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Abstract In this paper we propose a novel approach

for intuitive and natural physical human-robot interac-

tion in cooperative tasks. Through initial learning by

demonstration, robot behavior naturally evolves into a

cooperative task, where the human co-worker is allowed

to modify both the spatial course of motion as well as

the speed of execution at any stage. The main feature

of the proposed adaptation scheme is that the robot ad-

justs its stiffness in path operational space, defined with

a Frenet-Serret frame. Furthermore, the required dy-

namic capabilities of the robot are obtained by decou-

pling the robot dynamics in operational space, which

is attached to the desired trajectory. Speed-scaled dy-

namic motion primitives are applied for the underlying

task representation. The combination allows a human

co-worker in a cooperative task to be less precise in

parts of the task that require high precision, as the pre-

cision aspect is learned and provided by the robot. The

user can also freely change the speed and/or the tra-

jectory by simply applying force to the robot. The pro-

posed scheme was experimentally validated on three il-

lustrative tasks. The first task demonstrates novel two-

stage learning by demonstration, where the spatial part

of the trajectory is demonstrated independently from

the velocity part. The second task shows how parts of

the trajectory can be rapidly and significantly changed

in one execution. The final experiment shows two Kuka

LWR-4 robots in a bi-manual setting cooperating with

a human while carrying an object.
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1 Introduction

An important aspect for future use of robots in our

home environments as well as in production plants is

their ability to cooperate with humans. Robots domi-

nate over human capabilities in precision and efficiency

while performing repetitive and monotonous tasks, while

human are unbeaten in adaptation to new situations

and upcoming problems (Faber et al, 2015). Joining

both worlds by means of direct human-robot coopera-

tion brings new advantages and potentially solves many

open problems in robotics.

Cooperative task execution in physical human-robot

interaction can be classified based on the level of con-

trol the robot assumes (Adorno et al, 2011). Most com-

monly, the human and the robot are in master-slave

control mode, with the operator – master – retaining

complete control over the evolution of the cooperative

task. The interaction is provided through force or visual

feedback (Evrard et al, 2009). Alternatively, the task

can be controlled by the robot and only initiated by

the human (Soyama et al, 2004). In some applications,

e. g., in rehabilitation robotics (Krebs et al, 1998), the

control over the task evolution is dynamically shared

between the human and the robot (Mortl et al, 2012).

The level of control can also change based on the cur-

rent situation. For example, when the human is trans-

ferring knowledge to the robot, the robot will often be

controlled differently than during the actual execution.

The behavior of the robot might also be personalized

to suit each coworker perfectly. The learning of robot

behavior is thus crucial for effective cooperative task

execution.

However, robotic learning can be applied to various

aspects of the task; for example, the position, the ve-

locity, the level of adaptation and/or autonomy, etc.



Furthermore, different feedback options are available

through visual, haptic, or direct physical interaction

Gams et al (2016). Finally, many of these aspects and

conditions need to be combined in a single, preferably

intuitive, system that allows interaction similar to that

between two humans.

1.1 Problem statement

In this paper we investigate the learning of robot behav-

ior during human-robot cooperative tasks. Cooperative

task control should allow natural learning and adaptive

execution. Therefore, it must:

– provide physical human-robot interaction,

– allow non-uniform changes of execution speeds,

– enable adaptation of a trajectory during its execu-

tion, without the need to re-plan the whole task

when a new situation arises,

– provide a certain degree of cooperative intelligence,

i. e., it should be compliant when accuracy is not

needed, but stiff when it is needed,

– it should be applicable to both single arm and bi-

manual human-robot cooperation

pHRI has been heavily investigated in the past (Evrard

et al, 2009; Soyama et al, 2004; Krebs et al, 1998; Cali-

non et al, 2010), including for bimanual robot opera-

tions (Adorno et al, 2010; Mortl et al, 2012; Park and

Lee, 2015). Several papers explore sub-aspects of the

stated problem. For example, in a recent paper Ramac-

ciotti et al. (Ramacciotti et al, 2016) explore shared

control for motion speed and trajectory adaptation.

