Radioterapija, kaj je to?

Hotimir Lešničar

Ni naključje, da želimo že v prvi številki Onkologije širšo medicinsko javnost v Sloveniji seznaniti z vlogo obsevalnega zdravljenja (s tujko “radioterapije”) pri zdravljenu raku. Na to nas poleg 100-letnice prve uporabe obsevalnega zdravljenja v svetu navaja predvsem dvoje.

Prvič: kljub zgodovinskemu dejstvu, da je uvedba radioterapije v slovenskem prostoru sprva neverjetno naglo sledila svetovnim trendom, še danes lahko naletimo celo med voditnimi zdravniki tistih medicinskih vej, ki se v glavnem “part-time” ukvarjajo tudi z onkologijo, na posameznike z neverjetno patriarhalnim odnosom do obsevalnega zdravljenja. Ti štejejo obsevanje le za nujno zlo, ki mora spremljati onkološke bolnike na njihovi mučeniški poti do malo verjetne ozdravitve. Kljub nezadostnemu poznavanju področja sami odločajo o umestnosti radioterapije v sklopu zdravljenja. Pri tem se ne zavedajo, da prav s podrejanjem vloge radioterapije drugim (predvsem kirurškim) pristopom zdravljenja ogrožajo učinkovitost svoje lastne terapije. Na tako občutljivem področju medicine, kot je onkologija, namreč neverjetno hitro sledi skepsi zdravnikov tudi menjenje javnosti in potencialnih bolnikov. Ceprav se bomo k temu problemu še vzeli, naj kaž na ter mestu poudarim, da mora biti, po mojem mnenju, taka imenovana avtonomnost zdravnikov pri odločanju o načinu zdravljenja posameznih bolnikov v onkologiji omejena. Pa naj gre še za tako eminentne predstavnike določenih medicinskih vej. In drugič: po 30-letnem preplečevanju oblasti smo končno na pragu gradnje novega Onkološkega inštituta. Že ves čas obstaja te inštitucije je verjetno prav radioterapija, organizirana le na tem mestu v Sloveniji, razvojno motivira vse pridružene medicinske veje, da so se kljub različnim pritiskom ukvarjale izključno z onkologijo. S tisto pravo onkologijo, za katero upravičeno upamo, da bo (kljub morebitnemu razcvetu genskega zdravljenja) zaznamovala tudi prihodnja desetletja.

Naj opozorim, da predmet tega zapisa ni pregled uspešnosti zdravljenja z radioterapijo po posameznih lokalizacijah ali raz členjevanje posledic obsevanja. Zamišljen je predvsem kot pregled različnih možnosti in spoznavanj, na osnovi katerih je postala racionalizacija (vsaj v razvetu svetu) pomemben partner ostalih onkoloških strokov.

Že na začetku je nujno poudariti, da se je obsevalna terapija lahko razvijala le zaradi oblike novih odkritij radiofizikalne znanosti in tehnologije, v zadnjih desetletjih pa še zlasti s pomočjo radiobiologije. Ker je za razumevanje postopkov radioterapije nujno poznavanje vsaj osnovnih izsledkov omenjenih panog, menim, da ne bo odveč, če jih poskušam v skopih odmerkih čim bolj enostavno predstaviti.

VLOGA RADIOFIZIKE IN TEHNOLOGIJE

Kratek pregled zgodovinskih dejstev

Obdobje pravih megavolitnih obsevalnih aparator je sledilo razvoju jedrske fiziike, ki ga je v bistvu izvolil strah pred nacizmom. V času II. svetovne vojne so namreč v ameriških laboratorijih potekali živčni preizkusi Einsteinovih in
Oppenheimerjevih učencev s področja verižne jedrske reakcije, ki so, kljub protestom obeh znanstvenikov, z uporabo atomsko bombe privedli do izkorenjenija malignoma svetovnih razsežnosti, povzročenega z osjo Rim-Berlino-Tokijo. Poškodbe na “zdravem tkivu”, tj. na nedolžnih prebivalcih Hirošime in Nagasaki, pa so postale prvi žalostni model za preučevanje zgodnjih in kasnih posledic iznirjujočega zarčenja na človeški organizem. V petdesetih letih je E. Fermi izvedel kontrolirano verižno jedrsko reakcijo znotraj nuklearnega reaktorja in s tem omogočil produkcijo tako imenovane “kobaltno bombe” in drugih visoko energetskih sevalcev tudi v medicinske namene. Svet je stopil v atomski vek, zaznamovan s strelem, železno zavojožno, brezvestno poljubno in naraščajoče obremenitvijo prebivalstva v zarku. Zadnja je pogojevala tudi temelj rezloge za razvoj in večje vključevanje obsevanega zdravljenja (ki se je med tem rešilo pubertetnih težav) kot pomembne metode pri terapiji raka. Kirurška in radioterapija sta v onkologiji zaznali prvo pomladno ljubezen.

Obdobje šestdesetih in sedemdesetih let je omogočilo neskončen razvoj tehnologije in znanosti. Kirurška je s pomočjo tehnike mikrovaskularnih transplantatov obkončila kirurški tok ponudila možnost kozmetične in funkcionalne poprave postoperativnih defektov. Radioterapija je z učinkovito produkcijo odprtih in zaprtih izvorov sevanja, predvsem pa z razvojem akceleratorjev - ob podpori računalniške podpore tehnologije, končno spolno dozorela in lahko se je poročila z odnekom potencialnim kirurškim zdravljenjem. Poročno vlečko je jo je nosila mladoletna kemoterapija, ki je že nato skilila na ženino.

Katere vrste sevanja uporabljamo v radioterapiji?

