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Highlights 

 Detection and discrimination of plant stress origin using hyperspectral imaging. 

 Nematode infestation can be reliably differentiated from the water deficiency. 

 Abiotic drought resulted in the most obvious differences in the light spectrum.  

 Identification of nematode infestation possible with specific spectral regions. 

 Reliable prediction of nematode infestation even in early stages of infestation. 

 

Abstract 

Crop plants are subjected to various biotic and abiotic stresses. Both root-knot nematodes (biotic 

stress) and water deficiency (abiotic stress) lead to similar drought symptoms in the plant canopy. In 

this work, hyperspectral imaging was used for early detection of nematode infestation and water 

deficiency (drought) stress in tomato plants. Hyperspectral data in the range from 400 to 2500 nm of 

plants subjected to different watering regimes and nematode infestation levels were analysed by 

partial least squares - discriminant analysis (PLS-DA) and partial least squares - support vector 

machine (PLS-SVM) classification. PLS-SVM classification achieved up to 100 % accuracy 

differentiating between well-watered and water-deficient plants, and between 90 and 100 % when 

identifying nematode-infested plants. Grouping the data according to the time of imaging increased 

the accuracy of classification. Shortwave infrared spectral regions associated with the O-H and C-H 

stretches were most relevant for the identification of nematode infested plants and severity of 

infestation. This study demonstrates the capability of hyperspectral imaging to identify and 

discriminate between biotic and abiotic plant stresses. 
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1. Introduction 

 

With the ever-increasing tendency for automation in agricultural practices [1] and the development 

of precision agriculture concepts [2,3], it is desirable to develop remote sensing technologies and 

applications. These include techniques for the assessment of soil properties, nutrient depletion, plant 

biomass, and weed detection. True to the idea of precision agriculture, this information can be used 

for site-specific management [4]. One of such technologies is the hyperspectral imaging, which was 

originally developed for Earth remote sensing applications [5]. In the context of geobotany, it had 

already been postulated that vegetation reflectance spectra in the 0.4 – 2.5 µm region of light 

spectrum could contain information on plant pigment concentrations, leaf cellular structure and 

moisture content. Analysis of unique spectral signatures demonstrated the benefits of higher 

spectral resolution, having enabled discrimination of various plant species and communities. With 

regard to these results, Goetz et al. [5] opined that the analysis of various parts of reflectance spectra 

could be used in the detection of plant physiological condition and health, stress detection and 

characteristics, as well as assessment of the amount of biomass. Hyperspectral imaging devices 

record images consisting of numerous spatial image planes of the same object at different 

wavelengths. These spatial images are then superimposed one over another forming a three-

dimensional data cube (hypercube) which is the hyperspectral image as recorded by the camera [6]. 

Hyperspectral images are thus composed of vector pixels, containing spectral information for a range 

of wavelengths in the electromagnetic spectra – typically used systems include the visible and near-

infrared (VNIR: 400 – 1000 nm) and shortwave infrared (SWIR: 1000 – 2500 nm) regions [7]. Apart 

from geology-oriented applications, this technology has since inception been successfully used in 

many other areas such as microscopy [8], material classification [9], medical diagnostics [10], artwork 

and historical artefact analysis and conservation [11], and especially, food quality and safety 

assessment [12–15]. Analysing leaf reflectance at visible and infrared wavelengths can provide 

information about the plants, such as leaf pigmentation and physiological conditions [16], therefore, 

it is possible to utilise hyperspectral imaging for the early detection of plant diseases. Pathogens 

causing direct leaf damage can be detected with higher accuracy [17–21] but due to the ability of this 

technology to reveal hidden changes in plant physiology, it can be used to assess the often non-

specific damage caused by root pathogens such as different plant-parasitic nematodes [22–24]. 

 

Root-knot nematodes (RKNs) from the genus Meloidogyne (Nematoda, Tylenchida, Meloidogynidae) 

are considered one of the most significant agricultural pests [25–27]. RKNs are plant endoparasites 
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that parasitize the root system. After entering the actively growing root, they elicit the development 

of a feeding site comprising several multinucleate “giant” cells, using oesophageal gland secretions. 

Through subsequent growth and development of nematodes, this feeding site gradually develops 

into a visible root gall. Development of root galls and further deformation of the root system leads to 

the overall weakening of the host plants due to reduced uptake of water and nutrients [28]. RKNs 

cause major economic damage and it has been estimated that losses on an annual basis amount to 

5% of global agricultural production [29]. The worldwide economic damage caused by plant parasitic 

nematodes is estimated at around €110 billion per year [30]. RKN spread is becoming more 

pronounced as some populations of Meloidogyne spp. have genetically adapted to resistance factors 

commonly bred in economically important plant varieties, and many of older chemical nematicides 

like methyl bromide are not being registered for use because of health and environmental concerns 

[31,32]. This further emphasises the need to detect nematodes in the early stages of root infestation 

for effective management. 

 

The most straightforward method to determine RKN infestation is visual examination of plant roots 

for the presence of root galls. However, this approach is invasive and impractical for large-scale use, 

additionally; the tell-tale galls gradually develop with time and vary in size depending on different 

RKN species and host plant. Application of remote sensing technologies such as hyperspectral 

imaging can in principle address these problems, however, plant reflectance is subjected to a 

complex plant tissue and canopy structure which makes such applications more difficult to develop 

and implement for large-scale use [4]. While RKNs cause specific galls on the roots of parasitized 

plants, the effect on the canopy is non-specific and similar to the signs of drought or nutrient 

depletion, and can be observed to the naked eye only in the last stages of nematode infestation. 

Meloidogyne spp. infestation of plants such as tomato (Solanum lycopersicum) can influence plant 

physiological parameters (e.g. photosynthesis) measured on the leaf canopy [33]. Strajnar et al. [34] 

have shown the potential of hyperspectral imaging to detect Meloidogyne spp. infestation. Further 

examples are detection of beet cyst nematode Heterodera schachtii and the fungal pathogen 

Rhizoctonia solani infesting sugar beet [22,23], detection of the sudden death syndrome and soybean 

cyst nematode (Heterodera glycines) in soybean [24] and examining the presence of plant-parasitic 

nematode Rotylenchulus reniformis in cotton fields [35]. Thus, it is possible to detect specific (biotic) 

stressors but difficulties can arise in the discrimination between different pathogens. Some stressors, 

e.g. water stress, are more accurately detected [36]. Furthermore, it can be difficult to integrate data 

from different sensors. Any remote sensing application to accurately detect RKN infestation in plants 

should reliably discriminate between abiotic drought stress symptoms and biotic stress caused by the 
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nematodes, the reason being a high similarity of above-ground effects caused by both stressors on 

the plant canopy. 

