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Abstract The multi-objective optimization approach has a large influence in the
industrial production scheduling. The goal of such optimization is to find a produc-
tion schedule that satisfies different, usually contradictory, production and business
constraints. In the paper, memetic versions of three multi-objective algorithms with
different approaches to problem solving are implemented. The customized reproduc-
tion operators and local search procedures are also used. These memetic algorithms
are applied to real order-lists from a production company. It is shown that the multi-
objective approaches are able to find high-quality solutions, also when quick respond
is required to adapt to dynamic business conditions. According to the results it is
concluded that for the two tested real-world problems the IBEA confirmed its supe-
riority over the NSGA-II and SPEA2.

1 Introduction

In the past we have already successfully approached a production-scheduling prob-
lem with a single-objective optimization [13]. The optimization goal was to find
a production schedule that satisfies the production time constraints and minimizes
the production costs. This involved many specific constraints that had to be con-
sidered. Later, the problem evolved, which brought some new constraints and new
deciding criteria. Since the single-objective approach proved to be inefficient, we
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had to consider a multi-objective approach [9].
There was some initial investigation performed on the usage of multi-objective

approaches. In the previous work [9] we used the Indicator-Based Evolutionary
Algorithm (IBEA) [16], since it nicely upgrades on our initial work when solving
the single-objective scheduling problem [13]. In current work we further improve the
findings presented previously [9] with the comparison of the Non-dominated Sort-
ing Genetic Algorithm-II (NSGA-II) [5], Strength Pareto Evolutionary Algorithm 2
(SPEA2) [17], and IBEA. Following the IBEA’s proven performance for more than
three objectives [14], and the findings that for four contradictory objectives many
classicmulti-objective approaches are inappropriate [7], we decided to check the per-
formance of those three multi-objective algorithms with the real-world production
problem.

2 Related Work

The growing complexity of the real-world scheduling problems forced significant
work to be devoted to the automation of scheduling and planning processes. Here,
we often have to deal with very large search spaces, real-time performance demands,
and dynamic environments [11]. Effective production scheduling solutions can result
in reduction of personnel and production costs by minimizing machine idle time and
increasing the number of on-time job deliveries [2].

Themulti-objective optimization [4] is very commonwithin theworld of engineer-
ing problems. As this approach deals with multiple objectives it is also recognized
in solving of planning and scheduling problems.

TheMemetic Algorithms (MAs) were developed to obtain even better results than
the Genetic Algorithm (GA) for various scheduling applications, and with the use of
local search techniques the results were further improved. This hybrid approach not
only improves the quality of the solutions, but it also reduces the overall computa-
tional time [8].

In our initial work [13] a guided local search algorithm was tested on real-world
test cases of a production-scheduling problem. Such a problem is a member of the
family of job shop scheduling problems, which are known to be NP-hard. Due to the
problem’s complexity (many constraints) we developed and used specialized local
searches. They were guided with the genetic algorithm, parameter-less evolutionary
search [12], and random selection. It was shown that the use of stochastic approaches
greatly improved the quality of the production schedules with respect to the expert’s
manual solution. Furthermore, the evolutionary approach proved to be notably supe-
rior to the random search approach. On the other hand, the random-guided, local
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search approach was able to come impressively close to the results of the evolution-
ary approaches. It was obvious that its success was due to the quality of the local
searches. Namely, to get good results in a relatively short time, a very powerful set
of local searches had to be implemented. This led to good performances for all the
guided approaches; the genetic algorithm being the most stable while producing the
best results.

In the previous work [9] we have shown that the use of the memetic, multi-
objective approach, based on the IBEA, does not reduce the quality of any objective
with regard to the lexicographic evaluation of a single-objective approach, when used
on the same production-scheduling problem. The only major downside of such an
approach is in the increased time that is needed for a good Pareto front of solutions to
be constructed. While in [13] we proved the suitability of the evolutionary approach
to finding an optimum solution within a broad range of possible solutions, in [9]
we presented some additional local search procedures, as well as we introduced the
multi-objective approach, where the IBEA algorithm was used.