However, to the best of our knowledge, a complete ap-

proach that fulfills the given problem statement, has

not been proposed yet.

In this paper we propose a control architecture, which

fulfills the above problem statement. Throughout exe-

cution, the robot constantly learns from the interaction

with the human. First, during the initial learning of

the task, the control is completely handled by the hu-

man operator. However, during the task repetition, the

task is analyzed and the robot gradually takes control

over the parts with low variance of executed trajecto-

ries. The human can at any time take back the control

over the task execution by again increasing the variance

through physical interaction.

Initial idea at such a framework was published in

(Nemec et al, 2016a). In this paper we further extend

the approach with a)passivity based control framework

for HRI scheme; b)improved speed adaptation scheme;

c)additional experiments, that prove the validity of the

proposed concept.

1.2 Related work

The implementation of a pHRI scheme depends pri-

marily on the underlaying policy representation, which

determines also subsequent methods for learning by

demonstration, calculation of the variability distribu-

tion and implementation of non-uniform speed changes.

A motor skill necessary to accomplish the given task

does not only comprehend the path that the robot should

follow, but also the variation of coordination patterns

during the movement Calinon et al (2012). A well known

paradigm to cope with such requirements is to encode

the task as a dynamical system. Khansari-Zadeh&Billard

(Khansari-Zadeh and Billard, 2011) have introduced a

method of encoding motion as a nonlinear autonomous

Dynamical System (DS) and sufficient conditions to

ensure global asymptotic stability at the target. The

method uses several demonstrations and ensures that

all motions follow closely the demonstrations while ul-

timately reaching and stopping at the target. It was

expanded also for fast motions, for example for catch-

ing objects (Salehian et al, 2016). The method relies on

Gaussian mixture model (GMM) representation, which

was also used by Calinon et al. (Calinon et al, 2014).

It sequentially superimposes dynamical systems with

varying full stiffness matrices. The method has been

extensively applied, for example also for virtual guides,

where the robot is compliant only in the direction of

the trajectory (Raiola et al, 2015), and for learning of

physical collaborative human-robot actions (Rozo et al,

2016). Other approaches have been proposed for both

interactive tasks and for learning actions from several

demonstrations. Mixture of interaction primitives has

also been proposed (Ewerton et al, 2015). An example

of learning from several demonstrations are the prob-

abilistic motion primitives (ProMP) (Paraschos et al,

2013). These enable the encoding of stochastic system

behavior. Modified DMPs to include coupling terms

of different kinds have also been proposed for interac-

tion with humans in single-arm and bimanual settings

(Gams et al, 2014). Although these representations al-

low speed scaling, non-uniform speed scaling in its orig-

inal form is not possible by either. Recently, interaction

tasks have been discussed in a variation of motor prim-

itives called interaction primitives (Amor et al, 2014),

which maintain a distribution over the DMP parame-

ters and synchronizes phase with external agents (e.g.

humans) by dynamic time warping. In our approach we

rely on the framework of dynamic motion primitives

(DMP) (Ijspeert et al, 2013) and its extension to cope

with non-uniform speed changes (Nemec et al, 2013).

This paper is organized as follows. Section 2 out-

lines the framework of dynamic movement primitives



along with the speed profile encoding extension. The

novelty of the paper is described in Section 3, which

combines the separate sub-aspects into a complete algo-

rithm. Applications of the proposed approach to Learn-

ing by Demonstration (LbD) and to bimanual physical

human-robot cooperation are presented in section 4. A

discussion concludes the paper.