 

The goals of this study were: 1) to evaluate the capability of VNIR and SWIR hyperspectral imaging of 

tomato leaf reflectance to detect symptoms caused by either abiotic stress due to drought, or biotic 

stress elicited by M. incognita; 2) to test supervised classification models to accurately differentiate 

between plants affected by abiotic or biotic stress as well as plants affected by both stressors; 3) to 

test supervised classification models to determine infestation intensity; 4) to describe the temporal 

variability of the hyperspectral imaging data in the experiment; and 5) to compare sensitivity of 

different approaches for biotic and abiotic stresses detection. 

 

2. Materials and methods 

 

2.1 Experimental design 

 

The study was designed as a pot experiment in which a single plant per pot represented one 

biological replication. Plants (n = 42) were divided into 6 groups (treatments), each group contained 7 

biological replicates (Table 1). The experiment was conducted in the controlled environment in the 

glasshouse at the Agricultural Institute of Slovenia (Ljubljana, Slovenia) from February to June 2016. 

Experiment was conducted using commercially available tomato (S. lycopersicum) hybrid ‘Horus F1’ 

(L’Ortolano, Italy) that had been ascertained to be susceptible to M. incognita infestation (data not 

shown). Tomato seeds were surface sterilised in 3% aqueous solution of sodium hypochlorite (NaOCl; 

Kemika, Croatia) prior to use and germinated in vitro on 1/3 Potato Dextrose Agar (PDA) medium 

(Biolife, Italy) for 6 days at T = 22°C in the dark. Sprouted seeds that did not show any bacterial or 

fungal contamination were transferred to sterile plant substrate and grown in trays in the glasshouse 

for 16 days. For planting a substrate mixture consisting of 2 parts fine-grain (MP1/G), 2 parts coarse-

grain (MP4) quartz sand (Termit, Slovenia) and 1 part fine peat substrate Potgrond P (Klasmann-

Deilmann, Germany) was used. The final bulk density of the substrate mixture was 1.25 g/cm3. 

Afterwards, plantlets were transplanted into Styrofoam multitrays and grown for 35 days until the 

root system was well developed. Fifty-one-day old plants were finally transplanted to 25 cm-

diameter polypropylene pots (V = 5 L) in the same substrate mixture and supported with 1.8 m high 

plastic-coated stakes. Temperature sensors iButton (Maxim, USA) were embedded into the substrate 

of three randomly spaced pots. Temperature data was used to follow the progression of M. incognita 

development and to predict the completion of the first reproduction cycle [37]. The average 

temperature as calculated from the measurements by substrate temperature sensors in the interval 
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from April 19th to May 23rd 2016 was 21.6°C. The first development cycle was predicted to be 

completed at 50 DAI, according to the model [37]. 

 

Individual plants were subjected to two different watering regimes to attain well-watered [W] 

conditions or to elicit the abiotic stress of chronic drought [D] (Table 1). Biotic stress was caused by 

RKN infestation. Plants received different levels of initial nematode inoculum at the time of final 

transplantation; no RKN [N], low inoculum [L] of 15×103 M. incognita eggs per plant (equalling 3 

eggs/cm3 substrate) and high inoculum [H] of 250×103 M. incognita eggs (equalling 50 eggs/cm3 

substrate). Plants were watered daily with a three-component nutrient mixture Flora Series (General 

Hydroponics Europe, France) for hydroponics-based systems. The nutrient mixture was prepared by 

mixing the Flora Series (N-P-K) solutions: FloraGro 3-1-7, FloraMicro 5-0-1 and FloraBloom 0-5-4, 

according to the manufacturer’s guidelines with regard to the plant developmental stage. Water-

deficient (drought) conditions were initiated 8 days after inoculation (DAI) of plants with the 

nematode eggs. Water-deficient plants were irrigated with the lowest volume of nutrient solution 

sustaining turgor pressure. Well-watered plants were irrigated to substrate saturation with the 

volume of nutrient solution providing adequate moisture until the nutrient solution started to leak 

out the bottom of the pots. Nutrient solutions were diluted in such a manner that all plants received 

the same amount of nutrients regardless of the watering regime. Due to deterioration that could not 

be attributed to either drought or nematode stress, data from one plant each from the DL, DH and 

WH treatment groups (Table 1) was excluded from the subsequent analyses. 

 

2.2 Nematode inoculum preparation 

 

The nematode M. incognita isolate from Nova Gorica, Slovenia was sustained in the glasshouse pot 

culture on S. lycopersicum cv. Val (Semenarna Ljubljana, Slovenia) tomato plants. Nematode-egg-

suspension was prepared following the methodology by Hussey and Barker [38]. Infested roots were 

homogenised in 1% NaOCl for 3 min and washed with tap water through a stack of sieves with 

apertures of 850, 250, 63 and 32 µm (Retsch, Germany). Nematode eggs were collected from the last 

sieve, suspended in a defined volume and counted under a stereomicroscope Nikon SMZ800 (Nikon, 

Japan). The same method was used for final evaluation of nematode reproduction during the 

experiment. Total eggs were isolated from infested roots collected at the end of the experiment. 

Reproduction factor (𝑅𝑓) was calculated as the total number of eggs isolated after experiment (𝑃𝑓) 

divided by the initial number of eggs in the inoculum (𝑃𝑖); (𝑅𝑓 = 𝑃𝑓/𝑃𝑖). 

 

2.3 Substrate moisture content 
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Substrate moisture content was determined gravimetrically. Substrate was sampled prior to 

hyperspectral imaging sessions at 12, 34, and 52 DAI in order to validate the difference between 

well-watered and water-deficient treatments. For gravimetric water content determination, 

substrate samples (~ 15 g) were taken from each pot at 5 cm depth and dried in the oven SP-105C 

(Kambič, Slovenia) for 24 hours at 105°C. Samples were weighed before and after drying and 

substrate moisture content (%) was calculated. 

