RESIN YIELD OF *Pinus nigra* AND *Pinus sylvestris* IN THE SLOVENIAN KARST

DONOS SMOLE ČRNEGA BORA (*Pinus nigra*) IN RDEČEGA BORA (*Pinus sylvestris*) NA KRASU V SLOVENIJI

Domen GAJŠEK¹, Miha BRECELJ², Kristjan JARNI³, Robert BRUS⁴

(¹) Goričica 24, 3230 Šentjur, Slovenia; domen.g@ yahoo.co.uk
(²) Zapuže 43c, 5270 Ajdovščina, Slovenia; miha.brecelj@gmail.com
(³) Biotechnical Faculty, Department of Forestry and Renewable Forest Resources; kristjan.jarni@bf.uni-lj.si
(⁴) Biotechnical Faculty, Department of Forestry and Renewable Forest Resources; robert.brus@bf.uni-lj.si

ABSTRACT

The aim of our research was to study the impact of various environmental factors on the resin production of pines in the Slovenian Karst. Five plots were established – three in *Pinus nigra* (Arnold) stands and two in *Pinus sylvestris* (L.) stands. On each plot, the 19-20 most vigorous dominant or codominant trees with a minimum diameter at breast height (DBH) of 20 cm were selected and their resin yield analysed in 2012. Resin yield in *P. nigra* was considerably higher than that in *P. sylvestris*. The average resin yield per tree during the study period of 102 days was 1.144 kg for *P. nigra* and 0.612 for *P. sylvestris*. There were substantial differences in resin yield among individual trees in the study period: 0.336-2.487 kg for *P. nigra* and 0.249-1.270 kg for *P. sylvestris*. The resin yield in *P. nigra* was considerably higher for the trees with larger DBH, while this was not the case in *P. sylvestris*. Tree species was the most important factor in resin yield. Increased precipitation resulted in higher resin yields on most plots, whereas better site productivity positively affected resin yield on all *P. nigra* plots but not on *P. sylvestris* plots.

Key words: black pine, Scots pine, resin production, resin yield, Slovenian Karst

IZVLEČEK

Ključne besede: črni bor, rdeči bor, smolarjenje, donos smole, Kras

UVOD

Resin tapping dates back to Gallo-Roman times and began in Gascony, France. The practice was prosperous until the beginning of the world economic crisis of 1929, after which the demand for resin started to decline (Piškorić, 1992). This time-honoured and labour-intensive practice is performed by incising, i.e. damaging, the outer layers of the bark of a pine or some other conifer in order to collect the resin or sap. The two main components of resin are turpentine and gum rosin. Rosin is widely used to produce adhesives, paper sizing agents, printing inks, detergents, etc., while turpentine is usually the raw material for varnishes, perfume, disinfectants, cleaning agents, etc. (Wang et al., 2006).

The total world production of resin products has remained fairly stable since the 1960s and reached its maximum in 2007, when production was approximately 1,050,000 tonnes of gum rosin and 170,000 tonnes of turpentine. The most valued type of turpentine, Iberian turpentine, is of a very high quality and by 15-20% (and up to 50%) more expensive than turpentine from other parts of the world. However, its use is currently limited by its low production (La resina, 2009). China is presently the largest producer of gum rosin.
globally with more than 70% of the total production, followed by Latin America (notably Brazil) with 10% and Indonesia with 7% (Cunningham, 2009).

The demand for resin derivatives in Europe is growing, but European production amounts to less than 10% of its consumption. The largest European producers are France, Portugal, Spain and Greece, while the largest consumers are Germany and the Netherlands, followed by Spain and France (La resina, 2009). However, resin tapping in Europe has declined considerably as a consequence of the introduction of synthetic resins and low-price resin from countries such as China and Brazil. In Spain, the number of resin tappers has decreased considerably in recent years, though in some areas, such as Segovia, resin tapping has been successfully preserved (La resina, 2009).