2 Learning by demonstration for Human-Robot

Cooperation scheme

In our work we rely on motion representation with dy-

namic motion primitives (DMPs) (Ijspeert et al, 2013),

extended for Cartesian space movements (Ude et al,

2014). These are used to encode the demonstrated co-

operative human-robot task. Kinesthetic guiding can be

used to capture the desired robot motion. The original

DMP formulation does not provide the means to variate

the speed of movement in a non-uniform way without

changing the course of movement. However, in our ap-

proach we do need to apply non-uniform speed changes,

prompting the requirement for appropriate trajectory

representation. A suitable representation is Speed-Scaled

Dynamic Motion Primitives (SS-DMPs), which we orig-

inally proposed in (Nemec et al, 2013).

Through kinesthetic guiding we first acquire the ini-

tial movement policy in Cartesian coordinates

G = {pk,qk, ṗk,ωωωk, p̈k, ω̇ωωk, tk}Tk=1. (1)

pk ∈ R3 are the positions, while qk ∈ S3 are the unit

quaternions describing orientation, with S3 denoting a

unit sphere in R4. Besides the positions and orienta-

tions, we also record the position and orientation ve-

locities (ṗk, ωωωk) and accelerations (p̈k, ω̇ωωk). k are tra-

jectory samples, and T is the number of samples.

We parameterize this demonstrated policy with a

nonlinear dynamical system that enables the encoding

of general trajectories (Ijspeert et al, 2013; Nemec et al,

2013; Ude et al, 2014). The trajectory can be specified

by the following system of nonlinear differential equa-

tions for positions p and orientations q

ν(s)τ ż = αz(βz(gp − p)− z + fp(s), (2)

ν(s)τ ṗ = z, (3)

ν(s)τη̇ηη = αz (βz2 log (go ∗ q)− ηηη) + fo(s), (4)

ν(s)τ q̇ =
1

2
ηηη ∗ q, (5)

ν(s)τ ṡ = −αss. (6)

Here s denotes the phase and z and ηηη are auxiliary

variables. The above system (2) – (6) converges to the

unique equilibrium point at p = gp, z = 0, q = go,

ηηη = 0, and s = 0. Asterisk ∗ denotes quaternion mul-

tiplication and q̄ quaternion conjugation. Eq. (15) pro-

vides the definition of quaternion logarithm. The non-

linear forcing terms fp(s) and fo(s) are formed in such

a way that the response of the second-order differential

equation system (2) – (6) can approximate any smooth

point-to-point trajectory from the initial position ppp0
and orientation qqq0 to the final position gp and orien-

tation go. The nonlinear forcing terms are defined as

linear combinations of M radial basis functions (RBFs)

fp(s) =

∑M
i=1 wi,pΨi(s)∑M
i=1 Ψi(s)

s, (7)

fo(s) =

∑M
i=1 wi,oΨi(s)∑M
i=1 Ψi(s)

s, (8)

Ψi(s) = exp
(
−hi (s− ci)2

)
, (9)

where free parameters wi,p, wi,o determine the shape of

position and orientation trajectories. ci are the centers

of RBFs, evenly distributed along the trajectory, with

hi their widths. By setting αz = 4βz > 0 and αs > 0,

the underlying second order linear dynamic system (2)

– (6) becomes critically damped.

Compared to (Ude et al, 2014) and analogous to

(Nemec et al, 2013), we introduced the temporal scaling

function ν(s) which is used to specify variations from

the demonstrated speed profile. Similarly to the forcing

terms (7) and (8), it is encoded as a linear combination

of Mv RBFs

ν(s) = 1 +

∑Mv

j=1 vjΨj(s)∑Mv

j=1 Ψj(s)
, (10)

where vj are the corresponding free parameters (weights).

In order to parameterize the demonstrated control

policy with a DMP, the weights wi,p, wi,o and vj need

to be calculated. The shape weights wi,p and wi,o are

calculated by applying standard regression techniques

(Ude et al, 2014) and using the demonstrated trajectory

(1) as the target for weight fitting. For ν we initially

set vj = 0, i. e. ν = 1, meaning that the demonstrated

speed profile is left unchanged. vj are assigned a dif-

ferent value only through the change of the execution

speed.