 

2.4 Photosynthesis parameters  

 

General plant stress was assessed at 52 DAI. Gas exchange and chlorophyll a fluorescence 

measurements were taken on the youngest fully expanded leaf (usually the fifth leaf from the apical 

shoot) [39]. Gas exchange parameters (photosynthesis rate, transpiration rate and stomatal 

conductance) were measured in one sun-exposed leaf per plant with the LI-6400XT Portable 

Photosynthesis System (LI-COR Biosciences, Nebraska, USA) at ambient air temperature (20.2°C – 

24.9°C), air humidity (Rh = 53.5% – 73.5%), reference CO2 concentration (380 μmol mol−1), and stable 

light intensity of 1000 μmol photons m−2 s −1 from an internal LED light source. Measurements were 

taken between 9:30 and 13:00. Chlorophyll a fluorescence parameters were measured with a Mini-

PAM pulse-amplitude-modulated fluorometer (Heinz Walz GmbH, Germany). Maximum quantum 

efficiency of photosystem II (PSII) photochemistry (Fv/Fm) was measured on 10-min dark adapted 

leaves when all PSII reaction centers were open (State 1). It was calculated as Fv/Fm = (Fm – F0)/Fm by 

first measuring the minimal fluorescence (F0) using a low intensity measuring light (0.15 µmol m-2s-1 

PAR), after which a saturating pulse (7000 µmol m-2s-1 PAR for 0.8 s) was applied to close all PSII 

reaction centers (State 2) to measure maximal fluorescence (Fm). The parameters effective quantum 

yield of PSII ((Fm’ - Fs)/Fm’) and apparent electron transport rate (ETR = Yield × PPFD × 0.5 × 0.84) were 

measured on different, light adapted leaves, in order to avoid any influence of the light exposure 

history. Fm’ and Fs are the maximal fluorescence and steady-state fluorescence under light conditions, 

respectively; PPFD is the photosynthetic flux density incident on the leaf, 0.5 is the factor that 

assumes equal distribution of energy between the two photosystems, and 0.84 is the leaf 

absorbance factor [40,41]. Measurements were performed between 11:00 and 16:00. Fv/Fm was 

evaluated on one leaf per plant, whereas Yield and ETR were evaluated on five leaves per plant for all 

plants in the experiment. 

 

2.5 Plant morphology 
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Plant morphology measurements (leaf area, plant height and plant dry weight) were taken at 52 DAI. 

Total leaf area was measured using LI-3100C Area Meter (LI-COR Biosciences). Plant height at the tip 

of apical shoot was measured before the plant material was cut into smaller pieces for dry weight 

measurement and dried in 2-litre paper bags at T = 55°C in the dryer VLE800 (Memmert, Germany) 

for 4 days. 

 

2.6 Hyperspectral imaging  

 

Hyperspectral imaging was conducted over time in the experimental glasshouse. The first imaging 

was conducted at 12 DAI, in the early stages of nematode infestation and initial plant response to 

different stressors (labelled S1); at 34 DAI, which corresponded to the middle of the nematode 

developmental cycle (labelled S2); and at 52 DAI, when nematodes were expected to complete the 

first reproduction cycle and produce egg-masses on the root surface (labelled S3). We used two 

pushbroom imaging spectrometers; HySpex VNIR (spectral range 400 – 988 nm) and SWIR (spectral 

range 950 – 2500 nm) (Norsk Elektro Optikk AS, Norway). The cameras were mounted horizontally on 

a tripod coupled with a rotation stage, so the rotation speed was synchronized with the scanning 

cameras frame rate and field of view. The system was controlled by the data acquisition unit using 

HySpex GROUND software as supplemented by the manufacturer. The imaging system setup 

included two calibrated halogen light sources with an even light intensity between 400 and 2500 nm 

and was positioned at 1.5 m from the ground level and 3 m distance from the imaged tomato plants 

– the resulting field of view per image was 1 × 2.5 m. Using this arrangement, up to 3 plants could be 

imaged at the same time against a black background screen. Every image also included a calibrated 

diffuse white reference plate with 95% reflectance (SphereOptics, Germany). Reflectance values for 

each band of every image pixel (𝑅) were then calculated as: 

𝑅𝑖 =  
𝐼𝑖 − 𝐷𝑖

𝑊𝑖 − 𝐷𝑖
0.95

 

, where 𝐼𝑖 represents the reflected signal of the i-th band; 𝑊𝑖 is the reflected t signal of the i-th band 

from the reference panel and 𝐷𝑖 is the sensors’ dark current of the i-th band [6].  

 

2.7 Pre-processing and image analysis 

 

Leaf-area pixels containing relevant spectral information had to be extracted from the images. The 

workflow (Fig. 1) was based on the guidelines described by Huang et al. [6] and Shrestha et al. [42]. 
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Supervised classification using spectral information divergence [43] was performed on each image so 

leaf-area pixels could be extracted and used for further analysis. Pixel values of each plant were 

normalised using area normalization, due to the variable geometry of imaged plants, and mean 

spectra for each plant were calculated. Reflectance data were then smoothed by Savitzky-Golay filter 

using second-order polynomial, and second-order derivatives calculated to remove scattering effects 

in the spectra and emphasize small spectral variations not evident in the raw data. Prior to the 

development of classification models we used partial least squares - discriminant analysis (PLS-DA) 

[44] to explore the hyperspectral data for patterns among the tomato plants due to different stress 

treatments. Outliers were identified using Hotelling T2 test. Variables were weighted using a standard 

deviation weighting process, and models were validated using full cross validation for PLS and 10-fold 

cross validation for partial least squares - support vector machine (PLS-SVM). Relevant spectral 

regions were evaluated by considering their correlations with PLS-DA factors. The PLS-DA factor 

scores were then used as input variables for support vector machine classification (PLS-SVM) [45,46]. 

The capacity factor (C) and gamma value for each PLS-SVM classification were determined by 

performing a grid search of several combinations of C and gamma on a log scale. The combinations 

giving the best accuracy were then used for model development and 10-fold cross-validation. Similar 

to PLS-DA, variables (PLS-factors) were weighted using standard deviation weighting. Analyses were 

first performed on pooled samples, from all three imaging sessions, and later separately for each 

imaging session. Finally, samples were analysed separately for well-watered and water-deficient 

plants, and infected plants alone, to determine the infection severity. Spectral signatures of each 

plant were separated and extracted using ENVI 5.1 (Harris Geospatial, USA). The extracted data were 

pre-processed, and PLS-SVM evaluation and VIP analyses performed in R [47], while PLS-DA and PLS-

SVM classifications were performed in Unscrambler 10.3 (CAMO Software, Norway). 

