
Rapid State Machine Assembly for Modular Robot Control using
Meta-Scripting, Templating and Code Generation

Barry Ridge1, Timotej Gašpar1 and Aleš Ude1

Abstract— As robotic systems have become more and more
complex and difficult to manage, various software architectures,
libraries and programming paradigms have been introduced
aimed at high-level control and integration of their constituent
parts. The Robot Operating System (ROS) has, for many,
become the de facto software framework for communication
standardisation and hardware interface abstraction, and var-
ious packages within its ecosystem have come to the fore as
being reliable design choices for dictating control flow. ROS-
based software packages that use state machines as their core
methodology to bridge the gap between low-level imperative
task scripting and higher-level task planning have proven
particularly popular. However, while they provide much in
terms of power and flexibility, their overall task-level simplicity
can often be obfuscated at the script-level by boilerplate
code, intricate structure and lack of code reuse between state
machine prototypes. In this paper, we aim to address this
deficit by proposing a code generation, templating and meta-
scripting methodology for state machine assembly, as well as
an accompanying application programming interface (API), for
the rapid, modular development of robot control programs. The
API has been developed to function effectively as either a front-
end for concise scripting or a back-end for code generation for
visual programming systems. Its capabilities are demonstrated
in an experiment using a simulated humanoid robot platform.

I. INTRODUCTION

Recent years have seen an increase in the use of collab-
orative robots in industrial settings as well as for personal
use. Many robot manufacturers have decided to invest into
making robot programming more intuitive by adding adding
functionalities such as kinesthetic guidance and improving
the graphical user interfaces on teach pendants or other robot
control devices. While kinesthetic teaching can be used to
teach robot motions by directly guiding them by hand [1],
building a sequence of actions and motions for the robot
to perform still requires requires expert and manufacturer
specific knowledge. To address these issues, various authors
have been developing platform independent tools to ease the
process of high-level programming of robot sequences, such
as the State Controller Library (SC Library) and the Behavior
Control Framework (BC Framework) [2].

The SMACH high-level executive [3], in particular, has
proven to be an exceptionally useful and comprehensive task-
level architecture for state machine construction in ROS-
based systems and has seen widespread uptake. It allows for
the description of nested hierarchical state machines in which
parent container states contain child state sequences. State

1Humanoid and Cognitive Robotics Laboratory, Department of Auto-
matics, Biocybernetics and Robotics, “Jožef Stefan” Institute, Jamova 39,
1000 Ljubljana, Slovenia {barry.ridge, timotej.gaspar,
ales.ude}@ijs.si

Parser

Templater

Generator

SMACHA API
Templates
(Jinja2)

SMACH
Code
(Python)

Scripts
(YAML)

Fig. 1: SMACHA API overview.

machines may describe lists of different possible outcomes
and transitions are specified between states that depend on
the outcomes in order to specify the control flow. These
transitions are easily remapped across different depth levels
in the hierarchy. Data may be passed between states as
defined by a userdata object and the inputs and outputs of
states may be remapped to userdata variables in order to
control the flow of data.

While the ideas encapsulated by SMACH are conceptually
simple, a significant degree of expertise is still required in
order to program the state machines that it is capable of
defining. Another library that builds on the functionality
of SMACH named FlexBE [4] aims at addressing this by
providing a visual programming interface from which code
may be generated. However, the generated code is language-
specific and would therefore be brittle with respect to any
potentially significant changes to the programmatic approach.

In this work, we have developed an application program-
ming interface (API) named SMACHA1 (short for “State
Machine Assembler”, pronounced /smæS@/) that aims at
distilling the task-level simplicity of SMACH into compact
scripts in the foreground, while retaining all of its power and
flexibility in code templates and a custom code generation
engine in the background. One of the major potential advan-
tages of our proposed methodology is that it is is designed to
be both language and framework agnostic. Although this has
not yet been implemented under the current API, it would
be possible, for example, to design templates to generate
FlexBE state machine code instead of SMACH state machine
code, or even state machine code written in a language other
than Python, while maintaining the same scripting front-end.

1https://github.com/ReconCell/smacha

https://github.com/ReconCell/smacha

A. Related Work

A systematic review performed by Domínguez et al. of
the research in the field of object oriented code generation
from state machine specifications has clearly illustrated the
challenges that arise when designing frameworks for state
machine design [5]. It has also shown the vast interest in
this particular field. However, as the reviewed articles date
from 1992 to 2010, it has lost some relevance in terms of the
current available solutions. In our own literature review, we
came across various tools and interfaces for intuitive robot
sequence programming.

The authors of [6] present a scripting language that they
developed for behaviour specification, which they called
b-script, to describe hierarchical agent behaviours using
generators. The developed language provides an interface
to pre-written C++ modules which compose basic robot
skills/motions. Scripts written in b-script can either be exe-
cuted using an interpreter or be compiled to C++ code. Mateo
et al. present an Android OS application called Hammer
that provides a visual programming concept that allows a
non-expert person to create robot programs. The application
allows for running the designed program in simulation or for
sending it to a real robot [7]. Niemüller et al. describe the
Fawkes robot software framework that provides the infras-
tructure for running a number of plug-ins which fulfil specific
tasks, where each plug-in consists of one or more threads
[8]. Additionally, the authors developed a LUA scripting
language plug-in for Fawkes in order to connect the Fawkes
framework with the Nao robot.