Robot control

Position and orientation trajectories, obtained from

DMP, are fed directly to the robot controller as ref-

erence values. In pHRI, safety is the primary concern

and the robot controller should exhibit stable opera-

tion in all possible interactions with environments and

humans, and should not produce unexpected motions.

To achieve this goal we applied the passivity paradigm



for the controller design. It has been widely used in

robotics as it preserves stable operation with respect

to the feedback and parallel interconnections of pas-

sive systems (Hatanaka et al, 2015; Zhang and Cheah,

2015). In our study we applied the two level passivity

based impedance controller for manipulators with flex-

ible joints in the form (Albu-Schaffer et al, 2007)

ρc = BB−1
Θ u + (I−BB−1

Θ )ρ (11)

u = JT(θθθ)Ẍc + ḡ(θθθ) (12)

where ρc ∈ RN is the control torque input for the mo-

tors, N is number of robot joints, θθθ ∈ RN is the joint

position measured at the motor side, J ∈ RN×6 is the

manipulator Jacobian, B and BΘ ∈ R6×6 denote the

positive definite diagonal matrix of joint and desired

joint inertia, respectively. ρ are measured joint torques

and ḡ(θθθ) is the gravity vector estimated in such a way,

that it provides exact gravity compensation in static

case using the signals measured at the motor side (Ott

et al, 2004). Basically, the role of the motor torque

controller (11) is to reduce the motor inertia and to

compensate for the robot non-linear dynamics. Desired

impedance and damping is provided with (12).

The task command input Ẍc = [p̈T
c , ω̇

T
c ]T is chosen

as

p̈c = −Dpṗ + Kpep, (13)

ω̇c = −Dqω + Kqeq, (14)

where position and orientation tracking errors are de-

fined as ep = pd − p and eq = 2 log(qp ∗ qd). The

quaternion logarithm log : S 7→ R3 is given as

log(q) = log(v,u) =

arccos(v)
u

‖u‖
, u 6= 0

[0, 0, 0]T, otherwise

. (15)

Its inverse, i. e., the exponential map exp : R3 7→ S, is

defined as

exp(r) =

 cos (‖r‖) + sin (‖r‖) r

‖r‖
, r 6= 0

1 + [0, 0, 0]T, otherwise

. (16)

Subscript (.)d denotes the desired values. Variables with-

out a subscript denote the current values calculated

from the robot joints at the motor side. Kp, Kq ∈ R3×3

are diagonal, positive definite positional stiffness and

rotational stiffness matrices, respectively. They spec-

ify the properties of the controller in Cartesian coordi-

nate system. Positional damping and rotational damp-

ing matrices Dp, Dq ∈ R3×3 are positive definite, but

not necessary diagonal matrices. Proper damping de-

sign is crucial for preserving stability properties of the

controller. Unlike in classical computed torque robot

controller, damping matrices are configuration depen-

dent. Let’s express total manipulator inertia in the task

coordinates as

Λ(θθθ) = (J(θθθ)(H(θθθ) + Bθθθ)
−1J(θθθ)T)−1, (17)

where H ∈ RN×N is the manipulator inertia in joint

space. Next, we factorize task inertia as Λ = Λ̄Λ̄ and

proportional gain matrix as K = K̄K̄. K ∈ R6×6 is

composed of Kp and Kd. Damping matrix is then cal-

culated as

D = Λ̄DξK̄ + K̄DξΛ̄, (18)

where Dξ ∈ R6×6 is a diagonal matrix with the desired

damping. Usually it is set to I for critically damped

response. Corresponding Dp and Dq are obtained as

upper and lower part of the D, respectively. More de-

tails about the factorization based design of damping

matrices can be found in (Albu-Schaffer et al, 2004)

3 Human-robot cooperation scheme

The operation of the proposed system is as follows.