3 Implemented Multi-objective Algorithms

Based on the evolved production-schedule requirements we implemented and tested
three memetic implementations based on different multi-objective algorithms: the
NSGA-II, SPEA2, and IBEA. We adapted the basic implementation of these algo-
rithms with our implementations of crossover and mutation operators in order to
fully adapt to the specific problem of production scheduling.

3.1 Non-dominated Sorting Genetic Algorithm-II

The NSGA-II [5] is the second version of the Non-dominated Sorting Genetic Algo-
rithm for solving non-convex and non-smooth single and multi-objective optimiza-
tion problems. Its main features are: A non-dominated sorting procedure where all
individuals are sorted according to the level of non-domination; It implements elitism
which stores all non-dominated solutions, and enhances convergence properties; It
adapts a suitable automatic mechanics based on the crowding distance in order to
guarantee diversity and spread of solutions; Constraints are implemented using a
modified definition of dominance without the use of penalty functions.

The NSGA-II orders the population into a hierarchy of non-dominated Pareto
fronts. It calculates the crowding distance betweenmembers of each front on the front
itself. The crossover and mutation are performed as classical operators of the GA.
The members of the population are discriminated according to the rank of the front
and distance within the front.
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3.2 Strength Pareto Evolutionary Algorithm 2

The SPEA2 [17] is one of themulti-objective evolutionary algorithms that use elitism
approach. Each individual is assigned a raw fitness calculated on the basis of the
strength value of solutions who dominate it. To discriminate between individuals
having identical raw fitness values additional density information is calculated.

The SPEA2 calculates the raw fitness as the sum of the strength values of the
solutions that dominate a given candidate, where strength is the number of solutions
that a given solution dominates. The density of an area of the Pareto front is esti-
mated upon the Euclidean distance of the objective values between a given solution
and the nearest neighbors of the solution. It iteratively fills the archive population
with the candidate solutions in order of their fitness. The most similar solutions are
truncated from the archive population. For selection of parents some classical GA
selection method, such as binary tournament selection or random selection, is used.
The crossover and mutation are performed as classical operators of the GA.

3.3 Indicator-Based Evolutionary Algorithm

The IBEA [16] is a multi-objective version of the GA, where the selection process is
based on quality indicators. An indicator function assigns each pareto-set approxima-
tion a real value that reflects its quality, and the optimization goal is the identification
of a pareto-set that minimizes an indicator function. Using the indicator concept
no additional diversity-preservation mechanisms are required. It was demonstrated
[16] that an indicator-based search can yield results that are superior to some other
widely-used algorithms such as the improved SPEA2 and NSGA-II.

In a basic version of the IBEA, binary tournaments are used for the selection of
individuals to undergo recombination. Next, it iteratively removes the worst individ-
ual from the population and updates the fitness values of the remaining individuals.

4 Production Scheduling Problem

The production scheduling problem was introduced in the company Eta Cerkno
d.o.o., which produces components for domestic appliances [9, 13]. The most
demanding production stage is the production of cooking hot plates. The fabrication
process for various components used in different types of plates is similar, however
due to clients’ different demands the models differ in size (i.e., height, diameter),
connector type, and power characteristics (i.e., wattage). For their logistic reasons
the clients group different models of plates within the same order, implying the same
due-dates for different products. Therefore, the production of these order groupsmust
be scheduled very carefully to fulfil all the demands (i.e., quantities and due-dates),
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to maintain the specified amounts of different models in stock, to optimally occupy
their workers, and to make efficient use of all the production lines. Although the
assignment of due-dates is usually performed separately, and before the production
scheduling, there are strong interactions between the two tasks. Each order placed by
the customer somehow defines a batch of jobs, and their completion times should be
as close as possible in order to reduce the waiting time and cost [15]. Furthermore,
not all the production lines are equal, since each of them can produce only a few
different models. A detailed formulation of the production-scheduling problem is
presented in our initial work [13].