CoSTAR combines a powerful GUI with grounded sensor
abstractions produced by its distributed components [9].
Developed in ROS, it gives the user the ability to teach the
robot kinesthetically. CoSTAR sensing capabilities expose
only symbolic and qualitative information to the end user,
meaning that the end user can formulate tasks in human
terms. FlexBE provides an extensive user interface for both
designing and executing various robot behaviours [4]. It
also provides an interface that allows for the adjustment of
behaviours during runtime. This makes it particularly useful
for unstructured environments such as disaster scenes. ROS
commander - ROSCo is a system built on top of ROS for
expert users to develop, share and deploy robot behaviors
[10]. ROSCo uses SMACH for saving and running the final
result of the behaviour creation.

What makes SMACHA different from other related work
is that it is not a standalone framework that provides a
graphical interface or a library for a specific programming
language. Instead, it is a tool that can be used to generate
language-agnostic code from simple scripts by using tem-
plates. These templates can be easily customised to suit the
needs of a particular use case. Additionally, it allows for the
seamless inclusion and reuse of previously written SMACHA
scripts into more complex scripts with novel behaviours.

II. SMACHA: A STATE MACHINE ASSEMBLY API
The SMACHA API is composed of three main compo-

nents as depicted in Fig. 1: a parser, a templater and a

generator. The parser parses simple data-oriented scripts that
describe the high-level arrangement of state machines to be
constructed into operational program code by the generator
and templater. We refer to this concept as meta-scripting
given its relationship to metaprogramming or generative
programming [11] and it is described in more detail below
in Section II-A. The templater is responsible for retrieving
and rendering code templates as required by the generator
in order to produce the operational state machine code. A
popular library was employed for this purpose, alongside
a custom rendering process developed specifically for this
use case. This is described in Section II-B. The generator
brings together the power of the script parser and the code
templater by recursively processing the state machine script
and generating the final operational state machine code. A
custom engine was also developed for this purpose and
is described in Section II-C. The relationship between the
scripting and templating functionality, as well as the overall
recursive code generation process, is depicted in Fig. 2.

A. Meta-Scripting

One of the core ideas behind the development of
SMACHA is that state machines are essentially simple
entities that can be almost entirely described via declarative
constructs, similar to natural language, perhaps augmented
by some essential additional information necessary to de-
scribe how transitions should occur and how data should be
passed between states. Thus, a simple pick and place state
machine might be partially described by a simple sentence
such as “Move the arm to the start position, then pick up the
block from here and place it over there.” It is easy to see how
such a sentence, which describes the what rather than the
how of a pick and place task, might correspond to an actual
state machine for its high-level robotic control, like the one
depicted in Figure 3. To a large extent, this idea of simple
state transitional description is already present in libraries
like SMACH and FlexBE, indeed, it is SMACH itself that
produces the elegant state machine charts seen in Figures
3 and 4, and FlexBE provides a similarly elegant visual
programming interface for state machine design. However, in
both cases, the code required to transcribe the state machine
design at the scripting level is more imperative than it is
declarative. A raft of boilerplate code must be in place,
custom classes and functions must be either defined or
imported, intricate language and library constructs must be
adhered to, and as a result, the overall conceptual simplicity
can sometimes get lost in the process.

With this in mind, as a first step towards developing
our overall state machine assembly framework, we aimed
at finding a means of transcribing the high-level logic of
state machine description in as simple a manner as possible
with a view towards offloading the more complex aspects to
be processed by a code generation system working in the
background. To achieve this, we selected YAML (YAML
Ain’t Markup Language) as our scripting front-end [12].
YAML scripts are data-oriented and so are built around
constructs such as lists and associative arrays that may be

1 --- # SMACHA block stacking demo script for the Baxter simulator.
2 name: sm
3 template: BaxterBase
4 node_name: baxter_smach_pick_and_place_test
5 outcomes: [succeeded, aborted, preempted]
6 userdata:
7 limb: left
8 hover_offset: [[0.0, 0.0, 0.15], [0.0, 0.0, 0.0, 0.0]]
9 states:

10 - LOAD_TABLE_MODEL:
11 template: LoadGazeboModelState
12 model_name: cafe_table
13 model_path: rospkg.RosPack().get_path(’baxter_sim_examples’) +

’/models/cafe_table/model.sdf’↪→
14 userdata:
15 table_pose_world: Pose(position=Point(x=1.0, y=0.0, z=0.0))
16 table_ref_frame: world
17 remapping: {pose: table_pose_world, reference_frame: table_ref_frame}
18 transitions: {succeeded: LOAD_BLOCK_MODEL_1}
19
20 - LOAD_BLOCK_MODEL_1:
21 template: LoadGazeboModelState
22 model_name: block_1
23 model_path: rospkg.RosPack().get_path(’baxter_sim_examples’) +