Medicinska s pomanjkljivim znanjem radiofizike, sestavljena iz mlajših generacij ne štejem, ponavadi pri soočanju z radioterapijo bete že poimenovanje ozira razlikovanje posameznih vrst sevanja. Ker gre pri nekaterih vrstah za zgodovinsko utemeljeno poimenovanje, je morda še najprimernejše obnoviti pot, ki je vodila do nekaterih radiofizikalnih spoznavanj. V zapisu se bom omejil le na tiste načine iznirjujočega sevanja, ki jih v radioterapiji uporabljamo v nas.

Kot smo že omenili, je najprej prišlo do iznajdb rentgenskih oz. X-žarkov. Ti nastanejo, če v vakuumski cevi med katodo in anodo ustvarjam napetosti do nekaj 100.000 voltov. Iz posebej ogrevane katode prična izljetavati pozitivno nabitii elektroni (kakor para pri vretju vode), ki jih privlači pozitivno natekretina anoda. Močno pospešeni se na površini anode sumpokvito ustvarjajo in pri tem svojo energijo sprožajo tudi s tvego tako imenovane navorne sevanja. To pa je elektromagnetno varovne sevanja v zre-lo, ki je elektronsko izljetavski radnik, kiolum bujevane sevanja ribno usmerjen snop žarkov, ki ga lahko uporabljamo tudi v terapevtske namene. Ker Roentgen o tem dogajanju še ni nič vedel, je sevanje, ki ga je opazoval, poimenoval s skrivnostnim imenom X-žarki. Prednost taktih žarkov z energijami 100 - 200 KeV pa, predvsem zaradi velike absorpcije v kostnem tkivu, za terapevtske namene ni bila posebno primerna. Števlet petdeset let je tehnika tako napredovala, da je bilo možno s pomočjo posebnih “elektromagnetnih lek“ elektrone v vakuumski cevi na poti do anode še dodatno pospeševati. Dobil smo tako imenovane pospeševalne akceleratorje (akceleratere), s pomočjo katerih je možno proizvajati X-žark (en svodni na podoben način kot v rentgenskih aparatih) tudi s 100-krat večjim obsevanjem energije (5 - 50 MeV). Lastnost taktih žarkov je manjša absorpcija v tkivih, s tem pa višja prodornost. Močno pospešene elektrone v takih akceleratorjih pa lahko ob odstranitvi anode v terapevtske namene uporabljamo tudi neposredno, tudi neposredno. Njihova prodornost v tkivu znaša le nekaj cm in je neposredno odvisna od njihove energije.

Če torej povzememo: X- in gama žarki so obojo predstavniški znotraj terapevtskih sevanj, torej sistematično varovane sevanje. Z pomočjo akceleratorjev lahko prizadevamo različne energije X-žarkov (odvisno od moči pospeševalna), medtem ko nam telekobaltne obsevalna naprava pač nudi le možnost obsevanja s tisto energijo gama sevanja, ki jo kobil emitira. In še ena razlika je pomembna. Ko akcelerator ugasnemo, ni več vir sevanja, kobil pa bo prenehal sevati šele, ko bo izvenelo razpadanje jedra (razpolovna doba Co60 je okoli 5 let). Ob dobro izvajanih zaščitnih ukrepah je vedno velja, da je vsaj za ekonomsko manj razvite države telekobalt najprimernejša obsevalna naprava, saj stalno delujo in je z njeno pomočjo možno obsevati veliko število bolnikov. Zapeštena elektrona akceleratorjev se kljub precej višji osnovni ceni aparatur silno pogosto kvari in zahteva pogosto servisiranje, kar terapijo še dodatno podraža.
Nekoliko bolj zapletena je uporaba virov sevanja v brahiradioterapiji. Sevalci, ki jih čanes uporabljamo v te namene, imajo, izjemno rezerven razpoložljiv dobo (nekaj dni do nekaj mesecov), ose, da jih je potrebno stalno obnavljati. Ker jih v večini primerov ne izdelujemo pri nas in ker so izredno dragi, predstavljajo za ustanovo pomemben strošek. Že sama izgradnja oddelek za brahiradioterapijo vpliva na stalni rezerven dobo bolnik v bistvu kontaminiran. To seveda predstavlja poseben problem v zvezi s sevalno obremenitvijo osoba, ki pride v ta oddelek. Tudi tu nam je v zadnjih letih priskočila na pomoč tehnologija, vendar več o tem pri obravnavanju izvedbe obsevalnega združenja.

Izjava pomembnost dozimetrije

Pri načrtovanju tistih prispevka radiofizike, ki so v zadnjih desetletjih omogočili radioterapiji izreden napredek, pa vsečak se ne moremo prezreti nepogrešljive pomembnosti dozimetrije. Brez nje lahko vsako obsevanje mimo imenujemo le pra-radioterapija. S pomočjo standardizirane enote za absorbirano dobo, ki jo danes imenujemo gray (Gy), in z uvedbo termoluminiscenčnih dozimetrov lahko danes z veliko zanesljivostjo in vivo ugotavljamo sevalno obremenitev posameznih organov in tkiv v času obsevanja. Po taka natančni oceni izpostavljenosti sevanju lahko na podlagi eksperimentalnih izkusa tudi precej natančno sklepamo o možnih efekti in osebni posledici radioterapije. Za primerjavo: čeprav tudi kemoterapevtike aplikiramo v točno določeni odmerki, je pri njih učinek v največji meri odvisen od transportnih mehanizmov v tkivih in dejanskih učinkov ne moremo natančno predvidevati, saj se izmerju je učinek na citotokik in hkrati. Sodobna dozimetrija par radioterapiji omogoča enostavno aplikirano doze in s tem oceno kvalitete in kvalitete zdravljenja znotraj posameznih inštitucij, kar hkrati predstavlja temelj standardizacije klinične uporabe obsevanja. Le na ta način je namreč možna primerjava učinkovitosti radioterapije tudi med inštitucijami.