Several pine species are used for resin tapping worldwide: *Pinus massoniana* Lamb. in China; *P. elliottii* Engelm. in Brazil, Argentina and South Africa; *P. oocarpa* Schiede ex Schltdl. in Mexico and Honduras; *P. merkusii* Jungh. & de Vriese in Indonesia and Vietnam; *P. roxburghii* Sarg. in India and Pakistan; *P. caribaea* Morelet in Venezuela; and *P. radiata* D. Don. in Kenya (Coppen and Hone, 1995). In Spain, France and Portugal, the main resin-tapping pine species is *P. pinaster* Aiton, while in Central Europe and in the Adriatic region, resin tapping has traditionally been carried out on *Pinus nigra* Arnold and *P. sylvestris* L. (Bojanin, 1967).

In Slovenia, the first serious attempts at resin tapping started in the Primorska region in 1938, where resin tapping of both *P. nigra* and *P. sylvestris* began according to the French method. In 1946, the first resin-tapping experiments were carried out in Prekmurje and Dravsko polje using the German method, and from there, this method continued to spread into the Karst region. In that period, resin tapping in Slovenia increased every year. The annual resin yield was 84.5 tonnes in 1947, 119.3 tonnes in 1948, 105 tonnes in 1949, 140 tonnes in 1950 and 148 tonnes in 1951 and 1952 (Kiauta, 1953). At that time, *P. sylvestris* was mainly used for resin tapping along with the short-term modified German method (also named the Chorin-Finowtal method) (Pejoski, 1952). The seasonal resin yield per individual tree in Slovenia at that time was 1.06 kg for *P. sylvestris* and 1.33 kg for *P. nigra* (Pejoski, 1953). Near the town of Sežana, the reported average seasonal resin yield per single tree was 1.4 kg for *P. nigra* (Simić, 1953). For comparison, the average seasonal resin yield per single tree in similar conditions and for the same species on the Croatian island of Brač was 0.58 kg at that time.

At the present time, large areas of once desolate Slovenian Karst are covered by plantations of predominately *P. nigra*. They cover a surface area of more than 16,500 ha (Diaci et al., 2014) and are considered ecologically and mechanically unstable. They are threatened by fire and fungal diseases, and their wood productivity is low. An important goal of forest management plans is the gradual transformation of these stands into ecologically more stable broadleaved forests with improved productivity. However, alongside timber production provided through the final cutting, it is also possible to generate additional income from non-timber forest products. In this respect, resin tapping in the Slovenian Karst region, once well established but now completely abandoned, is an option worth considering by a forest owner in the years prior to the final cut of a pine plantation.

The main goals of our study were to determine the total amount and differences in resin yield between *P. nigra* and *P. sylvestris* as well as the influence of environmental factors, site productivity and tree diameter at breast height (DBH) on total resin production.

2 METHODS

2.1 METHODS

Five plots were established near the town of Sežana in the Karst region of Slovenia. Of these five plots, three were placed in *P. nigra* stands and two in *P. sylvestris* stands (Fig. 1). On each plot, the 19-20 most vigorous dominant or codominant trees were selected. For each selected tree, DBH, GPS coordinates and tree vigour were measured or assessed. According to Smith et al. (1997), the size of the crown and its density indicate vigour; therefore, four crown vigour classes were used: 1 – full vigour, 2 – good to fair vigour, 3 – fair to poor vigour, and 4 – very poor vigour. All trees included in the research sample belonged to either vigour class 1 or 2. The altitude and plant association of each plot were also assessed. The predominant association on the plots was *Seslerio-Ostryetum*, followed by *Seslerio autunnalis-Quercetum petraeae* (Table 1).