’/models/block/model.urdf’↪→
24 userdata:
25 block_1_pose_world: [[0.67, 0.13, 0.78], [0.0, 0.0, 0.0, 0.0]]
26 block_1_ref_frame: world
27 block_1_pick_pose: [[0.7, 0.15, -0.13], [-0.02, 1.0, 0.01, 0.0]]
28 block_1_place_pose: [[0.75, 0.0, -0.13], [-0.02, 1.0, 0.01, 0.0]]
29 remapping: {pose: block_1_pose_world, reference_frame:

block_1_ref_frame}↪→
30 transitions: {succeeded: LOAD_BLOCK_MODEL_2}
31
32 - LOAD_BLOCK_MODEL_2:
33 template: LoadGazeboModelState
34 model_name: block_2
35 model_path: rospkg.RosPack().get_path(’baxter_sim_examples’) +

’/models/block/model.urdf’↪→
36 userdata:
37 block_2_pose_world: [[0.77, 0.13, 0.78], [0.0, 0.0, 0.0, 0.0]]
38 block_2_ref_frame: world
39 block_2_pick_pose: [[0.8, 0.15, -0.13], [-0.02, 1.0, 0.01, 0.0]]
40 block_2_place_pose: [[0.75, 0.0, -0.05], [-0.02, 1.0, 0.01, 0.0]]
41 remapping: {pose: block_2_pose_world, reference_frame:

block_2_ref_frame}↪→
42 transitions: {succeeded: MOVE_TO_START_POSITION}
43
44 - MOVE_TO_START_POSITION:
45 template: MoveToJointPositionsState
46 userdata: {joint_start_positions: [-0.08, -1.0, -1.19, 1.94, 0.67,

1.03, -0.50]}↪→
47 remapping: {limb: limb, positions: joint_start_positions}
48 transitions: {succeeded: PICK_AND_PLACE_BLOCK_1}
49
50 - PICK_AND_PLACE_BLOCK_1:
51 template: StateMachine
52 outcomes: [succeeded, aborted, preempted]
53 input_keys: [limb, pick_pose, place_pose, hover_offset]
54 remapping: {pick_pose: block_1_pick_pose, place_pose:

block_1_place_pose, hover_offset: hover_offset}↪→
55 transitions: {succeeded: PICK_AND_PLACE_BLOCK_2}
56 states:
57 - PICK_BLOCK:
58 script: pick_block
59 transitions: {succeeded: PLACE_BLOCK}
60
61 - PLACE_BLOCK:
62 script: place_block
63 transitions: {succeeded: succeeded}
64
65 - PICK_AND_PLACE_BLOCK_2:
66 template: StateMachine
67 outcomes: [succeeded, aborted, preempted]
68 input_keys: [limb, pick_pose, place_pose, hover_offset]
69 remapping: {pick_pose: block_2_pick_pose, place_pose:

block_2_place_pose, hover_offset: hover_offset}↪→
70 transitions: {succeeded: succeeded}
71 states:
72 - PICK_BLOCK:
73 script: pick_block
74 transitions: {succeeded: PLACE_BLOCK}
75
76 - PLACE_BLOCK:
77 script: place_block
78 transitions: {succeeded: succeeded}

Listing 1: SMACHA block stacking demo script. Parameter
values are rounded to two decimal places for brevity.

easily translated into corresponding machine code constructs
and, more importantly for our purposes, can be used to
represent both sequences of states and their individual data
representations respectively. They can also represent data
hierarchies very effectively, and are therefore well-suited to
describing SMACH container states and nested state hierar-
chies. Thus, SMACHA scripts are YAML files that are used
to describe how SMACHA should generate SMACH code.
Examples of scripts that were written for demonstrations
using the Baxter simulator can be see in Listings 1 and 2.

1) Base Variables: The base of a main SMACHA script
file specifies the following variables:

• name: a name for the overall state machine,
• template: the name of its base template,
• manifest (optional): a ROS manifest name,
• node_name: a name for its associated ROS node,

1 - PICK_BLOCK:
2 template: StateMachine
3 outcomes: [succeeded, aborted, preempted]
4 input_keys: [pick_pose, hover_offset]
5 transitions: {succeeded: succeeded}
6 states:
7 - IK_PICK_BLOCK_HOVER_POSE:
8 template: PoseToJointTrajServiceState
9 limb: left

10 remapping: {poses: pick_pose, offsets: hover_offset, joints:
ik_joint_response_block_pick_hover_pose}↪→