First, the human operator demonstrates the desired co-

operative human-robot motion by kinesthetically guid-

ing the robot arms. The demonstrated motion is then

encoded by SS-DMPs for position and orientation (p, q)

as explained in Section 2. The demonstration of the

motion is typically performed slower than what is actu-

ally the final desired motion, because typically it is not

possible to demonstrate the movement with both high

speed and high accuracy. Hence we should allow the hu-

man operator to non-uniformly speed up or slow down

the execution. In our proposed approach this happens

on-line during the task execution, when the human co-

worker is allowed to modify the motion.

Second, the human operator and the robot itera-

tively perform the task several times. The learning of

the course of motion as well as the learning of the speed

profile is based on the adaptation of the desired trajec-

tory and the estimation of trajectory variances across

task repetitions. As suggested in (Calinon et al, 2010),

low variance of motion indicates that the corresponding

part of the task should be executed with high precision

and that no further variations from the course of motion

should be allowed. If little variance occurs in a few exe-

cutions of the cooperative task, the robot should ensure

precise trajectory tracking by increasing its stiffness in

the directions perpendicular to the direction of motion.

This allows the human co-worker to decrease his/her

own precision as the stiffer robot provides disturbance

rejection. Still, the human should be able to speed up

the trajectory without affecting the course of motion.



To achieve such behavior, the robot system has to be

compliant in the direction of motion. To the best of our

knowledge, none of the previously proposed adaptation

algorithms can simultaneously address these issues.

3.1 Trajectory adaptation

Initially, in the first iteration of the cooperative task,

the robot is uniformly compliant in all directions. Con-

sequently, the commanded trajectory pl in task repe-

tition cycle l is not the same as the actually executed

trajectory pm due to the input of the human. Here (.)l is

the index of the task repetition, referred to also as learn-

ing cycle. Subscript (.)m referrers to the measured co-

ordinates. The proposed adaptation algorithm updates

the desired trajectory (pl(s),ql(s)), l = 1, . . . , L, where

the initial SS-DMP is taken from human demonstration

p1, q1, and calculates its variance after each task exe-

cution.

We update the trajectory and associated covariance

matrix using the following formulas

pl+1(s) = ζ∆p(s) + pl(s), (19)

ΣΣΣp,l+1(s) = (1− ζ)(ΣΣΣp,l(s) + ζ∆p(s)∆p(s)T), (20)

∆p(s) = pm(s)− pl(s),

where pm(s) denotes the measured position of the robot,

ΣΣΣp,l(s) is the current cycle covariance of pl(s), all com-

puted at phase x, and ζ ∈ R[0,1] is the exponentially

weighting factor that defines the learning speed (Knuth,

1997). If we set ζ = 1, the updated trajectory pl+1

is equal to the measured trajectory pm. On the other

hand, if we set ζ = 0, the trajectory pl+1 does not

change and the system stops learning. After each learn-

ing cycle, the updated trajectory pl+1 is encoded into

SS-DMP. It is used as the reference trajectory to control

the robot in the next cycle. Note that all trajectories

are phase dependent, sampled at x(t), t = t1, . . . , tT .

The coefficients of covariance matrixΣΣΣp,l+1 are approx-

imated with a linear combination of radial basis func-

tions (RBFs). Eq. (19) cannot be used for orientation

trajectories. Instead we apply the following update rule

for quaternions

ql+1(s) = exp

(
ζ
ωωω(s)

2

)
∗ ql(s), (21)

ωωω(s) = 2 log(qm(s) ∗ ql(s)).

Similarly, the update rule for variation of orientation

trajectories can be expressed with

ΣΣΣq,l+1(s) = (1− ζ)(ΣΣΣq,l(s) + ζωωωl(s)ωωωl(s)
T). (22)

3.2 Stiffness adaptation

We dynamically set the desired stiffness of the robot in

order to improve the ease of adaptation. It is well known

that the precision and speed of human motion are re-

lated – to be precise, humans reduce their speed (Fitts,

1954). While Calinon et al. (Calinon et al, 2010) pro-

posed to decrease the stiffness in the parts of the trajec-

tory with higher variability and vice versa, we propose

to make the change of stiffness dependent not only on

the variance but also on the speed of motion. The idea

here is to make the robot compliant when the typically

slow fine-tuning of the trajectory is required.