Kakšni so izgladi v prihodnje?

V zadnjih letih se je že dozdevalo, da v radioterapiji, vsaj s tehničnega in radiofizikalnega vidika, ne bo več bistvenega napredka. Predvidanje, da bomo obsevali z visokoenergetskimi delci, kot so neutroni, protoni in pi-mezoni, ki bodo mimo združene tkive učinkovale in na tumor, se niso uresničila, saj je ta takšno obsevanje zaenkrat izkazalo za manj učinkovito in predvsem močno predražo za široko klinično uporabo tudi v najzmočnejših državah. In prav v tem trenutku je neslužen razvoj računalniške tehnologije omogočil uvedbo tridimenzionalne konformalne obsevanja in stereotaktične radioterapije, imenovane tudi radiokirurgija. Več o tem v nadaljevanju. Na tem mestu pa si dovolim trditi, da bo v prihodnje, bolj kot kljubli doslej, načrtovanje in izvajanje radioterapije še bolj odvisno prav od proizornosti klinično izkušenih radiofizikov.

VLOGA RADIOBIOLOGIJE

Koliko je stara?

Začetki radiobiologije segajo nazaj v pionirsko dobo radioterapije. Že v pritličku stoletja, ko fizikalne dozimetre še ni bilo, so prvi radioterapeuti opisovali vidne poškodbe obsevanje terapev (predvsem na koži in sluznica) ter se na osnovi te-neh odločali o številu in pogostiosti obsevanja. Zanimivo je, da so pri tem eni prisegali na manjše število visokih odmerkov v čim krajšem času obsevanja, drugi pa na več manjših odmerkov ne glede na skupni čas obsevanja. Čeprav so bili to že prvi zametki prave klinične radiobiologije, je za kvalitetni presok iz takrat ozihek radioterapevtskih okivov pri preučevanju posledic zarčenja poskrbela šele nesrečna uporaba atomskih bombe. Široko zanimanje javnosti je privedlo do financiranja specializiranih laboratorijev, ki so se pričeli (predvsem v zahodni Evropi in ZDA) pospešeno ukvarjati z biološkimi posledicami radiaktivnega zarčenja. Sicer ločeni področji varstva pred izizolirajočim sevanjem in klinične uporabe radioterapije se odtele tudi obvezujoče prepletata.

Področje radiobioloških raziskav

V osnovi gre za raziskovanje bioloških posledic, do katerih pridevač fizikalno-kemične reakcije, ki jih povzroča izizolirajoče sevanje v celicah, tkivih in vsem organizmu. Izizolirajoče sevanje (sevanje na umirjeni in predhodno poskrbljeni tkivi) ni tisto, ki je pri prehodu skozi snov, poleg drugih učinkov, v plodnje tudi predvsem dovršce inonskih parov. To se zgodi v taki imenovani fizikalni fazni učinkovitosti, ki ne traja več kot nekaj milijardic sekunde. V kemični fazni, ki poteka v glavem še v isti seki, povzroči izolacija razbijetje obstoječih kemičnih vez. S pomočjo izjemno reaktivnih prostih radikalov lahko izolacija povzroči trajne poškodbe bioloških posledic. V biološki fazni, ki traja od ene seki do četrtih sekund, lahko povzroči izolacija povzroči trajne poškodbe kemično poškodbo izizolirajočega sevanja DNA.

Biološka tarča izizolirajočega sevanja

Znano je, da izoliranim obsevanjem jedra ubijamo celico z bistveno nižjimi dozami, kot so potrebne pri izoliranem obsevanju citoplasma. S sevalci, ki jih lahko vgradimo v DNA in imajo izredno kratke domet sevanja (npr. tricij ali l [239]), lahko povzročimo enak delež smrtnih poškodb kot z obsevanjem vse celice. Prav tako vemo, da je pojav kromosomskih abencij po obsevanju neposredno povezan s smrtnostjo celice.

Vse našte to posredno dokazuje, da je osnovna biološka tarča izizolirajočega sevanja DNA. Ta struktura ima, kot osnovni prinašatec sporočil življenja, na voljo stevilne mehanizme, ki jih omogočajo povzpore poškodbe. Če poprava ti a deaktivna in ali če je doza obsevanja previsoka, bo prej ali slej prišlo do sprememb, ki bodo povzročile smrt celic, tukaj ali celo vsega organizma.

Še ena možnost je. Poškodba določenih predelov DNA ne izzove smrti celice, ampak nasprotno, celici celo prepove
umrelo. Neskončno in neobvladljivo delitev celic pa imenujemo rak.

Izonizirajoče sevanje raka povzroča in ga zdravi

Na Shakespearev način zastavljena trditve v podnaslovu povzroča kopiclo nespornih logik in tudi v čisto medicinskih logih. Naj nas bega! Morda je srečna problema v razlikovanju splošnih (nemedicinskih) in kontrolih (medicinskih) učinkov sevanja. Vse človeško je obsezano zaradi nerešenega dolovanja zemeljskih in kozmičnih sevalcev. Govorimo o naravnom ozadju sevanja. Tako sevanje je lahko bistveno povečano v določenih okoljih, npr. v bližini nahajališč urana, odlagališč odpadnega radioaktnega materiala, predvsem pa v področjih nuklearnih preizkusov in nesreč jedrskih reaktorjev. Šele v zadnjih desetletjih so v javnost pricurjalje novice o zvijanih incidentih določenih oblik raka pri prebivalstvu takšnih območij (predvsem v bivši SŠ in ZDA). Ti pojavi so v zavesti javnosti postavili pod spraševanje tudi široko zastavljeno uporabo sevanja v medicinske namene. Če namreč neposredno obsevanje v naravi (primerljivo z efekti teleradioterapije in radiodiagnostike) ter uživanje kontaminiranih živl (primerljivo z učinku bradioradioterapije) povzroča povečano število metaj, lahko nekaj podobnega pričakujemo tudi kot stranski učinek medicinske uporabe sevanja. Poročila o tako imenovanih sekundarnih malignogih, vzniklih pri poprečno obsevanem bolnikih (predvsem zaradi nemaljnih bolesničnih), izhajajo v glavnem iz petdesetih let, ko tako dozimetrija kot tehnologija radioterapi je nista dovoljala posebne natančnosti pri preverjanju podatkov v "koliko" in "kam". Danes o takih posledicah obsevanja skoraj ne slišimo več, vsekakor pa uspešnost radioterapije pri zdravljenju raka odtehta razmeroma majhno nevarnost nastanka novih tumorjev, ki bi jih lahko povzročilo obsevanje. Drug problem pa je zaščita osebja, ki se z radioterapijo ukvarja. Tu optimalnih oz. sprejemljivih načel ne sme biti. So se maksimalni zaščitni ukrepi. Še se ne spadajo le skrajšanje delovnega časa, podaljšanje dopusti ali celo viši osebni dohodi.