11 transitions: {succeeded: MOVE_TO_PICK_BLOCK_HOVER_POSE}
12
13 - MOVE_TO_PICK_BLOCK_HOVER_POSE:
14 template: MoveToJointPositionsState
15 limb: left
16 remapping: {positions: ik_joint_response_block_pick_hover_pose}
17 transitions: {succeeded: OPEN_GRIPPER}
18
19 - OPEN_GRIPPER: {template: GripperInterfaceState, limb: left, command:

open, transitions: {succeeded: IK_PICK_BLOCK_GRIP_POSE}}↪→
20
21 - IK_PICK_BLOCK_GRIP_POSE:
22 template: PoseToJointTrajServiceState
23 limb: left
24 remapping: {poses: pick_pose, joints:

ik_joint_response_block_pick_pose}↪→
25 transitions: {succeeded: MOVE_TO_PICK_BLOCK_GRIP_POSE}
26
27 - MOVE_TO_PICK_BLOCK_GRIP_POSE:
28 template: MoveToJointPositionsState
29 limb: left
30 remapping: {positions: ik_joint_response_block_pick_pose}
31 transitions: {succeeded: CLOSE_GRIPPER}
32
33 - CLOSE_GRIPPER: {template: GripperInterfaceState, limb: left, command:

close, transitions: {succeeded: MOVE_TO_GRIPPED_BLOCK_HOVER_POSE}}↪→
34
35 - MOVE_TO_GRIPPED_BLOCK_HOVER_POSE:
36 template: MoveToJointPositionsState
37 limb: left
38 remapping: {positions: ik_joint_response_block_pick_hover_pose}
39 transitions: {succeeded: succeeded}

Listing 2: SMACHA pick block sub-script.

• outcomes: a list of its possible outcomes,
• states: a list of its constituent states.

Each of the states in the base script may, in turn, specify
similar variables of their own, as discussed in the following.

2) States: Each state, including the base, must specify a
template from which its respective code should be generated
(see e.g. lines 3, 11 or 51 of Listing 1). States may be
specified as lists specifying their transition order (see e.g.
lines 9, 10, 20, 32, 44, 50 and 65 of Listing 1), and may also
be nested as described in the SMACH documentation using
appropriate combinations of template and state specifications
(see how, e.g., the “PICK_BLOCK” state of Listing 2 is
specified using the StateMachine container state template
and contains the states listed from line 6 onwards). Possible
state outcomes may be specified as a list in the base state
machine and in each container state (see e.g. line 5 of Listing
1 and line 3 of Listing 2). Possible state transitions may be
specified as an associative array in each state (see e.g. lines
18, 55 or 59 of Listing 1). Input and output remappings of
user data may be specified as an associative array in each
state (see e.g. lines 17, 41 or 54 of Listing 1).

3) Modularity: Modularity is achieved at the scripting
level by allowing useful subroutines wrapped in container
states to be saved as separate YAML script files called sub-
scripts which can be included in a main script as states.
Examples of this can be seen in lines 57–59, 61–63, 72–74
and 76–78 of Listing 1, where the sub-scripts “pick_block”
and “place_block” are included in the main pick and place
state machine script to define its sub-states. The contents of
Listing 2 are thus included in the main pick and place state
machine script in place of the “PICK_BLOCK” state, while
a similar “place_block” sub-script (not listed) is included in
place of the “PLACE_BLOCK” state. The input and output
userdata keys expected by the container states in the sub-
scripts may be remapped as appropriate in the main script

SMACHA Script

name: sm
template: BaxterBase
...
states:
 ...
 - PICK_BLOCK:
 template: StateMachine
 ...
 states:
 - IK_PICK_BLOCK_HOVER_POSE:
 template: PoseToJointTrajServiceState
 ...

 - MOVE_TO_PICK_BLOCK_HOVER_POSE:
 template: MoveToJointPositionsState
 ...

BaxterBase Template
{% extends Base %}
...
{% block body %}
 {{ super() }}
 {{ body }}
 ...Rendered Container Code...
{% endblock body %}
...

Base Template
...
{% block body %}
 ...{{ body }}...
{% endblock body %}
...

StateMachine Template
...
{% block body %}
 {{ body }}
 ...Rendered State Code...
 ...Rendered State Code...
 ...
{% endblock body %}
...

PoseToJointTrajServiceState Template
...
{% block body %}
 ...State Template Code...
{% endblock body %}
...

MoveToJointPositionsState Template
...
{% block body %}
 ...State Template Code...
{% endblock body %}
...

..

...

...
with sm:
 ...
 with sm_pick_block:
 StateMachine.add('IK_PICK_BLOCK_HOVER_POSE',...)
 StateMachine.add('MOVE_TO_PICK_BLOCK_HOVER_POSE',...)
 ...
 StateMachine.add('PICK_BLOCK', sm_pick_block,...)
...
...
...

Generated SMACH Code

Fig. 2: SMACHA recursive meta-scripting, templating and code generation pipeline example. Dashed arrows show nested
state template selection from the SMACHA script and the blue shaded boxes indicate the depth level in the state hierarchy.
Solid arrows and green shaded boxes show recursive template rendering flow, from child state templates at bottom-left and
bottom-right, to a parent container StateMachine template at bottom-centre, to its parent BaxterBase template in the middle,
to the final generated SMACH code on the right. Template inheritance is indicated by the dotted arrow and orange boxes.

along with their state transitions. The use of this functionality
encourages low coupling and high cohesion, while allowing
for extremely rapid and easily specified reuse of common
patterns, as shall be demonstrated in the experiments of
Section III.