The amount of harvested resin was correlated with environmental data from the nearby Godnje meteorological station (45.75530 N, 13.839775 E). The station is located at an altitude of 316 m and, on average, 3 kilometres from individual research plots. Meteorological data of individual days (minimum, maximum and average air temperature 2 m above the ground; precipitation; and sun duration) were used to calculate averages of individual tapping periods (3-6 days). These mean values were correlated with the resin yield in the corresponding period (25 tapping periods in total). Mean values of climatic parameters are shown in table 2.
Based on our preliminary tests from 2011 that showed virtually negligible resin yields before mid-June, we started incising the trees in mid-June 2012 and ended at the end of September 2012 when the weather cooled. We used the Slovenian method, which is almost identical to the German method, in which 1.5-2 cm wide incisions are made in 8-10-day intervals. The main difference is that the incision width is smaller in the Slovenian method (0.5-1.5 cm). The method was further adapted with the use of tools – instead of the traditional, bent resin-tapping knife, a straight carpentry chisel was used. This enabled more effective work, particularly with knotty wood and thick bark. At the bottom of every wound’s vertical channel, we carved out a bed for a pot that was then nailed to the stem. After removing the thicker parts of the rhytidome, cleaned bark was stripped off in the shape of a triangle and one wound per tree was incised. The wound covered about 40 per cent of the tree perimeter (Fig. 2). It should be noted that no stimulating paste was used in the experimental process. The harvest cycle ranged between 3 and 6 days. One of the reasons for choosing a short tapping period was that the obtained resin was also chemically analysed (data not shown). The resin was stored more quickly and thus the evaporation of turpentine was reduced. In each cycle, resin was collected and weighed and new incisions were carved simultaneously. The resin was collected with a spoon and stored in containers. Weighing was carried out with a Gorenje KT05NS kitchen scale with an accuracy of one gram.

To study the impact of site conditions on resin yield, the site productivity of the plots was assessed. Five dominant or codominant trees from each plot were cored with an increment borer to determine their age. Prior to analysis, the cores were prepared with established
dendrochronological methods (Stokes and Smiley, 1968). The counting of annual rings was performed with a Nikon SMZ80 stereoscopic microscope with 10× magnification. For describing the site productivity of *P. nigra* plots, site classes (Gatzojannis, 1999) were used and a site index (Halaj et al., 1987) for *P. sylvestris* plots.

To assess the correlation between resin yield and the various environmental factors (air temperature, amount of precipitation and sun duration), Pearson’s correlation was used. When considering the potential impact of tree species and the diameter of the tree on resin yield, analysis of covariance (ANCOVA) was contrived, where ‘tree species’ was a fixed factor and diameter at breast height (DBH) was used as a covariate. All computations were performed with Microsoft Excel 2013 and IBM SPSS Statistics 25.0 software.

Table 2: Climatic variables from the nearest meteorological station at Godnje (approx. 3 km from the research plots) for the period from 17 June to 28 September 2012

<table>
<thead>
<tr>
<th>Mean values of tapping periods</th>
<th>Povprečna vrednost med obhodi</th>
<th>Total period</th>
<th>Celotno obdobje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average air temp. (°C)</td>
<td>Povprečna temp. zraka (°C)</td>
<td>22.45</td>
<td></td>
</tr>
<tr>
<td>Max. air temp. (°C)</td>
<td>Maks. temp. zraka (°C)</td>
<td>29.26</td>
<td>/</td>
</tr>
<tr>
<td>Min. air temp. (°C)</td>
<td>Min. temp. zraka (°C)</td>
<td>16.98</td>
<td>/</td>
</tr>
<tr>
<td>Precipitation (mm)</td>
<td>Padavine (mm)</td>
<td>9.16</td>
<td>229</td>
</tr>
<tr>
<td>Sun duration (h)</td>
<td>Sončno obsevanje (h)</td>
<td>40.73</td>
<td>1018.2</td>
</tr>
</tbody>
</table>

Data from the archives of the Slovenian Environmental Agency (ARSO, 2018)
3 RESULTS

The maximum resin yield of a single tree in the study period of 102 days was 2.487 kg for a *P. nigra* tree on plot *P. nigra* 3, where the best site conditions (site class 1) were recorded. The minimum resin yield produced per tree was 0.249 kg for a *P. sylvestris* tree on plot *P. sylvestris* 2. While the average resin yield was very similar on both *P. sylvestris* plots, it was more variable on the *P. nigra* plots (Table 3).