Let Rp denote the rotation matrix of the coordi-

nate frame ξξξp with x coordinate specified in the desired

direction of motion, i. e., ṗl, and the other two coor-

dinates orthogonal to it, as illustrated in Fig. 1. This

matrix can be obtained by forming the Frenet-Serret

frame (Ravani and Meghdari, 2006; Chiaverini and D.,

2008) at each sampling time. The Frenet-Serret frame

consists of three orthogonal directions defined by the

path’s tangent (direction of motion), normal, and bi-

normal. We obtain the following expression for Rp

Rp =
[
t n b

]
, (23)

t =
ṗl
‖ṗl‖

, b =
ṗl × p̈l
‖ṗl × p̈l‖

, n = b× t.

Note that the absolute velocity ṗl and acceleration p̈l
are provided by DMP integration at every phase s,

which ensures smoothness. ‖ṗl‖ < ε or ‖ṗl × p̈l‖ < ε,

where ε > 0 is a predefined threshold, means that the

motion is slow or linear. Thus in such cases we suspend

the updating of Rp until the motion becomes faster

again. The same problem might appear at the begin-

ning of the trajectory, which might start with zero speed

and accelerations. In such a case we have to integrate

SS-DMP a few steps ahead until ‖ṗl × p̈l‖ > ε and set

the corresponding Frenet-Serret frame as the initial Rp.

We also compute the robot’s speed, i. e., v = ‖ṗl‖ and

define scalar v0, which specifies the threshold between

the low and high speed. The appropriate control gain

Kp at each sampling time is computed as follows

Kp(s) = RT
p


kx 0 0

0
koρ

Σyy + ε
0

0 0
koρ

Σzz + ε

Rp, (24)

where ε > 0 is an empirically chosen constant which

sets the upper bound for the controller gain and kx and

ko are the gain constants in the direction of motion

and orthogonal to it, respectively. With this choice, the
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Fig. 1 Operational space ξξξp is defined by path orientation.

control error is actually transformed from the global co-

ordinated system ξξξb to the trajectory operational space

ξξξp, multiplied by the gains defined in the trajectory

operational space and rotated back to the global coor-

dinate system (Khatib, 1987). Σyy and Σzz are the sec-

ond and the third diagonal coefficient ofΣΣΣ, respectively.

Transformation ofΣΣΣp,l calculated from errors measured

in global coordinate system ξξξb to the trajectory coordi-

nate system is done by (Soler and Chin, 1985)

ΣΣΣ = RpΣΣΣp,l(s)R
T
p . (25)

Scalar ρ scales the control gains with respect to the

calculated velocity v. To assure smooth transition of

control gains at low velocities, it is calculated as

ρ = γ1

(
tanh

(
v − v0
γ3

)
− 1

)
+ γ2. (26)

In the above equation, γ1, γ2, γ3 > 0 determine the

range, lower bound and the speed of transition between

the lower and upper bound of the switching function

defined by tanh, respectively. The initial value for co-

variance matrix ΣΣΣp,1 is set to s0I , where s0 is specified

so that we obtain the desired initial stiffness orthogo-

nal to the direction of motion. By pre-multiplying and

post-multiplying gains with RT
p and Rp, we can set sig-

nificantly different stiffnesses in the direction of motion

and orthogonal to it.

By choosing a constantly low value for kx in Kp, the

robot is always compliant in the direction of motion,

while the stiffness orthogonal to this direction is set

according to the learned variance and speed of motion.

3.3 Speed adaptation

As previously explained, low gain kx enables the hu-

man operator to freely move the robot in the tangent

direction of the Frenet-Serret frame. At the same time,

we would like that the robot stays on the commanded

(learned trajectory) which means, that the human can

only anticipate or lag behind the commanded trajec-

tory. Obviously, this changes the speed of the trajectory,

which is determined by the speed scaling factor ν in

Eqs. (2 – 6). Since all signals which determine the com-

manded robot pose are phase dependent, our task is to

find the corresponding phase, which minimizes the dif-

ference between the current perturbed robot pose and

a pose on the learned trajectory.