Skratka, poskusimo razumeti, da so tudi vpliv radiacije del naravnih danosti, ki jih sodobni človek zaenkrat še ne more ubezčati. Ne moremo ji jih kromakali odmisli, moramo pa se s poglavljenim znanjem pred škodljivimi učinki (tako kot pred ognjem) čim boljši zaščiti.

Škodljive učinke kontroliranega žarjenja lahko danes upoštevamo še v nekaterih glavnih območjih, kot so hečni diagnostiki, rada in operaciji. Čeprav je naslednje obsevanje v naravi, je hkrati to način zadovoljivo čitljivo.

Pomem radiobiologije za radioterapijo

Če se ta izsledki radiobiologije in tehnologije vez za razvoj radioterapije "prijeli" razmeroma hitro, pa naj se se radioterapija javnosti načinoma prizadeti. Radiobiologija je znanstveno dejstvo, ki ga lahko predstavljamo v obliki vlaganja v neposredno določljivo socialno kontekst. Razvoj radioterapije je v hkrati in potencialno kompenzirala razvoju radioterapije, kar je znanstveno dejstvo, ki ga lahko predstavljamo v obliki vlaganja v neposredno določljivo socialno kontekst.

Materijal in metode

Pomem radiobiologije za radioterapijo je znanstvena dejstva, ki so se izsledki radiobiologije in tehnologije vez za razvoj radioterapije "prijeli" razmeroma hitro, pa naj se se radioterapija javnosti načinoma prizadeti. Radiobiologija je znanstveno dejstvo, ki ga lahko predstavljamo v obliki vlaganja v neposredno določljivo socialno kontekst. Razvoj radioterapije je v hkrati in potencialno kompenzirala razvoju radioterapije, kar je znanstvena dejstva, ki ga lahko predstavljamo v obliki vlaganja v neposredno določljivo socialno kontekst.
pričetku verjetno hitrejše, kasneje pa zaradi umiranja in metastaziranja počasnejše. Radiobiologija je dognala, da povzročimo z enkimi odmerki radioterapije v celičnih kultureh enakomeren delež smrtnosti. Tako pri vsaki novi frakciji po 2 Gy uničimo okoli 2/3 preostale celične populacije. Na ta način (torej po obratni poti celične delitve) lahko s približno 30 tako izbranimi frakcijami obsevanja uničimo vsak tumor velikosti 1 cm³. Dejstvo, da lahko z radioterapijo načeloma uničimo tumor "do zadnje celice", pomeni v terapevtskem smislu bistveno prednost pred vsemi drugimi uveljavljenimi načini zdravljenja raka.

Pomen okigisnecije tkiva v trenutku obsevanja
Radiobiološke raziskave so dokazale, da je prisotnost kisika med kemično fazo delovanja ionizirajočega žarčenja na celic izjemno pomembna. Ker je izvorenje prostih radikalov ob pomanjkanju kisika pomanjkljivo, je tudi učinek obsevanja lahko bistveno manjši. To sicer ne velja za korpuskularne dece, kot so protoni in nevroni, je pa zelo pomembno pri učinku fotonov (tj. X- in gama žarkov).

V 60. letih so na celičnih kulturah dokazali, da je učinek enakih odmerkov obsevanja v hipoksičnih pogojih okrog 2-3 krat slabši kot v pogojih normalne okigisnecije. Angiološki raziskovalci Gray je ugotovil, da kisik v tkivu ne prodre dlje kot 150 r m od prehranjevalnih žil. Pri naravnem razvoju malignoma rast žila ni kajkot ne dohiteva eksplozivne rasti izkorenjenih tumorskih celic v organizmu. Posledica teh dogajanj je kronično pomanjkanje kisika v centru tumorja. V hipoksičnih pogojih so zavrsti vsi življenjski mehanizmi: tako osnovni metabolizem kot proliferacija. Z drugimi besedami, hipoksiija se vplata tako v direktne (tvorba prostih radikalov) kot indirektne učinke sevanja (počasnejša delitev celic vodi do počasnejše ekspresije mutaci).

Omenjene raziskave so povzročile veliko nemira v ustaljeni radioterapiji. Dolžnih 15 let potekajo raziskave na področjih radioenzubilizacije s pomočjo učinkov, ki oponašajo učinek kisika (prevezen drog z veliko afiničnost do prostih elektronov, kot so iodizalzi, npr. Flugyl), hipertermije (kob obem ubija radioresistentne celice in povečuje učinek hkratnega obsevanja) in kemoterapije (nekatera droge, npr. mitomicin, selektivno ubijajo le hipoksične celice). V praksi pa se je še najbolj izkazala hiperokigisnecija s pomočjo vdihavanja karbogena (mešanice 95% kisika in 5% ogljikovega dvojka) neposredno pred obsevanjem in med njim.