 

2.8 Statistical analysis 

 

The data for parameters: total number of nematode eggs, Rf, leaf area, plant height, photosynthesis 

rate, transpiration rate, stomatal conductance, effective quantum yield of PSII, and Fv/Fm, were 

transformed using Box-Cox transformation to achieve normality. Data for plant dry weight and ETR 

were log-transformed due to the zero lambda value (λ = 0) obtained in the Box-Cox procedure. A 

two-way analysis of variance (ANOVA) was then used to test for the interaction of watering and 

nematode infestation effect on the measured parameters. Where statistically significant, the data 

were further analysed with Tukey's HSD (Honest Significant Difference) test at α = 0.05 to separate 

means. Data for the total number of nematode eggs were analysed with Welch’s ANOVA and Games-

Howell post-hoc test because of unequal variances between groups for this parameter. Data were 
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presented as means with standard error of the mean (𝑛̅ ± SE) followed by statistical analyses results. 

Analyses were performed with R software suite [47]. Statistical evaluation of hyperspectral data was 

performed according to the workflow presented in Fig. 1. 

 

3. Results 

3.1 Nematode reproduction and plant morphology 

 

Nematodes successfully multiplied in all inoculated plants (Table 2). There was a statistically 

significant interaction between the effects of watering and nematode infestation on plant 

morphology only for leaf area (F2, 33 = 4.17, p = 0.024). Treatments primarily segregated into two 

groups according to the different watering regimes, so that water-deficient plants were typically 

lower in height, dry weight and leaf area. However, high density M. incognita infestation (treatments 

DH and WH) significantly affected plant dry weight (Table 2), while low density infestation (DL and 

WL) did not produce significant differences compared to non-infested plants (DN and WN).  

 

3.2 Substrate moisture content 

 

Substrate moisture content measurements showed a gradual development of chronic drought 

conditions in water-deficient treatments (data not shown). At 34 and 52 DAI, gravimetric water 

contents in well-watered treatments (WN, WL and WH) were on average three and two times 

greater, respectively, than in water-deficit treatments (DN, DL and DH). Gravimetric water content 

was not substantially different between well-watered and water-deficient treatment at 12 DAI. 

 

3.3 Photosynthesis parameters 

 

Assessments of photosynthesis (CO2 exchange and chlorophyll a fluorescence) were used to confirm 

plant stress. The rate of photosynthesis, as well as stomatal conductance, transpiration and Fv/Fm 

differed significantly between treatments (Table 3). At the same time, the effective quantum yield of 

PSII and ETR were not significantly affected. Two-way ANOVA indicated that these parameters were 

significantly affected by the watering regime, while nematode infestation and interaction between 

the two were not significantly influenced. Stomatal conductance and transpiration differed 

significantly between well-watered (WN, WL and WH) and water-deficient plants (DN, DL and DH), 

but photosynthesis rate and Fv/Fm did not (Table 3).  

 

3.4 Plant stress assessment using hyperspectral imaging 
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PLS-SVM classification of hyperspectral imaging data showed that it is possible to differentiate 

between biotic and abiotic drought stress in tomato plants (Fig. 2). However, separation between 

RKN infested and non-infested plants was less clear; treatment groups were not apparent. When 

differentiating between well-watered and water-deficient groups, PLS-SVM classification achieved an 

accuracy of 92 % Identification of infested plants achieved a success rate of 77 %, and was lowest at 

24.6 % when identifying treatment groups. These results are showcased by PLS-SVM factor score 

plots (Fig. 2). 

 

Because the variability of the data prevented the development of reliable models for treatment 

identification, we performed further analyses on data separated into three groups, according to the 

three imaging sessions (Fig. 2a). Imaging sessions were classified with a 95 % success rate using PLS-

SVM. In pooled samples the main separation was along the first PLS-SVM factor, with reflectance at 

ranges 510-576, 606-693, 725-784, 905-909, 1047-1178, 1216-1265, 1330-1390, 1523-1553, 1830-

1873, and 1906-2015 nm characterizing the differences (Fig. 3). Plants in drought stress showed 

lower reflectance in the green part of the visible spectrum and in NIR, and higher reflectance in the 

SWIR spectral region (Fig. 4a). When classifying imaging sessions the second PLS-SVM factor divided 

the third imaging session into two groups, according to water availability (Fig. 5a). The second factor 

was characterized by reflectance in the NIR and SWIR regions (increasing at ranges 930-959, 1402-

1486, and 1876-1940 nm, and decreasing at ranges 950-1006, 1257-1324, 1600-1676, and 1705-1810 

nm).  

 

When data was separated into groups according to time of imaging, classification success of water 

stress in all three imaging groups (S1, S2, and S3) reached 100 % accuracy. The first factor again 

accounted for the main separation, in the NIR (increasing correlation at ranges 831-875 and 983-

1009 nm, decreasing at 966-977 nm) and SWIR spectral regions (increasing correlation at 1254-1270 

nm, and decreasing at 1140-1156 and 1390-1400 nm).  

 

The separation between RKN infested and non-infested plants showed similar patterns in all three 

imaging sessions. The differences were characterized by reflectance at ranges 751-768, 842-857, 944-

958, 1189-1216, 1270-1287, 1324-1346, 1493-1509, 1764-1786, and 1960-1977 nm. In the visible 

spectrum no apparent differences were observed, while infested plants showed a higher reflectance 

in NIR and lower in SWIR. PLS-SVM achieved a comparatively high success, with accuracy ranging 

from 90.5 % (S2) to 100 % (S1). When the data was further divided according to water availability, 
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identification success increased to 100 % for all imaging sessions, except for water-deficient plants in 

S3, where the accuracy was 95.2 %.  