Lets define the tracking error exp = [1 0 0] Rpep,

ep = pl−pm, which is the x component of the tracking

error in path operational space (see Fig. 2). This error

then determines the speed scaling factor, calculated as

ν̇(s) = λν(s)exp, (27)

where λ > 0 is an empirically set constant. This equa-

tion is executed at each sample time in the loop until it

converges, typically in a few samples. The initial value is

set to the speed scaling learned in previous cycles with

ν(s) = νl(s). With this procedure we actually speed up

or slow down the commanded trajectory according to

the human interaction.

Note that negative exp means that the actual robot

position is anticipating the desired trajectory. In this

case we have to speed up the desired trajectory by de-

creasing the scaling factor ν(s), and vice versa, with

positive exp we slow down the desired trajectory by in-

creasing the scaling factor ν(s). Values ν = (0, 1) speeds

up the demonstrated trajectory, while ν = (1,∞) slows

down the trajectory. To compensate for this non-linear

span, the update rate in (27) is weighted with the cur-

rent value ν(s).

After sampling we compute the weights vi that spec-

ify ν(s) defined as in (10). In this way we achieve faster

convergence towards the desired trajectory in the direc-

tion of motion. The described procedure calculates the

speed scale factor in the current learning cycle. Based

on this we calculate the expected speed scale for the

next learning cycle similar as for the positional part of

the trajectory using

νl+1(s) = ζ∆ν(s) + νl(s), (28)

∆ν(s) = ν(s)− νl(s).

The overall learning and adaptation algorithm is sum-

marized in Algorithm 1.



Fig. 2 Position tracking error ep is projected to the tangen-
tial axis of the Frenet-Serret frame at each sampling instance.
Wire frame model shows the commanded robot pose. Actual
robot pose, denoted with solid model, is displaced due to the
human operator interaction.

4 Experimental evaluation

4.1 LbD with separate learning of spacial policy and

velocity profiles

The proposed human-robot cooperation scheme allows

implementing two phase LbD learning, where the demon-

stration of the spacial part of the trajectory is followed

by the demonstration of the velocity part. As humans

can not be precise and fast at the same time (Fitts,

Algorithm 1: Human-robot cooperation algo-

rithm
1 Record {p(k),q(k), tk}Tk=1 using kinesthetic guiding

and calculate SS-DMP parameters from the
demonstrated data (p1,q1)

2 Initialize gains kx, ko and set initial covariance
matrices ΣΣΣp,1 = s0I. Approximate coefficients of
ΣΣΣp,1 with a linear combination of RBFs.

3 set l = 1
4 while cooperating do
5 set initial phase s = 1
6 while s ≤ smin do
7 integrate SS-DMP to obtain pl(s),ql(s) as

well as their velocities and accelerations
8 calculate path rotation Rp(s) using (23) and

speed v(s)
9 calculate Kp(s) and Dp(s) using (24) and

(18), respectively
10 execute control law (12) with pl(s), ql(s) as

the desired trajectory
11 sample new trajectories pl+1(s),ql+1(s),

covariance matrices ΣΣΣp,l+1(s), and calculate
speed scaling factor νl+1, all at phase s,
using (19) – (21), (27)

12 calculate SS-DMP parameters of pl+1,ql+1,
including νl+1

13 approximate coefficients of ΣΣΣp,l+1 with linear
combinations of RBFs

14 set l = l + 1

Fig. 3 Learning of a complex trajectory, where the spatial
and the velocity part of the trajectory were demonstrated
separately.