The analysis of covariance showed that the covariate, diameter at breast height, was significantly related to resin yield, $F = 17.10$, $p < 0.001$ (Table 4). Moreover, the value of b for the covariate ($b = 23.3$, $p < 0.001$) means that resin yield increases with DBH. However, further analysis showed that resin yield was significantly related to DBH only in *P. nigra* (Pearson’s correlation: 0.462**) and not in *P. sylvestris* (Pearson’s correlation: 0.089 n.s.) (Figure 4). There was also a significant effect of ‘tree species’ on resin yield after controlling for the effect of DBH, $F = 18.00$, $p < 0.001$ (Table 4). The average resin yield in the study period was considerably higher for *P. nigra* (1.144 kg/tree) compared to *P. sylvestris* (0.612 kg/tree) (see Table 3 and Figure 3).

The resin yield correlated with most of the studied environmental factors on *P. nigra* plots, while on *P. sylvestris* plots no such correlation was detected (Table 5). The correlation between resin yield and average daily air temperature was statistically significant ($P<0.01$) for the two plots with the highest resin yield – *P. nigra* 2 and 3. For these two plots, there was also a statistically significant correlation between resin yield and average, maximum and minimum air temperatures (Table 5). All of these correlations were negative, which means that resin yield decreased with increasing air temperature (the average air temperature during our study was 22.5 °C on all plots, with the maximum temperature

Table 3: Average (x̅), maximum (max.) and minimum (min.) resin yield per tree for all plots during the study period (102 days)

<table>
<thead>
<tr>
<th>Species</th>
<th>Average (x̅) (kg)</th>
<th>Max. (kg)</th>
<th>Min. (kg)</th>
<th>DBH (cm)</th>
<th>Site productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. nigra 1</td>
<td>0.942</td>
<td>1.923</td>
<td>0.421</td>
<td>39.95±9.70</td>
<td>Site class 3 (A)</td>
</tr>
<tr>
<td>P. nigra 2</td>
<td>1.116</td>
<td>2.434</td>
<td>0.336</td>
<td>32.84±7.06</td>
<td>Site class 2 (A)</td>
</tr>
<tr>
<td>P. nigra 3</td>
<td>1.361</td>
<td>2.487</td>
<td>0.597</td>
<td>39.45±5.78</td>
<td>Site class 1 (A)</td>
</tr>
<tr>
<td>P. sylvestris 1</td>
<td>0.632</td>
<td>1.270</td>
<td>0.283</td>
<td>31.25±6.95</td>
<td>SI 25 (B)</td>
</tr>
<tr>
<td>P. sylvestris 2</td>
<td>0.590</td>
<td>1.139</td>
<td>0.249</td>
<td>30.63±2.79</td>
<td>SI 25 (B)</td>
</tr>
<tr>
<td>P. nigra total</td>
<td>1.144</td>
<td>2.487</td>
<td>0.336</td>
<td>37.41±8.19</td>
<td>/</td>
</tr>
<tr>
<td>P. sylvestris total</td>
<td>0.612</td>
<td>1.270</td>
<td>0.249</td>
<td>30.94±5.29</td>
<td>/</td>
</tr>
</tbody>
</table>

A: Gatzojannis, 1999; B: Halaj et al., 1987

Table 4: F-ratios of the analysis of covariance

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter at breast height</td>
<td>17.10***</td>
</tr>
<tr>
<td>Prsni premer</td>
<td>17.10***</td>
</tr>
<tr>
<td>Tree species</td>
<td>18.00***</td>
</tr>
<tr>
<td>Drevesna vrsta</td>
<td>/</td>
</tr>
</tbody>
</table>

n.s. $P>0.05$; * $0.01<P<0.05$; **$0.001<P<0.01$; ***$P<0.001$

Fig. 3: Cumulative resin yield per average tree on each plot

Slika 3: Skupni povprečni donos smole na posameznih ploskvah
reaching as high as 36 °C) (ARSO, 2018). The amount of precipitation had a positive effect on resin yield on plots P. nigra 2 and 3. Sun duration had no detectable effect on the resin yield in any of the studied plots.