 

A similar trend in classification success was observed when identifying treatment groups of RKN 

infested plants. Pooled data of well-watered and water deficient plants yielded comparatively poor 

accuracies, with 50 % (S1) to 59.5 % (S3) correctly classified instances. Averaged spectra of all 

treatments showed a distinct division into two groups: (1) water deficient plants, and (2) well-

watered plants (Fig. 4a). This division was further confirmed when the data was separated according 

to water availability. Classification success increased to a range of 78.6 % (S1) to 100 % (S3) in well-

watered plants, and from 85.7 % (S1) to 100 % (S3) in water-deficient plants. Hence, reliability of the 

PLS-SVM classification increased in both water treatment groups, from S1 to S3 (Fig. 5, Table 4). In 

both water treatment groups, plants with lower initial inoculum showed higher reflectance in the 

SWIR region (ranges 1286-1313, 1482-1514, 1585-1612, 1775-1835, 1982-209, 2090-2112, and 2291-

2308 nm), and lower at ranges 1395-1406, 1889-1917, and 2188-2221 nm. Furthermore, water-

deficient plants exhibited another trend. From S1 to S3, spectral information also became relevant in 

the NIR (in S2; ranges 955-983, 1200-1222, 1548-1645, and 2091-2096 nm) and visible spectra (in S3; 

ranges 511-566, 704-737, 850-861, and 993-1015 nm).  

 

4. Discussion 

 

Our results demonstrate that it is possible to utilise hyperspectral imaging data combined with 

supervised learning classification to successfully discriminate between different types of stresses on 

tomato plants. In order to reliably differentiate between biotic stress from M. incognita and abiotic 

drought stress, it was necessary to elicit plant responses to both stressors separately and in 

combination in a controlled setting, since it is known that M. incognita infestation leads to general 

symptoms of water deficit stress [48]. Alterations in root anatomy (gall formation) lead to reduced 

water and nutrient uptake and retard plant growth and development. Effects can be quantified by 

measuring various physiological parameters like leaf water potential, root hydraulic conductivity, 

stomatal conductance [48,49] and net leaf photosynthesis [50,51], as well as various morphological 

characteristics of plants. We observed retarded plant growth as indicated by decreased leaf area, dry 

weight and plant height in water-deficient plants. Additionally, severely nematode-infested plants 

significantly differed in total dry weight (Table 2: DH, WH) indicating that severe RKN infestations can 

compound the effects on plant morphology produced by water deficit.  
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Although plant stress due to water deficit could be assessed with net leaf photosynthesis and 

chlorophyll a fluorescence, some of these parameters did not show statistically significant results at 

52 DAI and, furthermore, did not allow discrimination between abiotic and biotic stresses (Table 3). 

The latter is in accordance with conclusion of Mahlein [52], who noted that chlorophyll fluorescence 

is sensitive to early stress reaction of a plant, but lacks the potential to identify a specific disease. 

Previous work by Strajnar et al. [33] on the other hand, showed that nematode-induced physiological 

stress in tomato can be determined by measuring root hydraulic conductivity, water potential, 

stomatal conductivity, transpiration and net photosynthesis. Strajnar et al. [33], however, measured 

net photosynthesis rate at 102 DAI which was a period nearly twice as long as in the present 

experiment. By that time the roots were infested by the second generation of nematodes and the 

damage to the root system was presumably much more severe. The effect of nematodes on the plant 

physiological parameters was therefore more likely to be observed than in our experiment. 

 

In our experiment, water deficit led to expected effects in plants as measured by stomatal 

conductance and transpiration rates. Affected plants (DN, DL and DH) averaged 4-fold lower 

transpiration and 4 – 14-fold lower stomatal conductance as well-watered plants (Table 3; WN, WL 

and WH) which in turn affected photosynthesis. Stomatal conductance rate and transpiration are 

directly connected to photosynthesis [53,54] and lower levels suggest stomata closing and hence 

lower rates of CO2 assimilation. Although the parameter Fv/Fm showed a statistically significant 

decrease at the highest inoculum level in well-watered plants (Table 3; WH), the same effect could 

not be observed in water-deficient plants (DH). A similar nematode inoculum-dependent Fv/Fm 

decrease has been observed by Schmitz et al. [55] studying sugar beet exposed to Heterodera 

schachtii. The study, however, did not examine the effect of abiotic drought on this parameter. 

Although we were able to assess general plant stress using gas exchange and chlorophyll a 

measurements, these methods were not as sensitive as hyperspectral imaging. This may be 

attributed to the way in which the measurements are obtained using different systems – gas 

exchange and chlorophyll a is measured at a single point per plant, while hyperspectral imaging 

records the signal across the whole plant canopy. Local physiological abnormalities could affect a 

point measurement much more than the hyperspectral imaging measurement of a larger area. 

 

Leaf senescence changes reflectance characteristics, the spectra of a proceeding senescence form an 

ordinal order [56]. These changes are mainly linked to the degradation of pigments (e.g. chlorophylls) 

and reallocation of resources. Plants in drought stress reallocate these resources to leaves with a 

higher potential. This is showcased by the identified relevant spectral ranges in our study. In the 

visible part of the spectrum only two ranges were identified, green and red, indicating changes in 
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pigment structure. The other spectral ranges (in NIR and SWIR) are linked to physical and chemical 

characteristics, such as cellulose and lignin [57], as well as carbohydrates, proteins, and water 

content [58]. Wavelengths in the ranges 966-977, 983-1009, 1216-1265, 1254-1270, and 1330-1390 

nm are linked to the O-H stretch in water, while the range 1047-1178 nm is linked to the N-H stretch 

of proteins [59]. The prevalence of pigment and water content related wavelengths indicates the 

importance of these variables for classification of plants into age groups and drought stress. 

 

Some of the identified spectral bands are known to be related to certain physiological variables, 

which indicate drought stress, in many plant species [60]. The lower reflectance around 535 nm is 

linked to an increase in zeaxanthin content, leading to the photoprotective state of the zeaxanthin 

cycle [61], while the decrease at 550 nm is related to adjustments of anthocyanins and other 

photoprotective pigments [62]. On the other hand, an increase of reflectance at 1500 nm is linked to 

a decrease of leaf water content [63]. Peñuelas et al. [64] showed that the water absorption band at 

950-970 nm can be used to estimate water deficiency in plants. Our results corroborate the findings 

of Peñuelas et al. [64] only in part, as this spectral range was identified to be relevant only when data 

was separated according to imaging session, but not in pooled samples.  