Pomembnost 4 R pri frakcioniranem obsevanju

V obdobju med frakcijami obsevanja pride zato do prerezporeditve celic, ki so prvo obsevanje preživele. Ob naslednjem obsevanju se tako določeno število celic spet znajde v fazah, ki so na obsevanje bolj občutljive. Repopulacija pomeni v bistvu hitrost proliferacije. Čim več celic se bo v času obsevanja (ki traja v glavnem 5-7 tednov) deliš, bolj bo izražena radiacijska poškodba. Reokigisnecija pa pomeni, da tudi celic, ki sprva živijo v hipoksičnih pogojih in so zato slabobolj občutljive (obsevanje namreč uniči predvsem dobro okigisnirane celic), v toku obsevanja zaradi propagiranja okigisniranih celic sčasoma dobijo dovolj kisika, da tudi same postanejo občutljive na obsevanje.

Vsi omenjeni procesi se prepletajo ves čas obsevanja in nanje povsem ločeno ne moremo vplivati.

Enaka doza ne učinkuje enako na različna tkiva
V 80. letih so radiobiologi zaradi kliničnih zahtev pričeli poboljšati raziskovanje tudi biološke osnove za različno izraženo radiacijsko poškodbo na posameznih tkivih. Danes ločimo tkiva, ki se na obsevanje odzovejo z "zgodbo" ali s "kasko" reakcijo. Z zgodbino reakcijo (z njo pojmenujemo hitro smrtn) se odzovejo na obsevanje tiste celice in tkiva, ki hitro proliferirajo: spolne celice, kostni možež, sluznice in mnogokrat tudi tumor. Tu delež poškodb genetskega materijala prehaja, močnost poprave. Pri klinski reakciji pa se zaradi počasnejše proliferacije celic (vezivno tkivo, parenhimski organi) radiacijska poškodba pokaže šele nekaj mescev po končanem obsevanju. Če načeloma na zgodbo reakcijo v toku obsevanja še lahko vplivamo, pa kasne reakcije po končanem obsevanju ne moremo več omiliti.

Na osnovi teh doganjaj so danes dnevne frakcije po 2 Gy sprejete kot osnovno merilo radioterapevskih poškodb. Z uporabo višjih frakcij obsevanja lahko radikalna radioterapija prihaja do klinično nesprejemljivih poškodb zdravega tkiva. Zato se raje poskušamo uporabiti nekoliko nižjih frakcij (od 0.9 do 1.5 Gy). Ker popravni mehanizmi v zdravih tkivih s kasno reakcijo omogočajo popravo večine subletalnih poškodb že v intervalu okrog 8 ur po obsevanju, lahko nižjimi frakcijami obsevamo bolnike tudi 2-3 krat dnevno. Na ta način pa tumorji, ki poškodbe tudi znotraj 24 ur ne morejo popraviti, prejemo celo višjo dnevno dozo (npr. 3 x 0.5 Gy = 2.7 Gy, oziroma 2 x 1.5 Gy = 3 Gy).

Pomen skupnega časa obsevanja
Klinični rezultati obsevalnega zdravljenja so privedli do spoznanja, da lahko prekinitve obsevanja privedejo do bistveno slabših rezultatov. Še več, Budinh je s pomočjo matematičnega modela izračunal, da se klonogene tumorske celisce delijo bistveno hitreje, kot smo si dotlej predstavljali. Ker se delijo tudi med obsevanjem, to pomeni,
da bo vsaka prekinitev privedla do repopulacije, ki s sprega načrtovano dozo obsevanja ne bo več obvladljiva. V 80. letih so njegova spoznanja potrdili tudi drugi raziskovalci. Čim krajši skupni čas obsevanja je tako v 90. letih postal pravi "hit" radioterapije.

In v čem je prihodnost radiobiologije?

Radiobiologija, preko nje pa tudi radioterapija, bo v bodoče morala budno slediti razvoju molekularne biologije, imunologije, citologije in genetike. Na obzorju so že pojavljajo možnosti manipulacije celičnega odgovora na radioterapijo z učinkovinami, kot so interleukini, faktor tumorske nekroze (TNF) ali fibroblastni faktor rasti (FGF), in v zadnjem času celo z vplivanjem na gene, odgovorne za nastanek iradiacijske poškodbe. Če danes je dosti govora o vlogi gena p53, odgovornega za tako imenovano programirano celicio smrt oz. apoptozo. V prihodnosti bomo morda več slišali o možnosti, da lahko s pomočjo induciranega zaviranja anti-apoptotičnih mehanizmov bistveno povečamo učinkovitost radioterapije. In tu bomo morda končno posegli na področje, ki že ves čas razvoja radioterapije predstavlja nerešljivo uganek, in ta peti ali taki imenovana inherentna radiosenzibilnost, o kateri za zdaj veemo le to, da kateri tumori na obsevanje reagirajo bistveno močneje kot drugi.

KLINIČNA RADIOTERAPIJA

Kaj pomeni izraz in s čim se ukvarja?

Klinična radioterapija je medicinska stroka, ki uporablja učinke ionizirajočega sevanja na živo snov v terapevtske namene. Čeprav v tem (prvem) stoletju svojega razvoja ni bila ves čas povezana izključno z združenjem malignih novotvorb, jo danes štejemo za pretežno onkološko stroko in je nepogrešljiva dejavnost vseosebnih onkoloških centrov. V nekaterih državah pa oddelki za radioterapijo delujejo tudi samostojno v okviru splošnih bolnišnic in kliničnih centrov. Pravilna sestavljena oborozi radioterapevtski oddelki teleradioterapevtska in brahiradioterapevtska enota, ki jo ob vehe nekaj od radioterapevtskih "bolniških postelj ter prostore za ambulantno dejavnost.