B. Templating

Code templating is implemented under the SMACHA API
using the Jinja2 templating library [13] coupled with some
custom modifications to its usual rendering behaviour, as
detailed below, in order to achieve some of the functionality
required by our proposed state machine code generation
methodology. A number of core templates are provided by
default to support standard SMACH states and common de-
sign patterns. Custom templates may be defined for particular
use cases (see Section III for examples).

1) Core Templates: SMACHA provides default core tem-
plates for many of the SMACH states and containers, as well
as for other useful constructs. At the time of writing, the
following core templates are present and functional, where
the number of lines of code employed in each case is listed
in parentheses:

• Base: renders a Python SMACH script skeleton (53).
• State: contains functionality common to all states, e.g.

userdata specification (5).
• StateMachine: renders a SMACH StateMachine con-

tainer for nested state machines (18).
• Concurrence: renders a SMACH Concurrence container

for parallel state machines (20).
• ServiceState: renders a SMACH ServiceState for use

with ROS services (37).
• SimpleActionState: renders a SMACH SimpleAction-

State for use with ROS action servers (41).

• TF2ListenerState: used for reading TF2 transforms (57).
• Utils: contains common utility code (21).

2) Code Generation Variables and Code Blocks: There
are a number of core code generation variables and code
blocks present in the core templates that enable the code
generation engine to produce code in the appropriate places.
In most cases, a code block contains a variable of the same
name within it to indicate where code from child state
templates should be rendered into. The main code blocks
are as follows: base_header (for code that must appear near
the top of the program script), defs (for function definitions),
class_defs (for class definitions), main_def (for the main
function definition), header (for code that is to be rendered
into the header variable the parent template), body (for code
that is to be rendered into the body variable of the parent
template), footer (for code that is to be rendered into the
footer variable of the parent template), execute (for the code
necessary for executing the state machine), base_footer (for
any code that must appear near the bottom of the program
script) and main (for the code necessary to execute the main
function).

The most important block for most state templates is
the body block and its associated body variable, as it is
where the state template should render the code necessary to
add the state to the parent state machine, which will either
be some container state or the base state machine itself.
Note that all of the above code generation variables and
code blocks may be either removed, modified or arbitrarily
customized within the API for particular use-cases. The code
insertion order may also be specified within the API, i.e.
code may be either prepended or appended to a variable.
An example of how code generation variables work together
with code blocks is depicted in Fig. 2 where the state

template code from the {% body %} blocks of both the
PoseToJointTrajServiceState and MoveToJointPositionsState
templates are appended to the {{ body }} variable of
their parent StateMachine template.

3) Template Inheritance: Jinja2 provides powerful func-
tionality, including the ability to extend templates via tem-
plate inheritance, such that their constituent code blocks may
be overridden or extended. SMACHA aims to incorporate
as much of this functionality as possible, thus the core
templates may be overridden or augmented by custom user-
specified templates via the usual Jinja2 template inheritance
mechanisms, with some caveats. This works in the usual way
using the following Jinja2 variables and expressions:

• {% extends "<template_name>" %}: When
this expression appears at the top of a template, the
template will inherit code blocks from the parent
template specified by <template_name>.

• {{ super() }}: When this expression appears in-
side a block, the code from the same block in the
parent template as specified by {{ extends }} will
be rendered at its position.

• {% include "<template_name>" %}: When
this expression appears at the top of a template, the
template will include all code from the template
specified by <template_name>.

Regarding the aforementioned caveats, there is a behaviour
that is specific to SMACHA that goes beyond the usual
capabilities of Jinja2 and that was designed as a means of
dealing with the recursive state machine processing required
by this particular use case. If a state template contains blocks,
but does not contain an {{ extends }} expression at the
top of a template, it is implied that the code for the blocks
will be rendered into variables and blocks with the same
names as the blocks in the state template as dictated by the
SMACHA script and as defined usually either by the base
template or container templates. In the current implemen-
tation, only base templates use the {% extends %} in-
heritance mechanism, whereas state and container templates
use the {% include %} mechanism to inherit code from
other templates. This is partially illustrated in Fig. 2.

C. Code Generation

The SMACHA code generator is a custom-designed en-
gine for recursively generating state machine code based
on the scripts described in Section II-A and using the
templates described in Section II-B. Recursive processing
was necessary given the potentially arbitrary depth levels of
state machine nesting that are possible under the SMACH
API. The basic operation scheme behind the code generator
is thus to iterate through the data constructs of a parsed
script, evaluate them based on their type, and determine
whether they should be rendered as code using the appropri-
ate templates, passed on for recursive processing, or some
combination of both. When iteratively processing a script,
data items that are encountered are either lists or associative
arrays. When a list is encountered, it is assumed that it is a
list of states and is passed on for further recursive processing.

When processing an associative array, there are three main
cases that need to be handled separately:

• Container States: if the associative array contains a
“states” key, then it is assumed that it represents a
container state. Its respective data and sub-states are
recursively processed and once the results are returned,
they are used to subsequently render the container state
template.