4 DISCUSSION

4 RAZPRAVA

The available data on the average annual resin yield per single tree are relatively scarce and even those that exist are about various tree species and various site and climate conditions. In Segovia, Spain, the annual average resin yield per single Pinus pinaster tree was 3.54 kg between 1998 and 2002 and 3.37 kg between 2003 and 2007 (La resina, 2009), while in the Almazan and Burgo de Osma areas, the annual resin yield for P. pinaster in the last century was quite stable at around 2.5 kg/tree (Bravo et al., 2010). In the Karst region of Slovenia, for P. nigra the recorded average annual resin yield per tree was 1.33 kg (Pejoski, 1953) and 1.4 kg (Simić, 1953), whereas for P. sylvestris it was 1.06 kg (Simić, 1953). The average annual resin yield per single tree in our study was somewhat lower (Table 3), which is especially true for P. sylvestris, while for P. nigra the differences were smaller, particularly if we only look at our most productive plot (P. nigra 3), where the average annual resin yield (1.361 kg) was comparable to that from 60 years ago. The differences are likely a consequence of the different duration of resin-tapping seasons – our study period lasted for only 102 days, while those of the other mentioned studies were up to 6 months. On the other hand, our shorter tapping period of 3-6 days in comparison with the German method (8-10 days) and the Spanish-Portuguese method (15-21 days) could have contributed to the increased yield, since continuous incision and fresh wounds probably accelerate resin production. But again, in most other studies, various stimulating pastes were used, while in our analysis we did not use them. Thus, direct comparisons and differences between experiments remain difficult to explain. However, we can conclude that the adapted method used in this study can be successfully applied should resin tapping start again in the Karst region, even if it is only a complementary activity for forest owners.

Various methods for increasing resin yield have been considered, including genetic improvement (La resina, 2009), fertilization, wounding and fungal inoculation (Knebel et al., 2008), the use of stimulant pastes containing active components such as sulphuric acid and an ethylene precursor (CEPA) (Rodrigues et al., 2008; Pio and Valente, 1998), prescribed burnings...
(Cannac et al., 2009), metal adjuvants (Rodrigues et al., 2011), and others. In the study by Novick et al. (2012) on Pinus taeda L., better soil nutrient availability, i.e. fertilization, increased resin flow, although the authors acknowledged that the majority of similar studies observed that fertilization had no effect on resin flow. The reasons for some trees producing considerably greater quantities of resin than others are still not entirely known. In our study, more precipitation resulted in higher resin yields on most plots (Table 5). This is in line with the findings of Rodríguez-García et al. (2015), who concluded that water availability during the summer positively affected resin yield. In contrast, Gaylord et al. (2007) found that the highest resin flow of Pinus ponderosa trees occurred when water stress was the highest and photosynthesis was low. The amount of precipitation can also affect other tree secretions such as gum arabic, for which more precipitation immediately prior to the tapping season resulted in a higher yield for Acacia senegal (L.) Willd. trees in western Sudan (Ballal et al., 2005). It is possible that our results showed a negative correlation between resin yield and air temperature owing to the fact that the temperature range was too small to reflect an otherwise potentially positive correlation.

For P. nigra, DBH had a significant impact on resin yield. Thicker P. nigra trees mostly had higher resin yields compared to thinner ones. This is in line with the findings of Rodríguez-García et al. (2014), who established that the tree diameter of P. pinaster, along with the percentage of live crown, stand density and soil quality, strongly influenced resin yield. The same was also confirmed by Davis and Hofstetter (2014), who found that the resin flow of P. ponderosa rapidly increased with tree diameter but plateaued when tree diameter exceeded 40 cm. Interestingly, although plots P. nigra 3 and 1 contained trees of almost the same average DBH (39.45 and 39.95 cm, respectively), P. nigra 3 had a considerably higher resin yield. This is possibly due to the better site productivity of plot P. nigra 3 (site class 1) compared to plot P. nigra 1 (site class 3). The site classes of all three P. nigra plots coincided well with their respective resin yields (Table 3). The site productivity of both P. sylvestris plots was, on the other hand, the same (SI 25), which likewise coincides with the fact that differences in resin yields between these two plots were also much smaller. Wang et al. (2006) similarly acknowledge the impact of site productivity on resin yield, as they cite that the profit from resin increases with increasing site index (SI).