4.1 Production Schedule Encoding

The production schedule is encoded into a chromosome with tuples of values. Each
tuple (gene) consists of the index of the enumerated order and the assigned production
line. A chromosome with production schedule of n orders, is presented in Eq.1.

C = g1og1l g2og2l · · · gkogkl · · · gnognl, (1)

where n is the number of product orders, gko is an index of order ok ∈ O and gkl is
the production line used to produce the order ok , for every k ∈ {1, 2, . . . , n}.

4.2 Population Initialization

All input orders that have to be processed are firstly sorted within the initial order
list, according to their due-dates. Next, different chromosomes are constructed as
variations of the initial list, where each variation of the indexes of orders is encoded
as a separate chromosome. In each chromosome the orders are randomly distributed,
and the assigned production line is chosen randomly from among the possible lines
for each order. The created initial population P consists of N chromosomes.

As the numbers that are encoded in the chromosome represent the indexes of
orders, their values cannot be duplicated and also all indexes must be included. Also
the assigned values for the production line depend on the possible production lines
for particular order. These conditions have to be considered during the initialization
as well as during all the subsequent phases.

4.3 Reproduction Operators

An order-based crossover operator interchanges positions that store the ordered num-
berswithin some range. It takes the randompart of two parents, andwith a probability
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pc swaps the genes of the parents in this part and orders the remaining genes in the
first parent in accordance with its order in the second parent. In our implementation
four types of order-based crossover operators are used: order (OX) [10], cycle (CX)
[10], partially-mapped (PMX) [10] and PTL [3] crossover. They are switched every
10 generations of the optimization process.

During the mutation process each value of the chromosome mutates with a muta-
tion probability pm. Five different types of mutation, which are described with more
details in [9], are applied: Changing of the production line; Switching of two genes
in the chromosome; Shifting of a gene into some new position; Replacing similar
products; Merging of similar products. The first mutation type influences the sec-
ond part of the gene (i.e., gkl); the second mutation type influences the whole gene
(gkogkl); the remaining three mutation types influence only the first part of the gene
(i.e., gko).

To limit a possible disruptive effect of mutation during the later stages of the
optimization and to speed up the convergence to the optimum solution in the final
optimization stages, the crossover and mutation probabilities are decreased during
the algorithm execution.

4.4 Fitness Evaluation

The solutions p ∈ P of each generation are evaluated after the reproduction operators
and local search procedures modify them. Each solution p defines its set of objective
values nobj, where objective values are defined as: the number of delayed orders
(norders); the sumof delayed days of all the delayed orders (ndays); the required number
of workers (nworkers); and the sum of the change-over downtime in minutes (tchange).
The objective values are calculated by the objective functions fk , k ∈ {1, ..., nobj}.

4.5 Ending Condition

In general the algorithm is run until the user stops the optimization process. Tomimic
overnight running, as it is used in real setting to form new production schedules, we
decided to limit the number of evaluations to 300 million.

5 Memetic Algorithms

There are several approaches for implementing local search procedures. In our case
we merged the presented NSGA-II, SPEA2 and IBEA algorithms to guide the local
search procedures. The basic algorithms are implemented with the use of appropriate
Java classes of the jMetal framework [6]. Since we are dealing with a combinatorial
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problem, we implemented our problem-specific versions of the crossover and muta-
tion operators. Next, we added the local search procedures to enhance the efficiency
of the algorithm.

Algorithm 1 Generic multi-objective memetic algorithm
1: SetInitialPopulation(P)
2: Evaluate(P)
3: while not EndingCondition() do
4: P ′ = Selection(P)
5: Crossover(P ′, pc)
6: Mutation(P ′, pm)
7: Evaluate(P ′)
8: LocalSearch(P ′)
9: P = PopulationManagement(P ∪ P ′)
10: end while

As presented in Algorithm 1 the pseudocode of a generic multi-objective memetic
algorithmwith different base algorithms is very similar. The main difference is in the
Evaluate() function, which implements various fitness calculations (like raw fitness,
density information, quality indicator...), and in PopulationManagement() function,
which implements various algorithm-specific procedures (like sorting, crowding dis-
tance, and truncation procedure).