• Sub-Script States: if the associative array contains a
“script” key, then it is assumed that it represents a state
that includes a sub-script. The sub-script is found and
parsed by the script parser and any remapped input and
output userdata keys or transitions are replaced in the
parsed script before it is recursively processed.

• Leaf States: otherwise, the associative array is assumed
to be a leaf state. Its template is rendered by the tem-
plater and its rendered code and variables are returned
to the parent state for further use at higher processing
levels.

The recursive processing of container and
leaf states is partially illustrated in Fig. 2,
where the IK_PICK_BLOCK_HOVER_POSE and
MOVE_TO_PICK_BLOCK_HOVER_POSE states use
PoseToJointTrajServiceState and MoveToJointPositionsState
templates respectively to render code into a parent container
PICK_BLOCK state as defined by the StateMachine
template, which itself in turn is rendered into the base state
machine as specified by a BaxterBase template.

III. EXPERIMENTS

For the experiments presented in this section, we chose to
use the Rethink Robotics Baxter robot [14] simulator which
uses the Gazebo simulation system and comes equipped with
extensive ROS support by default. Custom code templates
were designed to facilitate the development of the necessary
states required for the experiments. These are detailed below
in Section III-A.1. Three experiments were performed in
total using these templates: a pick and place experiment, a
block stacking experiment and a dual-arm block stacking
experiment, all of which are described below in more detail
in Sections III-C, III-D and III-E respectively2. The first of
these, the pick and place experiment, is a replication of the
pick and place demo that comes as standard with the Baxter
SDK. It was initially re-programmed from scratch in order
to make use of SMACH and such that the control logic of
the demo could be specified using a state machine. After that
it was possible to design the necessary code templates and
script the demo using SMACHA. Once the custom templates
and the SMACHA script had been created for the first demo,
it was possible to reuse both of them to very rapidly script
the second and third experiments for block stacking and
dual-arm block stacking. In all cases, it was possible to run
the Python SMACH code generated by SMACHA without
further modification with all three experiments completing
successfully.

2Video available at: https://youtu.be/KRjY0bd4dLg

https://youtu.be/KRjY0bd4dLg

(a) In the ”PICK_BLOCK” state. (b) In the “MOVE_TO_PLACE_BLOCK_RELEASE_POSE” state of
the parent “PLACE_BLOCK” state.

Fig. 3: A pick and place task running on the Baxter simulator using SMACHA-generated code.

A. Baxter Simulator

1) Custom Templates: The Baxter SMACHA package3

currently contains the following custom code templates,
where the number of lines of code employed in each case is
listed in parentheses:

• BaxterBase: this extends the core Base template to add
some necessary imports and code for starting the Baxter
robot (35).

• LoadGazeboModelState: this state allows allows a spec-
ified Gazebo model to be loaded into the simulator at a
specified pose in a specified reference frame (114).

• MoveToJointPositionsState: this state moves a specified
Baxter limb to a specified set of joint positions using
the Baxter interface (77).

• FollowJointTrajActionState: this state passes a specified
set of joint configurations for a specified Baxter limb to
the follow joint trajectory ROS action server provided
by the Baxter SDK (19).

• PoseToJointTrajServiceState: this state uses the inverse
kinematics ROS service provided by the Baxter SDK to
calculate a set of joint positions from a specified end-
point pose for a specified Baxter limb (177).

• ReadEndpointPoseState: this state reads the current end-
point pose of a specified Baxter limb using the Baxter
interface (63).

• GripperInterfaceState: this state either opens or closes
the gripper of the specified limb using the Baxter
interface (63).

B. Sub-Scripts

1) The “pick_block” Sub-Script: This sub-script, detailed
in Listing 2, describes a series of states designed to in-
struct a Baxter limb to pick up a block object from a
given pose. It specifies a container state that starts in
a “IK_PICK_BLOCK_HOVER_POSE” state based on the
PoseToJointTrajServiceState template which uses inverse
kinematics to calculate appropriate joint positions for its left

3https://github.com/abr-ijs/baxter_smacha

limb given the block pose and a hover offset such that the
calculated joint positions leave the limb end-point hovering
just above the block object (see lines 7–11 of Listing 2).
The block pose is specified in the base reference frame
due to the fact that the inverse kinematics solver requires
such input, but the pose could just as easily be specified
in the world frame with the addition of a TF2ListenerState
that would transform the pose appropriately. Next, the robot
enters into a “MOVE_TO_PICK_BLOCK_HOVER_POSE”
state based on the MoveToJointPositionsState template using
the calculated joint positions (lines 13–17), before opening
the left gripper using a GripperInterfaceState template (line
19). After that, it enters into consecutive inverse kinematics
and joint movement states once again in order to calculate
and move to the block position (lines 21–31), before using
another gripper interface state to close the gripper around
the block object (line 33). Finally, it enters one last joint
movement state in order to return to the previously calculated
joint positions based on the hover pose (lines 35–39). The
length of the “pick_block” sub-script was 35 lines of code.