We can conclude that the adapted method from our study can be used for resin tapping in the Slovenian Karst region. The study findings could be interesting to small and medium-sized forest owners in the region, since resin tapping could mean a viable source of additional income. Our aim was not a study of the market for resin derivatives, which is a story by itself. However, the resin yields of P. nigra from our study are generally similar to those of commercial resin tapping in the region in the past.

5 SUMMARY

5 POZVETEK

Prvi resni poskusi smolarjenja v Sloveniji so se začeli šele leta 1938, in sicer na Primorskem. Smolo so pridobili iz dreves črnega (Pinus nigra) in rdečega bora (Pinus sylvestris) po t.i. francoski metodi, leta 1946 pa so po nemški metodi opravili tudi prve poskuse smolarjenja v Prekmurju in na Dravskem polju, od koder se je metoda razširila tudi na Kras. Letna proizvodnja smole v tistem obdobju se je vsako leto povečevala, in sicer od 84,5 tone v letu 1947 do 148 ton v letih 1951 in 1952. Sezonski donos smole na posamezno drevo v Sloveniji v tistem času je bil 1,06 kg za rdeči in 1,33 kg za črni bor.

Povprečna količina pridobljene smole na drevo v času periodičnega spremljanja 102 dni je pri črnem boru dosegala 1,144 kg in je bila značilno večja kot pri rdečem boru (0,612 kg). Variabilnost v proizvodnji smole je bila znatna, pri črnem boru je bila 1,06 kg in 1,33 kg. Naše raziskave je bil interesantni za slovenski primorski in Dravski region in vtem času je bil 1,06 kg za rdeči in 1,33 kg za črni bor.

Forrás

smole pri črnem boru pozitivno vpliva tudi produktivnost rastišča, medtem ko tovrstne povezanosti zara-
di manjših razlik v produktivnosti rastišč pri rdečem boru nismo ugotovili. Potrdili smo pozitivno povezavo med količino smole pri črnem boru in količino padavina, medtem ko višje dnevne temperature dnevne donose zmanjšujejo. Z analizo smo ugotovili, da je v poskusu uporabljena metoda pridobivanja smole učinkovita in potencialno uporabna za smolarjenje na slovenskem Krasu ter da donos smole pri črnem boru bolj ali manj dosega komercialne donose v regiji iz preteklosti. Iz- sledki raziskave bi bili lahko zanimivi in uporabni za
manjše in srednje velike lastnike gozdov, ki bi jim pro-
izvodnja smole lahko pomenila dodatni vir zaslužka.

6 ACKNOWLEDGEMENTS

6 ZAHVALA

The research was financed through research pro-
ject V4-1124 and programme P4-0059. We would like
to thank Dr Milko Novič, Boštjan Košiček and Branka
Gasparič of the Slovenia Forest Service – Regional Unit
Sežana, the Divača Agrarian Community and The Far-
mland and Forest Fund of the Republic of Slovenia. We
thank two anonymous reviewers for constructive com-
ments that helped us to improve the paper.

7 REFERENCES

7 VIRI

ARSO. 2018. Archival data on meteorological conditions in Slovenia.
Slovenian Environment Agency. Ministry of the Environment
si/met/si/archive/ (19.4.2018)

yield in differently managed Acacia senegal stands in western
Sudan. Agroforestry Forum, 63: 237-245

Bojanš S. 1967. Smolarjenie bijelog bora (Pinus sylvestris L.) francu-
skih in američkih (1/2 bark chipping) metodom (utrošak vre-
mena in proizvodnost rada) - Resin tapping of Scots Pine
(Pinus sylvestris L.) by French and 1/2 bark chipping methods (time
consumption and labour productivity). Šumarski list, 91, 7-8:
299-310

of traditional forest regulation methods applied to Maritime
pine (Pinus pinaster Ait.) forests in central Spain: a century of
management plans. iForest 3: 33-38

Cannac M., Barboni T., Ferrat L., Bigelli A., Castola V., Costa J., Trecul
D., Mornandin F., Pasqualini V. 2009. Oleoresin flow and chemi-
cal composition of Corsican pine (Pinus nigra subsp. laricio) in
response to prescribed burnings. Forest Ecology and Manage-
ment, 257: 1247-1254

Coppen J.J.W., Hone G.A. 1995. Gum naval stores, turpentine and ro-
sin from pine resin. In: Non-Wood Forest Products 2. FAO, Rome,
Italy, 62 p.