6 Performance Evaluation

6.1 Experimental Environment

The experiments were performed on the computer platform that is based on an AMD
Opteron ™ 2.2-GHz processor, with 16 GB of RAM, and the Microsoft® Windows®
8.1 operating system. The algorithms are implemented in Sun Java 1.7.

6.2 Test Cases

For the fair comparison with the results from [9] the algorithms were tested on the
same two real order lists from the production company. Task 1 consisted of n = 470
orders for 189 different products and Task 2 consisted of n = 393 orders for 175
different products. The number of orders n represents the problem dimension. The
number of available production lines is m = 5.

As a comparison also a single objective result is presented. It was obtained as
described in [9], where we used a lexicographic evaluation—the number of delayed
orders (norders) was set as the most important objective, followed by the required
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number of workers (nworkers), the sum of delayed days for all the delayed orders
(ndays), and the sum of the change-over downtime in minutes (tchange).

6.3 Control Parameter Settings

The control parameters were based on the previous setting as used in [9], to achieve
as equal as possible conditions for all compared algorithms:

• the population size N = 500;
• the crossover probability pc = 0.5;
• the mutation probabilities pmchange = 0.01, pmswitch = 0.01, pmshift = 0.01,

pmrandomize = 0.05 and pmmerge = 0.5;
• the number of evaluations was 300 million.

The implementation of the crossover and mutation was the same for all algo-
rithms. The algorithms differ in their specific implementations of fitness calculation,
selection procedures and in progress of the solutions into the next generations (i.e.,
how the offspring/archive population is managed).

6.4 Results

Results of comparison of all three algorithms for both tasks are presented in Figs. 1,
2, 3 and 4 as well as in Tables1 and 2. In all the figures the X axis represents the
norders objective, the Y axis represents the nworkers objective, the Z axis represents the
tchange objective and the color scheme represents the ndays objective.

Similarly, as presented in [9], Figs. 1 and 2 show the pareto front for Task 1 in 4D
space from different perspectives for all three compared algorithms.

In Fig. 1 we can see that for the Task 1 the “nicest” pareto front in regard to the
XY plane is returned by the IBEA algorithm, while both the SPEA2 and NSGA-II
produce more wide spreaded pareto front. Also the minimum acquired values are
much lower at the IBEA algorithm, followed by the NSGA-II and lastly the SPEA2
algorithm.

In Fig. 2 we can see that for the Task 1 the pareto front in regard to the XZ an
YZ planes is pronouncedly divided into two parts by the IBEA algorithm, while
both the SPEA2 and NSGA-II produce more even pareto front with some dislocated
solutions. The main reason for this is that the IBEA was able to generate “nicer”
pareto front on XY plane, with solution with lower Y values required much higher
X, Z, and colored values. This indicates that the nworkers objective invertly influences
other objectives. For X values we see that IBEA was able to find lower solutions,
while for all other objectives the quality of solution is much closer.

In Table1 we can see the performance of all three multi-objective algorithms for
Task 1, and also the solution obtained by the single objective approach is presented
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Fig. 1 Pareto front for Task 1 in the 4D space and XY plane: a NSGA-II 4D, b NSGA-II XY, c
SPEA2 4D, d SPEA2 XY, e IBEA 4D, and f IBEA XY
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Fig. 2 Pareto front for Task 1 in the XZ and YZ plane: a NSGA-II XZ, b NSGA-II YZ, c SPEA2
XZ, d SPEA2 YZ, e IBEA XZ, and f IBEA YZ
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Table 1 Results of optimization for task 1