2) The “place_block” Sub-Script: This sub-script is de-
signed to instruct Baxter to place a block, assumed to be
currently grasped by a given limb, at a given pose in the
base frame. It first uses a PoseToJointTrajServiceState state
to calculate the joint positions required to place the limb
in a hover position above the desired block place pose, be-
fore using a MoveToJointPositionsState joint motion state to
perform the actual motion. It follows these with another two
states of the same type in order to move the grasped block to
the placement pose. Finally, it uses a GripperInterfaceState
to open the gripper in order to release the block, before using
one last MoveToJointPositionsState to move the limb back
to the previously calculated hover pose. The length of the
“place_block” sub-script was 31 lines of code.

C. Pick and Place Experiment

In the inital states of the pick and place experiment state
machine, a table model must be loaded into the simulator
using the LoadGazeboModelState template, followed by a

https://github.com/abr-ijs/baxter_smacha

(a) In the ”PLACE_BLOCK” state of the parent
“PICK_AND_PLACE_BLOCK_1” state.

(b) In the “MOVE_TO_PLACE_BLOCK_HOVER_POSE”
state of the parent “PLACE_BLOCK” state of the parent
“PICK_AND_PLACE_BLOCK_2” state.

Fig. 4: A stacking task running on the Baxter simulator using SMACHA-generated code.

(a) In the “PICK_BLOCK_1” and “PICK_BLOCK_2” states of the
parent ”PICK_BLOCKS” concurrent state.

(b) In the “MOVE_TO_PLACE_BLOCK_RELEASE_POSE” state of
the parent “PLACE_BLOCK_2” state of the parent ”STACK_BLOCKS”
state.

Fig. 5: A dual-arm stacking task running on the Baxter simulator using SMACHA-generated code.

block model placed at a specified pose on the table, and the
left limb of the robot must be moved to a starting position
using the MoveToJointPositionsState template. Subsequently,
the robot enters a “PICK_BLOCK” state as specified by the
“pick_block” sub-script in order to pick the block from the
table, followed by a “PLACE_BLOCK” state as specified by
the “place_block” sub-script in order to place the block at a
given placement pose. The length of the SMACHA script
for the pick and place experiment was 45 lines of code.
The results of the generated code for this experiment being
run on the Baxter simulator are depicted in Fig. 3 along
with visualisations of the associated state machine at various
levels of introspection.

D. Stacking Experiment

The stacking experiment initialises similarly to the pick
and place experiment, only in this case, two block models
are loaded instead of one, and the robot is tasked with
stacking one on top of the other. The required SMACHA
script is depicted in Listing 1. This essentially involves
two pick and place sequences, one for each block, so

the “pick_block” and “place_block” sub-scripts used in
the previous experiment are reused here in two sepa-
rate container states, “PICK_AND_PLACE_BLOCK_1” and
“PICK_AND_PLACE_BLOCK_2” respectively. As is evi-
dent, the script is quite compact in its specification with
a length of 71 lines of code, yet nevertheless results in
the generation of quite an elaborate state machine, as is
visualised in Fig. 4.

E. Dual-Arm Stacking Experiment

In the dual-arm stacking experiment, the objective was
the same as in the stacking experiment, but both of the
Baxter arms were employed to pick up each of the blocks
simultaneously before stacking one on top of the other. In
order to achieve this, a Concurrence template was employed
(see Section II-B) such that two state machine sequences
could be run in parallel, namely the “PICK_BLOCK_1” and
“PICK_BLOCK_2” states for the left and right arm picking
actions respectively. This is depicted in Fig. 5a. A regular
StateMachine container was used to specify the stacking
sequence, employing the “place_block” sub-script as before,

TABLE I: Code overhead progression from templates, sub-
scripts and scripts versus generated code in files/lines.

Templates Sub-Scripts Scripts Total Gen.
Pick & Place 5/466 2/66 1/45 8/577 1/372
Stacking 0/0 0/0 1/71 1/71 1/478
Dual-Arm 0/0 0/0 1/102 1/102 1/513

as depicted in Fig. 5b. The dual-arm stacking script was not
much longer than the stacking script, containing 102 lines of
code.

F. Results

Table I details the code overhead investment progression
from templates, sub-scripts and scripts versus generated
code when moving between the experiments in terms of
the number of files and lines of code required for their
implementation. It should be noted that the data presented
in the table does not include the core SMACHA templates,
which are assumed to be available for all usecases. As
can be clearly seen, after the initial investment in the
templates and sub-scripts, the amount of SMACHA script
code required to generate the significant quantities of Python
code necessary for running the subsequent experiments is
minimal. Thus, state machine prototypes in the second two
experiments were implemented relatively rapidly. While it
could be argued that similar could be achieved by simply
designing a bespoke Python library directly, this would forgo
the significant declarative scripting advantages of SMACHA.
Moreover, it would fail to take into account the potential
advantages afforded by the SMACHA templating paradigm
which, although yet untested, would allow for templates to
be created for arbitrary programming languages or state ma-
chine frameworks, e.g. FlexBE instead of SMACH, without
altering the declarative scripting interface.