 

As plants matured and RKN infestations became more established, the relevant spectral ranges 

began shifting toward the visible spectrum (from S1 to S3). In S3, plants subjected to biotic and 

abiotic stress at the same time showed visible signs of stress, mostly in the green part of the 

spectrum (511-566 nm). The damage due to both abiotic and biotic stress became severe enough for 

the symptoms to become visible, and overshadow the foliar water content (at 1390-1520 nm, and 

1860-2080 nm). Furthermore, for the identification of infested plants and severity of infestation, the 

O-H stretch became less important, and was replaced by the C-H stretch of carbohydrates and 

proteins (1189-1222 and 1324-1346 nm). This indicates the importance of wavelengths linked to 

pigments, and leaf chemistry and structure for identification of RKN infestations and their intensity. 

 

Hyperspectral imaging enabled reliable identification of the water status of tomato plants in the 

experiment, as well as determination whether these plants were parasitized by nematodes (Fig. 5, 

Table 4). Water-deficient and well-watered plants could be predicted most reliably (classification 

success from 92 % to 100 %, depending whether data is pooled from imaging sessions) indicating that 

water-deficiency produced most readily observable changes in the spectrum of reflected light. It has 

been demonstrated that stress conditions influence production and / or transport of various 

substances throughout the plant tissues [51]. Drought induces metabolic changes in the plant 

through increased accumulation of free sugars and free essential amino acids that are involved in the 
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maintenance of host-plant osmotic balance. Drought can also lead to the increased production of 

defence compounds like protease inhibitors and the oxidative enzymes [51]. The hyperspectral 

camera system used in this study records light in the spectral range 409 – 2509 nm in 3.7 – 5.5 nm 

wide spectral channels, and could thus obtain detailed reflectance information and record spectral 

changes following the accumulation, transport flux or degradation of various chemicals, such as 

those that are induced by drought conditions. Various pigments like chlorophylls and carotenoids are 

normally examined since the concentration of these pigments is usually indicative of a physiological 

status of plants [5]. Pigment concentration in combination with spatial distribution mapping is 

particularly successful approach for prediction of various plant diseases that affect the leaves directly 

[20,65]. Nematode infestation could be predicted more reliably within the group of well-watered 

plants (WN, WL ,WH; classification success 100 %) than within the water-deficient plants (DN, DL, DH; 

classification success 95%) indicating that the specific spectral fingerprints determining nematode 

attack are being masked by drought-induced effects. Specific spectral indices that can classify soil-

borne pathogen infestations including phytopathogenic fungi and plant-parasitic nematodes have 

been determined previously [35,22–24]. Even though identification of drought stress and its source, 

biotic or abiotic, was successful in our study, further research will be necessary to determine which 

physiological and structural changes in leaves account for the observed spectral differences between 

infested and non-infested plants. Accumulation, reduction or specific spatial distribution patterns of 

different compounds could not only determine the ability for hyperspectral imaging to detect 

different plant diseases and pests, but also serve as the basis for determination of disease/pest-

specific spectral fingerprints. Nematode-stress specific spectral fingerprints could then be used to 

develop robust disease/pest and stress discrimination models that would be appropriated in remote 

sensing applications in various environments, such as the laboratory, greenhouse or in the field [66]. 

 

5. Conclusions 

 

The study showed hyperspectral imaging can discriminate between abiotic and biotic stresses in 

tomato plants. High reliability discrimination was possible in the early stages of symptom 

manifestation and improved over time. Measurements of photosynthetic rate and chlorophyll a 

fluorescence at the completion of the first reproduction cycle showed that these parameters can be 

used to distinguish between well-watered and water-deficient plants, but not between nematode-

infested and non-infested plants. The same trend was observed after examination of morphology 

such as plant dry weight, height and total leaf area. Statistically significant differences were observed 

between non-infested and highly infested plants for leaf area and plant dry weight, but not for the 

plants with lower nematode-infestation levels. Using PLS-DA and PLS-SVM classification on the 
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hyperspectral data, it was possible to discriminate between water-deficient and well-watered plants, 

and to determine nematode parasitized plants in both groups: water-deficient plants and well-

watered plants. This demonstrates the capability of hyperspectral imaging for the identification and 

discrimination of biotic and abiotic plant stresses. To our knowledge, this study represents the first 

application of hyperspectral imaging to accurately discriminate between drought-induced abiotic and 

nematode-elicited biotic stresses in tomato plants.  

This data could be further implemented for the development of remote sensing applications to 

detect nematode infestations in the field which would enable quicker response and more targeted 

pest management (e.g. the targeted use of chemical and / or biological control agents). Technology 

could be further implemented for breeding purposes for nematode resistance evaluation testing. As 

the climate changes and resulting higher average temperatures lead to more severe droughts and 

facilitate the development and spread of soil-borne pests like the tropical plant-parasitic nematodes 

of the genus Meloidogyne. Remote sensing applications in agriculture could be used to address these 

challenges in modern crop production. Some RKN species are emerging pests which are capable of 

producing several generations per season under favourable environmental conditions. Their 

population dynamics and reproduction time are mainly temperature dependent. Currently, they 

present a problem predominantly in greenhouses, where temperatures are higher and more stable 

than in the fields. Our field observations and population models in conjunction with climate change 

models indicate that RKNs will be able to produce more than two generations per season in the open 

fields. The introduction of RKN pest species into non-infested field or area can happen by different 

pathways (e.g infested plant material, infested agricultural machinery etc.) and it is usually 

introduced at one or several spots/ points. The initial distribution of the pest in the growing area is 

therefore in patches. At these introduction points the initial pest population develops over time and 

the spots gradually develop into bigger infested patches and may spread even further by human 

assistance (eg. with agricultural machinery). Infestation of the whole field or area is only expected 

few years after initial introduction of the pest when RKN population density increases with time. Any 

introduction of novel pest is easier to manage when it is not yet widely distributed. It is therefore 

very important to detect the pest before it has been spread onto the large area and with the use of 

hyperspectral imaging it is possible to detect infestation in its early stages, when only small and/or 

few patches of the growing area are infested. Current detection methods are destructive, each plant 

has to be uprooted and checked visually for presence of galls on the roots. While this approach is 

accurate, it is time consuming and not applicable in large areas when the extent of infestation has to 

be defined on the field. On the contrary, localization and estimation of nematode infestation extent 

in the field would be feasible, efficient and much faster using hyperspectral remote sensing 
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approach. A non-invasive early detection method would therefore have direct applications in 

agriculture.  