Teleradioterapija

Tako imenujemo tiso dejavnost, ki pri terapiji uporablja izvore sevanja, ki so od bolnika oddaljeni. Medicinske aparature, ki jih v te namene uporabljamo, so linearni akceleratorji; obsevalne kovaltne naprave in rentgenske aparature za kontaktno obsevanje. Pri načrtovanju zdravljenja potrebovemo še simulator, po možnosti CT, in računalniške naprave za fizično planiranje. Aparature so nameščene v prosohirh s posebno zaščito pred sevanjem in zaradi varnosti večinoma pod zemljijo. Pri obsevanju uporabljamo predvsem X- in gama žarke različnih energij, ki omogočajo različno prodornost v tkivu. Tako pri zdravljenju intraabdominalnih in intratorakalnih tumorjev uporabljamo najmočnejše akceleratorje, pri tumorjih glave in vratu, karcinomu dojek in malignih limfohist in se poslužujemo majh močnih akceleratorjev in telekabala za površinske tumorje pa lahko uporabljamo akceleratorje kot izzor electronov (glej fizikalno poglavje) ali pa posebne rentgenske aparature za plitko površinsko obsevanje.

Pri kitoškoli ali histologski dokazanam malignom poteka načrtovanje zdravljenja je več fazah. S pomočjo vseh klinično dosegljivih priskav (klinični pregled, UZ, rentgen, CT in druge) je potrebno najprej točno določiti tumorski volumen. Tako imenovano "prost robovi", tj. tisto področje neposredno ob tumorju, ki vendar lahko migrirajo tumorske celice in ga pravi onkološki kirurji še kako poznamo, nam ob možnosti limfogenganega razvoja bolezni določajo ciljni klinični volumen. S pomočjo visokokvalitetne obsevalne apatrazato in računa obsevanja, ki jih bomo uporabili, ter morebitnih premikov organov med obsevanjem (npr. pri dihanju) se nato odločamo o načrtovanem volumenu, ki zagotavlja, da bo ciljni klinični volumen zanesljivo prejel 100% predpisane tumorske doze. Z določanjem terapevtskega volumena nato določimo področje, ki mora biti obsevan, vendar lahko načrtovanje z oborico lasersko opremljenih simulativ, CT-ja, ki služi le v radioterapevtske namene, in računalniškega planiranja, ki omogoča načrtovanje zdravljenja na več obsevalnih aparatah hkrati, teleradioterapija, kljub uporabi še tistih drugih obsevalnih aparatur, v trenutku zaide v predzgodovinsko obdobje (i. "palpatorne medicine"). Ker nabava dodatne opreme zdravljenje podraža, je organizacija teleradioterapevtskih objektov smiselna le v ustanovah s širšim zaledjem potencialnih bolnikov.

Še nekaj je izjemno pomembno. Pri načrtovanju in posebno pri izvajanju zdravljenja s pomočjo frakcioničer teleradioterapije, ki poteka sorazmerne dolgo (5-7 tednov), imajo velik delež odgovornosti dejanski izvajalci terapije na aparati. To so posebno izvežbani višji radiološki inženirji, ki morajo ob stalni pomoči radiofizikov nenehno skrbi, da je vsako od 25 do 35 obsevanj izvedeno.
natančno tako, kot je načrtovano. Filozofijo zapletenih načrtov obsevanja šele ti “pravi operativci” obudijo v dejanske učinke.

Brahiradioterapija

Pri tej obsevalni dejavnosti vstavimo vir sevanja v neposredno blizužno malignoma (npr. intraluminalna, intrakavitarna, intrapelvinalna terapija) ali pa celo v sam tumor (intestinalna terapija). Večini primerov uporabljamo v brahiradioterapiji sevalce fotonov (gamma žarkov), to so npr. iridiij-192, cesij-137 in jod-125, redkeje pa sevalce elektronov (beta žarkov), kot sta stroncij-89 ali rutenij-106. Radija zaradi predolge razpolovne dobe jedrskega razpada in s tem velike nevarnosti kontaminacije danes ne uporabljamo več. Trenutno najpogostejšo uporabljamo intrakavitarno brahiradioterapijo pri ginekololoških tumorjih. Široke možnosti izkoriščanja brahiradioterapija pa nudijo tudi karcinomi v področju glave in vratu, prostate, zunanjih genitalij, dokje, kože in drugi. Od osnovne aktivnosti izvorov je odvisen tudi način uporabe. Nizke aktivnosti uporabljamo pri brahiradioterapiji z nizkim pretokom doze (low dose-rate, LDR), srednje pri pulznih brahiradioterapijih (pulse dose-rate PDR) in visoke pri terapiji z visokim pretokom doze (high dose-rate, HDR). Prvo in zadnjo uporabljamo razmeroma pogosto, srednja pa je še v fazi preizkušanja.

Osnovne prednosti brahiradioterapije pred teleterapijo so predvsem v naslednjem:

1. Intenziteta sevanja je tik ob izvoru visoka, z oddaljenostjo pa hitro pojema in je občajno pri razdalji 0,5 cm od izvora le še 50%. Ob uporabi več izvorov lahko pri upoštevanju natačne geometrije dosežemo koncentracijo doze v dovolj majhnih volumih, medtem ko so okolna zdrava tkiva zadovoljivo zaščitena.

2. Pri uporabi brahiradioterapije z nizkim pretokom doze (low dose-rate), ki jo pogojuje razmeroma nizko radioaktivnost izvora, je zaradi nen ENV osebnega obsevanja praktično onemogočena poprava subteliradiacijskih poškodb. Delež takšno iznenovanih direktnih smrtnih poškodb bo zato v primerjavi z frakcioniranim obsevanjem pri teleradioterapiji bistveno večji. Ker zaradi nesmrtné smrtné učinke obsevanja prisotnost kiška ni nujno potrebna, je ta način obsevanja učinkovitejši tudi v hipoksičnih predelih tumorja. Slaba stran brahiradioterapije so počasnim pretokom doze pa so razmeroma dolgi časi aplikacij (oko 3 do 7 dni). Metodo izkoriščamo predvsem pri intrakavernalnih in intestinalnih brahiradioterapijah.