IV. CONCLUSION AND FUTURE WORK

In conclusion, we have developed both a methodology and
an API for the rapid assembly of state machines for modular
robot control using a meta-scripting, code templating and
code generation paradigm. The API has been demonstrated
to function as described on a simulated humanoid robot
platform in three different experiments. One of the main
advantages of our contribution is that both code templates
and sub-scripts may be reused as required depending on the
particular robotic use case and the task at hand– once certain
such basic templates and sub-scripts are in place, it is trivial
to design a new SMACHA state machine script in order to
accomplish a novel task. A second major potential advantage
of our proposed methodology is that it is both language
and framework agnostic– templates could be written for any
language or framework whilst maintaining a common front-
end for high-level state machine scripting.

With regard to future work, we are eager to write FlexBE
code templates in order to prove the efficacy of our API with
respect to the claim of language and framework agnosticism.
More applicatively, we aim to incorporate SMACHA into

the development of state machine-based visual programming
control software for a rapidly reconfigurable robotic work-
cell for small businesses in industry. We also aim to use
SMACHA in order to program state machines for a real
humanoid robot in future work, in particular, the Talos robot.

ACKNOWLEDGMENT

This work has been funded by the Horizon 2020 FoF
Innovation Action no. 680431 ReconCell project and by the
GOSTOP programme, contract no. C3330-16-529000, co-
financed by Slovenia and the EU under the ERDF.

REFERENCES

[1] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” in Springer Handbook of Robotics. Springer,
2008, pp. 1371–1394.

[2] P. Allgeuer and S. Behnke, “Hierarchical and state-based architectures
for robot behavior planning and control,” in Proceedings of 8th
Workshop on Humanoid Soccer Robots, IEEE-RAS Int. Conf. on
Humanoid Robots, Atlanta, USA, 2013, pp. 3–5.

[3] J. Bohren and S. Cousins, “The SMACH High-Level Executive [ROS
News],” IEEE Robotics Automation Magazine, vol. 17, no. 4, pp. 18–
20, Dec. 2010.

[4] P. Schillinger, S. Kohlbrecher, and O. von Stryk, “Human-robot
collaborative high-level control with application to rescue robotics,”
in 2016 IEEE International Conference on Robotics and Automation
(ICRA), May 2016, pp. 2796–2802.

[5] E. Domínguez, B. Pérez, Á. L. Rubio, and M. A. Zapata, “A
systematic review of code generation proposals from state machine
specifications,” Information and Software Technology, vol. 54, no. 10,
pp. 1045–1066, Oct. 2012.

[6] T. J. de Haas, T. Laue, and T. Röfer, “A scripting-based approach
to robot behavior engineering using hierarchical generators,” in 2012
IEEE International Conference on Robotics and Automation, May
2012, pp. 4736–4741.

[7] C. Mateo, A. Brunete, E. Gambao, and M. Hernando, “Hammer: An
Android based application for end-user industrial robot programming,”
in 2014 IEEE/ASME 10th International Conference on Mechatronic
and Embedded Systems and Applications (MESA), Sept. 2014, pp. 1–6.

[8] T. Niemüller, A. Ferrein, and G. Lakemeyer, “A Lua-based Behavior
Engine for Controlling the Humanoid Robot Nao.” in RoboCup.
Springer, 2009, pp. 240–251.

[9] C. Paxton, A. Hundt, F. Jonathan, K. Guerin, and G. D. Hager,
“CoSTAR: Instructing collaborative robots with behavior trees and
vision,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), May 2017, pp. 564–571.

[10] H. Nguyen, M. Ciocarlie, K. Hsiao, and C. C. Kemp, “ROS com-
mander (ROSCo): Behavior creation for home robots,” in 2013 IEEE
International Conference on Robotics and Automation (ICRA), May
2013, pp. 467–474.

[11] K. Czarnecki, U. W. Eisenecker, and K. Czarnecki, Generative Pro-
gramming: Methods, Tools, and Applications. Addison Wesley
Reading, 2000, vol. 16.

[12] “YAML Ain’t Markup Language (YAMLTM) Version 1.1,” http://yaml.
org/spec/1.1/, (Last accessed 2017-07-25).

[13] “Jinja2 (The Python Template Engine),” http://jinja.pocoo.org/, (Last
accessed 2017-07-24).

[14] E. Guizzo and E. Ackerman, “How Rethink Robotics Built Its New
Baxter Robot Worker,” IEEE Spectrum, p. 18, 2012.

http://yaml.org/spec/1.1/
http://yaml.org/spec/1.1/
http://jinja.pocoo.org/

	INTRODUCTION
	Related Work

	SMACHA: A STATE MACHINE ASSEMBLY API
	Meta-Scripting
	Base Variables
	States
	Modularity

	Templating
	Core Templates
	Code Generation Variables and Code Blocks
	Template Inheritance

	Code Generation

	EXPERIMENTS
	Baxter Simulator
	Custom Templates

	Sub-Scripts
	The ``pick_block'' Sub-Script
	The ``place_block'' Sub-Script

	Pick and Place Experiment
	Stacking Experiment
	Dual-Arm Stacking Experiment
	Results

	CONCLUSION AND FUTURE WORK
	References