The novel finding presented in this work is that with the use of hyperspectral imaging detection of 

root-knot nematode (Meloidogyne spp.) infestation of the plant is possible. Further, nematode 

infestation can be reliably differentiated from the water deficiency (abiotic stress) which causes 

similar symptom on the above ground parts of the plants. There is no other reliable method to 

predict nematode infestation without physical examination of plant roots, which is a disruptive 

method as the plant needs to be removed from the soil. Additional novelty in this work is 

information that shortwave infrared spectral regions associated with the O-H and C-H stretches were 

most relevant for the identification of nematode infested plants and severity of infestation. This 

indicates the importance of wavelengths linked to pigments, and leaf chemistry and structure for 

identification of RKN infestations and their intensity. 
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Figure legends: 

 

Fig. 1. Hyperspectral data analysis workflow based on Huang et al. [6] and Shrestha et al. [42]. 

 

Fig. 2. PLS-SVM score plots showing variation in the plant groups with regard to: a) imaging session, 
b) water availability, c) RKN infestation, and d) treatment. In d) the abbreviations ‘D’ and ‘W’ denote 
drought and watered treatment, respectively and correspond to treatments defined in Table 1. 
Below the figures are the confusion matrices for each classification, denoted by the same letters as 
their corresponding figure (a, b, c, and d). 
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Fig. 3. Loadings of the first PLS-DA component for pooled samples. The black lines mark spectral 
ranges with correlations above 0.7 or below -0.7. 

 

Fig. 4. Average normalized spectral signatures of plants grouped according to: a) water availability; b) 
imaging session (S1-3); and c) RKN infestation. Because of the area normalization process the y-axis is 
not in reflectance units. 
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Fig. 5. PLS-SVM score plots showing the variation between treatment groups in imaging session 3 
(S3). a) pooled data; b) watered plants; and c) water-deficient plants. Confusion matrices of each 
classification are inset in the figures. Classification of pooled data achieved a 59 % success rate, while 
both separated groups attained 100 % accuracy. 
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Table legends: 

 

Table 1 Tomato plants were subjected to two watering regimes (well-watered [W] / water-deficient / 
drought [D]) and different levels of initial nematode inoculum (no RKN [N] / low inoculum [L] of 
15×103 Meloidogyne incognita eggs per plant / high inoculum [H] of 250×103 M. incognita eggs per 
plant). 
Table 2 Nematode reproduction and plant morphology parameters at 52 DAI in different treatments. 
Data expressed as treatment means with standard error (± SE), ANOVA statistics and Tukey’s HSD 
test results. Means that share a letter are not significantly different at p < 0.05. 
Table 3 Physiological parameters assessing plant photosynthesis and chlorophyll a fluorescence at 52 
DAI in different treatments. Data expressed as treatment means ± SE, two-way ANOVA statistics and 
Tukey’s HSD test results. Means that share the same letter are not significantly different at p < 0.05. 
Table 4 Summary of PLS-DA and PLS-SVM analyses. The abbreviations used in the table are: Var – 
explained variance of the selected PLS components; RMSECV – root mean squared error of cross-
validation of selected PLS components; c – SVM cost of classification parameter; gamma – SVM 
Gaussian kernel parameter; Ts – train set; CV – cross-validation. 
 
Table 1 Tomato plants were subjected to two watering regimes (well-watered [W] / water-deficient / 
drought [D]) and different levels of initial nematode inoculum (no RKN [N] / low inoculum [L] of 
15×103 Meloidogyne incognita eggs per plant / high inoculum [H] of 250×103 M. incognita eggs per 
plant). 
Treatment 

abbreviation 

Watering regime RKN Infestation 

WN 

Well-watered 

None 

WL Low inoculum 

WH High inoculum 

DN 
Water-deficient 

(drought) 

None 

DL Low inoculum 

DH High inoculum 
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Table 2 Nematode reproduction and plant morphology parameters at 52 DAI in different treatments. 
Data expressed as treatment means with standard error (± SE), ANOVA statistics and Tukey’s HSD 
test results. Means that share a letter are not significantly different at p < 0.05. 
Treatment Nematode 

eggs (𝒏̅ × 106) 

Reproduction 

factor (Rf) 

Leaf area (cm2) Plant height (cm) Plant dry 

weight (g) 

WN 0.0 ± 0.0 n/a 0.0 ± 0.0 n/a 3133.5 ± 75.9 a 158.1 ± 3.3 a 64.9 ± 0.7 a 

WL 0.9 ± 0.2 b 56.6 ± 15.2 3103.4 ± 169.9 a 160.7 ± 2.7 a 61.4 ± 1.3 a 

WH 8.6 ± 1.5 a 34.5 ± 5.8 2421.4 ± 86.0 b 150.5 ± 5.7 a 43.7 ± 3.9 b 

DN 0.0 ± 0.0 n/a 0.0 ± 0.0 n/a 2360.6 ± 53.1 b 111.1 ± 3.6 b 25.8 ± 0.3 c 

DL 0.8 ± 0.1 b 55.2 ± 9.1 2059.3 ± 126.1 b 116.7 ± 2.0 b 23.8 ± 0.3 c 

DH 12.1 ± 0.9 a 48.5 ± 3.4 2035.5 ± 58.5 b 104.2 ± 2.2 b 17.3 ± 0.4 d 

ANOVA statistics 

Watering 

(i)F3, 10.04 = 

58.54, p < 

0.0001 

F1, 23 = 1.10, p 

= 0.306 

F1, 33 = 76.05, p < 

0.0001 

F1, 33 = 267.61, p < 

0.0001 

F1, 33 = 719.89, p 

< 0.0001 

Nematode F1, 23 = 1.21, p 

= 0.284 

F2, 33 = 12.47, p < 

0.0001 

F2, 33 = 5.43, p = 

0.009 

F2, 33 = 52.07, p 

< 0.0001 

Interaction F1, 21 = 0.69, p 

= 0.414 

F2, 33 = 4.17, p = 0.024 F2, 33 = 0.18, p = 

0.829 

F2, 33 = 0.13, p = 

0.879 

(i) Welch’s ANOVA does not test for the interaction effects of independent variables. 