Cunningham A. 2009. A site about pine tapping. http://www.arel-
dorado.com.ar/

Davis T.S., Hofstetter R.W. 2014. Allometry of Phloem Thickness and
Resin Flow and Their Relation to Tree Chemotype in a Southwe-
stern Ponderosa Pine Forest. Forest Science, 60, 2: 270-274

Diaci J., Adamić T., Grce D., Rozman A., Roženberger D., 2014. Preme-
na kratkih gozdov črnega bora (Pinus nigra J.F. Arnold) z narav-
no obnovno. In: Roženberger D. (ed.): XXXI. Gozdarski studijski
dnevi »Premene malodonosnih in vrstnapravljnih razmerih«,
Sežana - Ljubljana, 9. - 10. april 2013

Gatzojannis S. 1999. Ertragstafeln für Schwarzkiefernbestände in
Griechenland. Forstarchiv, 70: 98-102

mics of tree growth, physiology, and resin defense in a northern
Arizona ponderosa pine forest. Canadian Journal of Forest Rese-
arch 37,7: 1173-1183

Klaušta L. 1953. Iz ekonomike smolarjenja. Gozdarski vestnik, 11:
289-295

responses to fertilization, wounding and fungal inoculation in
lobbly pine (Pinus taeda) in North Carolina. Tree Physiology,
28: 847-853

La resina. 2009: Herramienta de conservacion de nuestros pinares.
Cesefor 2009

flow in mature pine trees growing under elevated CO2 and mo-
derate soil fertility. Tree Physiology, 32: 752-763

Pejosić B. 1952. Razvoj industrijskog smolarenja u FRJ u prvom Pe-

Pejosić B. 1953. Osvrt na industrijsko smolarjenje u našoj zemlji. Šu-
marski list, 77, 3: 136-145

vironment, 32, 4: 683-691

Pškorić O. 1992. Promjena cilja gospodarenja sa šumama primor-
skog bora na području Gascon. Iz francuskog šumarstva. Šumarski
list, 116, 9-10: 473

cient oleoresin biomass production in pines using low cost met-
tal containing stimulant paste, Biomass and Bioenergy, 35, 10:
4442-4448

A.G. 2008. Oleoresin yield of Pinus elliottii plantations in a sub-
tropical climate: Effect of tree diameter, wound shape and con-
centration of active adjuvants in resin stimulating paste, Indu-
trial Crops and Products, 27, 3: 322-327

Rodriguez-García A., López R., Martín J.A., Pinillos F., Gil L. 2014. Re-
sin yield in Pinus pinaster is related to tree dendrometry, stand
density and tapping-induced systemic changes in xylem anato-
my. Forest Ecology and Management, 313: 47-54

Rodriguez-García A., Martín J.A., López R., Mutke S., Pinillos F., Gil L.
2015. Influence of climate variables on resin yield and secre-
tory structures in tapped Pinus pinaster Ait. in central Spain. Agra-
cultural and Forest Meteorology, 202: 85-93

Simić M. 1953. Smolarjenje u Sloveniji (dobra organizacija rada – vi-
sok učinak). Šumarski list, 76, 1-3: 292-293

of monoterpenes in resin-tapped pine forests. Atmospheric En-
vironment, 32, 4: 683-691

Wang Z., Calderon M.M., Carandang M.G. 2006. Effects of resin ta-
ppling on optimal rotation age of pine plantation. Journal of Fo-
rest Economics, 11, 4: 245-260