with the
next ranking. In this example, the other two algorithms are
the same according to each unique ranking, so they obtain
an average ranking, which means that there is no difference
between their performance according to the set of used
quality indicators. The hierarchical majority vote for the
same problem with the transformed Friedman rankings is
presented on the right side of Table 5.

For a multiple problem scenario, the obtained rankings
by the ensemble combiner, called hierarchical majority vote,
for a single problem must be used with an omnibus statistical
test. The Friedman test, which is an appropriate omnibus
statistical test, is used separately with the ensemble rank-
ings obtained by each ranking scheme. In both cases, the
obtained p-value by the Friedman test is 0.00, which means
that there is a significant statistical difference between the

performance of the algorithms according to the ensemble of
the used quality indicators. The same as in the case of the
first ensemble combiner at the single problem level, there are
differences when using the ensemble with the transformed
DSC rankings and the transformed Friedman rankings, while
in a multiple problem scenario there is no difference of the
obtained result. In general the differences that appear at the
single problem level can influence the result for a multiple
problem scenario.

In both experiment the examples involved three algo-
rithms in the comparison. However, in a typical comparison
often more than 3 algorithms are compared against the pro-
posed one, as multiple comparisons with a control algorithm.
In this case, when the number of algorithms increases, the
DSC rankings can be affected by the correction of the p-
values used in the DSC ranking scheme. To avoid this, more
information about this scenario and the DSC can be found
in [6].

6. Conclusion

To compare the performance of multi-objective evolu-
tionary algorithms, a study for using an ensemble of quality
indicators with deep statistical comparison (DSC) approach
was presented. Two ensemble combiners have been pro-
posed in order to rank and compare algorithms by using
the rankings obtained by DSC for each quality indicator for
a given problem. DSC is a novel approach for making a
statistical comparison of meta-heuristic stochastic optimiza-
tion algorithms over multiple single-objective problems. The
main advantage of using DSC is that its ranking scheme,
which instead of using only one statistic to describe the
distribution, which can be average or median uses the whole
distribution.

The evaluation of the study is performed by using
the results for three multi-objective optimization algorithms
tested on 16 test multi-objective problems. The obtained
result are discussed on a single-problem analysis, when
the algorithms are compared on a single multi-objective
problem, and a multiple-problem analysis, when the algo-
rithms are compared over multiple multi-objective problems.
The study shows that ensembles of quality indicators with
a transformation of the DSC rankings give more robust
results than when the same ensembles are used with rank
transformations by some standard ranking schemes. In a
case of a single problem analysis, it can happen that there
is a difference between the ensemble of quality indicators
when the transformed DSC rankings and the transformed



rankings from some standard ranking scheme are used. By
using the DSC ranking scheme, the obtained rankings are
more robust to outliers or some ε-neighbourhood that exists
between two numbers. In a multiple problem analysis, the
experimental results show that there is no difference in
the results according to which rankings are used. However,
in general, the difference that exists on a single problem
level can influence the end result of the multiple-problem
analysis.
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