3. Z metodo "naknadnega polnjenja" (after-load), ko med implantacijo v posebna vodila vstavimo le "bladne", tj. ne-radioaktivne izvore, zaščito terapeva pred sevalno poškodbo bistveno izboljšamo. S pomočjo geometrijske razpoložitve hladnih izvorov lahko namreč računalniško določamo dozimetrijo in šele nato napolnimo implantat s pravimi radioaktivnimi izvori. Danes obstajajo posebne naprave, ki izvajajo to polnjenje avtomatsko. Tako se izognemo ročni manipulaciji z "vročimi" izvori. Ker lahko s temi napravami obsevanje začasno prekinemo, s tem pred sevanjem zavarujujo tudi osebe, ki neguje bolnika v času zdravljenja.

Izvedbo intersticijalne brahiradioterapije določa preveden velikost tumorjev in njihova dostopnost za implantacijo. Tumorji v volumen, večim od 50 do 100 ccm, niso več primerni za implantacijo, saj lahko preoblečena postiradiacijska nekoza s posledičnimi infekci kljub unikiranju tumorja privede do življenjsko nevarnih zapletov. Poleg zaščite prostorov, v katerih bivajo bolniki z radioaktivnimi viri, ki gradijo objektov močno podraža, je pomembna tudi frekvenc bolnikov, ki bodo take terapije deležni. Nabava izvorov in aparatur je draga in postane smiselna šele pri zdravljenju vsaj 300 bolnikov letno. Brahiradioterapitska dejavnost se zato koncentrirata praviloma le v večjih onkoloških centrih.

Strategija uporabe radioterapije in onkologiji

Ko poskušamo ovrednotiti uspešnost radioterapije pri zdravljenju malignih bolezni, se moramo zavedati dvojega:

1. **Kurativna radioterapija** lahko nastopa kot samostojno (radikalno) zdravljenje, enako nepogrešljiva pa je danes tudi kot dopolnilna (adjuvanta) terapija, ki - včasih ob pomoči kemoterapije - operiranim bolnikom močno zviša možnost ozdravitve.

a) iz radiobioloških premis je mogoče zaključiti, da lahko z radikalno radioterapijo (ko z obsevanjem kot ednim načinom zdravljenja skozišemo bolnika dokončno ozdravitvi) popolnoma ozdravimo vsaj manjše tumorje. V praksi pričetvamo sem celo vrsto kožnih tumorjev, karcinom glave in vratu, prostate in ginekololoških karcinov, pri katerih je radioterapija dejansko uspešna. Tu obsevanje tekmuje z od nekdaj uspešno kirurgijo. Pomembna prednost pravilno načrtovanega obsevanja pred operativnim zdravljenjem je predvsem v možnosti ohranitve anatomi in funkcije prizadevih organov.

b) Pri operabilnih tumorjih določenih področij tudi razširjene operacije ne zagotavljajo popolnega uspeha. V nekaterih primerih namreč ključev tehnoloških operabilnosti prihaja do rečidivov v operiranem področju. Radioterapeuti govorimo o toliko iznenovani subklinični bolezni, ki je v bistvu dokazljiva le s statistiko. V taktih primerih se je izkazalo pametne uporabljati kombinirano zdravljenje s kirurgijo v radioterapijo, pri čemer maju kirurji ne bo preveč radikala. Tako zdravljenje danes načrtujemo npr. pri karcinomih dokeje ter glave in vratu. V nekaterih primerih (npr. pri nekaterih otroških malignih, karcinomu dokeje, mežurja, debelega črveva, glave in vratu ter pri tumorjih mehkih tkiv) se vse bolj uveljavlja kombinacija operacije, obsevanja in kemoterapije. Z dodatkom kemoterapije skušamo tako zvišati lokalno uspešnost zdravljenja kot preprečiti razvoj oddaljenih metastaz.
c) Pri obeh naštehtih strategijah (radikalno in postoperativno obsevanje) se bomo morali v bodoče čim več posluževati obsevanja s številnimi frakcijami, tj. 2-ali 3-krat dnevno. Pri tako obsevanjih bolnikih namreč merimo na popolno ozdravljenje, pomembnejša poškodba zdravega tkiva (tej se s številnimi manjšimi frakcijami še najbolj izogojemo) pa lahko precej poslabša kvaliteto življenja sicer uspešno ozdravljenih bolnikov. V praksi to pomeni bistveno večjo obremenitev obsevalnih aparatov. Le s strogiim izborom bolnikov ter zadostnim številom aparatov in specializiranega kadra bomo lahko tudi v Sloveniji izvajali tako radioterapijo.

V zadnjem desetletju se v kliničnih študijih predvsem pri primarno inoperabilnih tumorjih preizkuša v kurativeno namene kombinirano zdravljenje s kemo-radioterapijo. Pri tem se je najbolj izkazala sočasna uporaba citostatikov in obsevanja. Tak način zdravljenja je že dlje časa uveljavljen pri zdravljenju malignih limfomov, kjer izkoriščamo sistemsko učinku kemoterapije. Pri nekaterih inoperabilnih tumorjih pa želimo s tako kombinacijo predvsem ojačati lokalnogionalni učinek obsevanja. V Sloveniji poteka v tem okviru trenutno več študij na področju tumorjev glave in vratu, karcinoma muke raka, ščitnice in požalnika ter nekaterih gastrointestinalnih tumorjev.