n/a – not applicable 
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Table 3 Physiological parameters assessing plant photosynthesis and chlorophyll a fluorescence at 52 
DAI in different treatments. Data expressed as treatment means ± SE, two-way ANOVA statistics and 
Tukey’s HSD test results. Means that share the same letter are not significantly different at p < 0.05. 
Treatment  Photosynthesis 

rate (µmol 

CO2 m-2 s-1) 

Stomatal 

conductance 

(mol H2O m-2 

s-1) 

Transpiration 

(mmol H2O m-2 

s-1) 

Effective 

quantum yield 

of PSII 

ETR (µmol e- m-

2s-1) 

Fv/Fm 

WN 5.57 ± 0.40 ab 0.09 ± 0.01 a 1.39 ± 0.10 a 0.71 ± 0.02 19.46 ± 1.42 0.77 ± 0.01 ab 

WL 6.62 ± 0.84 a 0.12 ± 0.02 a 1.85 ± 0.31 a 0.71 ± 0.01 21.28 ± 2.28 0.77 ± 0.01 ab 

WH 6.04 ± 1.07 ab 0.14 ± 0.04 a 1.99 ± 0.46 a 0.66 ± 0.03 17.53 ± 2.12 0.74 ± 0.01 b 

DN 2.90 ± 0.64 bc 0.03 ± 0.00 b 0.37 ± 0.05 b 0.68 ± 0.02 20.99 ± 2.52 0.79 ± 0.01 a 

DL 1.65 ± 0.72 c 0.02 ± 0.01 b 0.32 ± 0.08 b 0.69 ± 0.02 15.70 ± 1.42 0.79 ± 0.01 a 

DH 3.59 ± 0.91 abc 0.03 ± 0.01 b 0.55 ± 0.08 b 0.67 ± 0.02 15.97 ± 0.93 0.79 ± 0.01 a 

ANOVA statistics 

Watering F1, 33 = 28.34, p 

< 0.0001 

F1, 33 = 66.86, 

p < 0.0001 

F1, 33 = 67.46, p 

< 0.0001 

F1, 33 = 0.55, p 

= 0.462 

F1, 33 = 1.37, p = 

0.251 

F1, 33 = 20.81, p < 

0.0001 

Nematode F2, 33 = 0.39, p = 

0.682 

F2, 33 = 1.28, p 

= 0.292 

F2, 33 = 1.09, p 

= 0.348 

F2, 33 = 1.90, p 

= 0.166 

F2, 33 = 1.52, p = 

0.235 

F2, 33 = 1.69, p = 

0.200 

Interaction F2, 33 = 1.62, p = 

0.213 

F2, 33 = 1.07, p 

= 0.354 

F2, 33 = 1.18, p 

= 0.320 

F2, 33 = 0.61, p 

= 0.551 

F2, 33 = 1.40, p = 

0.261 

F2, 33 = 1.39, p = 

0.263 
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Table 4 Summary of PLS-DA and PLS-SVM analyses. The abbreviations used in the table are: Var – 
explained variance of the selected PLS components; RMSECV – root mean squared error of cross-
validation of selected PLS components; c – SVM cost of classification parameter; gamma – SVM 
Gaussian kernel parameter; Ts – train set; CV – cross-validation. 

Analysis 
 

Imagin
g 
session 
[S] Treatments PLS-DA 

  

SV
M 

  

Accuracy 
[%] 

  
 

  

Var 
[%] 

RMSEC
V 

 
c 

gamm
a 

 
Ts CV 

Water deficiency-pooled  S1-3 all treatments 75 0.25 
 

1 0.1 
 

96 92.1 

Infestation-pooled S1-3 all treatments 37 0.45 
 

1 0.1 
 

89.7 77 

Treatment-pooled S1-3 all treatments 20.4 0.38 
 

1 0.143 
 

41.3 24.6 

Imaging session S1-3 all treatments 81 0.17 
 

1 0.1 
 

100 94.4 

Water deficiency S1 DN, DL, DH 95.8 0.11 
 

100 0.01 
 

100 100 

Water deficiency S2 DN, DL, DH 98.3 0.07 
 

100 0.01 
 

100 100 

Water deficiency S3 DN, DL, DH 98.5 0.07 
 

100 0.01 
 

100 100 

Infestatio
n pooled S1 DL, DH, WL, WH 93 0.11 

 
10 0.01 

 
100 100 

 

water 
deficiency S1 DL, DH 

 
98 0.06 

 
0.01 0.01 

 
100 100 

 
well-watered S1 WL, WH 

 
98 0.05 

 
10 0.01 

 
100 100 

Infestatio
n pooled S2 DL, DH, WL, WH 81 0.2 

 
4.64 0.032 

 
100 90.5 

 

water 
deficiency S2 DL, DH 

 
97 0.08 

 
10 0.01 

 
100 100 

 
well-watered S2 WL, WH 

 
99 0.05 

 
100 0.01 

 
100 100 

Infestatio
n pooled S3 DL, DH, WL, WH 79 0.21 

 
0.52 0.01 

 
100 92.9 

 

water 
deficiency S3 DL, DH 

 
94 0.12 

 
46.4 0.001 

 
100 95.2 

 
well-watered S3 WL, WH 

 
97 0.07 

 
100 0.01 

 
100 100 

Treatment pooled S1 
all treatments at 
S1 52 0.46 

 
13.3 0.01 

 
100 50 

 

water 
deficiency S1 DL, DH 99 0.07 

 
21.5 0.01 

 
100 85.7 

 
well-watered S1 WL, WH 99 0.08 

 
10 0.01 

 
100 78.6 

Treatment pooled S2 
all treatments at 
S2 55.8 0.49 

 
3.59 0.1 

 
69.05 54.8 

 

water 
deficiency S2 DL, DH 99 0.02 

 
10 0.01 

 
100 92.9 

 
well-watered S2 WL, WH 99 0.02 

 
10 0.1 

 
100 92.9 

Treatment pooled S3 
all treatments at 
S3 54 0.26 

 
35.9 0.028 

 
97.6 59.5 

 

water 
deficiency S3 DL, DH 99 0.02 

 
10 0.01 

 
100 100 

 
well-watered S3 WL, WH 99 0.01 

 
35.9 0.01 

 
100 100 
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