Algorithm Statistics norders nworkers tchange ndays

NSGA-II pareto min 21 640 348 141

Pareto max 87 967 708 790

Pareto median 40 778 370 281

SPEA2 Pareto min 24 663 351 191

Pareto max 87 941 786 836

Pareto median 38 769 370 279

IBEA Pareto min 18 631 353 127

Pareto max 88 823 867 681

Pareto median 32 704 414 206

Single-
objective

18 767 714 156

Table 2 Results of optimization for Task 2

Algorithm Statistics norders nworkers tchange ndays

NSGA-II Pareto min 17 567 336 63

Pareto max 56 902 655 621

Pareto median 27 681 369 186

SPEA2 Pareto min 31 695 368 178

Pareto max 82 999 451 1095

Pareto median 39 779 385 284

IBEA pareto min 16 538 355 59

Pareto max 50 778 433 330

Pareto median 26 601 371 101

Single-
objective

15 702 443 155

as a comparison. The Table presents algorithms’ pareto min, max, and median values
for all objectives. The median value shows where the focus of search is. Since we
are dealing with minimisation problem on all objectives, these are the values most
interesting and indicating for us.When comparing the objective norders we can see that
the range of values is more or less the same for all three algorithms, while the median
value is the lowest at the IBEA. For the objective nworkers the IBEA has the smallest
range and the lowest median value. For the objective tchange the IBEA has the largest
range and a little bit higher median value than the other two algorithms. For the
objective ndays the range of values is a little larger for the NSGA-II and SPEA2,
while the median value of the IBEA is again the lowest one.

In Fig. 3 we can see that for the Task 2 the pareto fronts in regard to the XY plane
are quite similar for the IBEA andNSGA-II , while SPEA2 producedmuch “weaker”
pareto front (containing less solutions). Similarly to Task 1 the minimum acquired
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Fig. 3 Pareto front for Task 2 in the 4D space and XY plane: a NSGA-II 4D, b NSGA-II XY, c
SPEA2 4D, d SPEA2 XY, e IBEA 4D, and f IBEA XY
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Fig. 4 Pareto front for Task 2 in the XZ and YZ plane: a NSGA-II XZ, b NSGA-II YZ, c SPEA2
XZ, d SPEA2 YZ, e IBEA XZ, and f IBEA YZ
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values are much lower at the IBEA algorithm, followed by the NSGA-II and lastly
the SPEA2 algorithm.

In Fig. 4 we can see that for the Task 2 the pareto front in regard to the XZ an YZ
planes is not pronouncedly divided in two parts as noticed with Task 1. This indicates
that the nworkers objective does not always “negatively” influences other objectives.

In Table2 we can see the performance of all algorithms in Task 2, where their
pareto min, max, and median values for all objectives are shown. When comparing
the objective norders we can see that the range of values is more or less the same for
the IBEA and NSGA-II, while the range is a bit larger for SPEA2; also the median
values are lower for the IBEA and NSGA-II. For the objective nworkers the IBEA has
a little bit smaller and lower range than the NSGA-II and SPEA2, and also the IBEA
has the lowest median value. For the objective tchange the IBEA and SPEA2 have
smaller range of values, but a little bit higher median value than the NSGA-II. For
the objective ndays the range of values is the smallest and lowest for the IBEA, and
also the median value of the IBEA is the lowest one. Similarly as with Task 1, the
IBEA was able to find the lowest solution values for objectives except tchange, where
theNSGA-II was able to find the lowest value. Themedian value, which showswhere
the focus of search is, follows the same pattern.

Considering all the information provided by the figures and tables one can con-
clude that the two tested tasks of presented real-world problemconfirm the superiority
of the IBEA over the NSGA-II and SPEA2, as shown by using benchmark functions
in [16]. So, in this case test benchmark functions proved as a good indication, which
is the most suitable algorithm for the job.

7 Conclusion

The multi-objective optimization approach has become important part in the indus-
trial production scheduling, where its goal is to find a production schedule that
satisfies different, usually contradictory, production and business constraints. We
implemented memetic versions of the NSGA-II, SPEA2 and IBEA multi-objective
algorithms, with different approaches to problem solving. These memetic algorithms
were applied to real order-lists from a production company. We have shown that for
the tested real-world problem the IBEA confirmed its superiority over the NSGA-II
and SPEA2, as already indicated by the synthetic test benchmark functions.
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