Praviloma izkoriščamo pri kurenjski teleradioterapiji lokogionalni učinek zdravljenja. Izjema v tem pogledu je tudi obremenjeno obsevanje vsega telesa (total body irradiation - TBI), ki je pomemben del postopka pri presaditvi kostnega mozga.

2. Palativna radioterapija je metoda zdravljenja, pri kateri skušamo s teleradioterapijo predvsem omiliti simptomatiko (kravavštvo, bolečine) pri bolnikih z napredovalimi tumorji. Strategija obsevanja je tu prav nasprotna kot pri radiaklajem zdravljenju. Učinkovita je uporaba maloštevilnih visokih frakcij obsevanja (4-8 Gy), bolnik pa se lahko ozdravi ambulantno. Praviloma brahiterapije v palativne namene ne uporabljamo. Mogne pa so tudi kombinacije s hipertermijo.

Pod razdom clinična radioterapija si predstavljamo predvsem lokogionalno zdravljenje. Kljub temu obstajajo načini, kot so obsevanje polovice telesa, vsega telesa ali vse telesne površine, kjer izkoriščamo sistemski učinek ionizirajočih žarkov. Učinki obsevanja se tu vpletajo predvsem v imunske procese in razvoj bolečine.

Posebno področje, ki v zadnjem času spet doživlja razcvet, je radioterapija benignih bolezni, ki za terapevte sicer predstavlja pomembno področje uvedževaljenja, vendar njena podrobnejša obračunava gotovo ne sodi v časopis z imenom Onkologija.

PRIHODNOST KLINIČNE RADIOTERAPIJE

3. Mnogi onkolojiški tisti so že desetletja trdijo vzpostaviti enote doktrine pod področjih posameznih ravnih bolezni za vso Slovenijo, pa se še vedno najde kak "volk samotar", ki brez posebnega znanja onkologije bolnikom presečuje stik z onkologijo in čaki radioterapije in časi načrtovanja prvega zdravljenja maligne bolezni. Vsi taki "specialisti" se
ne zavedajo, da lahko prav pomanjkanje onkološkega znanja (dajte navidez neskončno majhnim posegom) bolnika že čez leto ali dvé privede do bistveno večje invalidnosti in celo smrti. Treba je torej skrbiti tudi za informiranost bolnikov. Morda bo prav obvezni pisni pristanek na zdravljenje v prihodnje pripomogel preprečevati samovoljno terapevtov. Bodnocašt radioterapije vidim torej v preprečevanju absolutne avtonomije zdravnikov pri odločitvi o primarnem zdravljenju rakivih bolezni. V imenu slovenskih radioterapevtov si lastim pravico do naslednjega sporočila vsom specialistom:

Najprej sodelujmo in se šele nato prepričamo. Bistveno bolje bo za bolnik in za nas.

4. Čeprav nas to izredno obremenjuje, je dejstvo, da smo za področje celotne onkologije v Sloveniji trenutno izšolani le radioterapevti (specialistični izpit opravljamo iz radioterapije in onkologije). Po vsej državi skušamo, z večjim ali manjšim uspehom, vzpostavljati konziliarno službo. Osnovni cilj tega delovanja ni reševanje problemov na mestu samem (nobody is perfect), temveč poiskati odgovore pri najbolj odgovornih specialistih za posamezna področja in jih v najkrajšem možnem času posredovati ležečemu zdravniku. Ker omogočamo obenem tudi kontrolne pregledele že zdravljenih bolnikov iz oddaljenih regij, na ta način zmanjšujemo zapravljanje ne tako nepomembnih sredstev zavarovalnic za nepotrebne prevoze bolnikov. Ob skoraj 4000 opravljenih konziliarnih pregledih izven Ljubljane v letu 1996 smo vsaj pri tretjini pregledanih bolnikov privarčevali sicer obvezni prevoz v Ljubljano. Samo s to dejavnostjo pripravimo, po moji oceni, zavarovalnicam več kot 50 milijonov SI. Ta pa to ni zgodba o tem, kako bistveno več prihrani, če tečeš za taksijem, kot če tečeš za avtobusom. Kar mi ob tem zaslužimo, ni le pljuček v morje, ampak tudi v naš obraz. Podatki o uspešnosti poslovanja Zavoda za zdravstveno zavarovanje Slovenije me zato še dodatno bodrijo v veri v lepšo prihodnost slovenske radioterapije. Upam namreč, da bo tudi omemjena inštitucija, ko bo enkra: razumela osebni prispvek radioterapevtov k njeni uspešnosti, pripravljena dodati kak tolar ob nakupu izjemno dragih aparatov.

Ta zapis, ki ima gotovo še dosti luken, bi rad končal z najkrajšim možnim povzetkom razvoja slovenske radioterapije. Leta 1902 so tako v Ljubljani kot v ZDA prvič uporabili radij v terapevtske namene. Ko je bila na univerzi v Oregonu leta 1965 ustanovljena prva katedra za radioterapijo v ZDA, smo v Sloveniji po zaslugi Ravniharjeve že deset let imeli ločeno specializacijo iz radioterapije. Imena slovenskih strokovnjakov radioterapije, kot so Jereb, Cevc, Budihna, so zapisana v svetovnih učbenih pričetek 21. stoletja bi radi obeležili z novogradnjo Onkološkega inštituta. Čeprav se veselimo bistveno boljšega komforta za bolnike: se zavedamo, da izdvoi sami po sebi za stroko ne pomenijo nikakršnega napredka. O človeških potencialih smo že govorili (dobre volje ne manjka), večinoma dotrajali radioterapevtskih aparatur pa samo z voljo ne moremo nadomestiti. Dobro je, da smo ponosni na svojo zgodovino, vendar bomo preostale življenja morali preživeti v prihodnosti. Ne bi rad, da bi zanemari spet spraševali: Radioterapija, kaj je to?

Literatura