1954), complex trajectories can only be demonstrated

at low speeds. During the execution, the learned tra-

jectory needs to be accelerated. In many cases, this ac-

celeration is non-uniform. Some parts may be executed

faster and some parts not, often due to the technological

requirements, e.g., when applying adhesives, welding,

etc. The main idea is to demonstrate a complex pol-

icy at an arbitrary low speed with an arbitrary velocity

profile. Next, the human demonstrates also the veloc-

ity part of the trajectory, while the robot maintains the

learned spacial trajectory. Learning of the spatial part

of the trajectory is performed as usual, e.g. by capturing

the desired policy by kinesthetic guidance as described

in Section 2 using (2) – (6). In the next step, Frenet-

Serret frames are computed at each sampling time (23).

While learning the velocity part, the robot is set compli-

ant along the tangential direction of the Frenet-Serret

frames and stiff orthogonal to this direction by selecting

appropriate control gains ky, kz � kx in

Kp(s) = RT
p

kx 0 0

0 ky 0

0 0 kz

Rp. (29)

This allows the human demonstrator to push and pull

the robot end-effector in the direction of the trajectory,

which actually modifies the execution speed. In order

to maintain the previously demonstrated spatial part

of the trajectory, the robot has to set the correspond-

ing previously learned reference point (pd(s),qd(s)) by

determining the speed scaling factor ν(s) which min-

imizes the difference between the current robot pose

and the learned spatial trajectory using (27). In this

way, it learns also the speed scaling. The corresponding

weights vj in (10) are then calculated using regression

(Ude et al, 2010).

We implemented the described LbD procedure on a

Kuka LWR-4 robot arm, where the task was to follow

the gap of the automotive lamp, as shown in Fig. 3. The
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Fig. 4 Estimated speed scaling factor ν during the demon-
stration of the speed profile.

exact task was not an issue in this case, but it might be

glue application, grinding, inspection, etc. The spatial

part of this complex trajectory was demonstrated with

kinesthetic guiding, where the control gains were set

to Kp = 1 I N/m and Kq = 0.2 I Nm/rd. The trajec-

tory was captured in Cartesian coordinates. After that,

the captured trajectory was encoded with SS-DMPs,

where the speed scaling factor ν(s) was set to 1. For

the demonstration of the velocity part of the policy, we

raised the control gains to kx = 500 N/m, ky, kz = 2000

N/m, and Kq = 200 I Nm/rd. During the speed learn-

ing, we calculate Rp at each sampling time by (23), con-

trol gains by (29) and speed scaling by (27). The human

operator was able to guide the robot along the previ-

ously learned trajectory with arbitrary speed with very

low physical effort. For practical reasons, we limited the

learned velocity scale factor to the interval ν = [0.2, 5].

Fig. 4 shows learned speed scale during this experiment.

Video of this experiment is available at http://

abr.ijs.si/upload/1483017570-TwoPhaseLbD.mp4.

4.2 Coaching with variable stiffness and variable

weighting factor

The next experiment demonstrates how to apply the

proposed approach to coaching. The goal of the coach-

ing is to modify only a part of the previously learned

trajectory while leaving the rest of the trajectory un-

changed (Gams et al, 2016). During the coaching, it is

desirable that we could learn a new part of the tra-

jectory in single pass while obtaining good disturbance

rejection in the part where we would like to preserve

the previously learned trajectory. To achieve this goal,

we apply the compliance adaptation scheme given by

the Eqs. (24),(26) and introduce a variable weighting

factor ζ in trajectory update (19)–(21). We associate ζ

with the tracking error,

ζ(k) =


ζmax, ‖ep(k)‖ > d ζmaxζmin

ζmin, ‖ep(k)‖ < d

ζmin

d ‖ep(k)‖, otherwise

, (30)

where ζmin and ζmax ∈ R[0,1] are minimal and maxi-

mal exponential weighting factors respectively, and d is

the position error at which point the variable weight-

ing factor starts to change. In exactly the same way we

can associate the weighting factor to the orientation er-

ror. The coaching works as follows. We drive the robot

along the previously learned trajectory. Low value of

the weighing factor ζmin and high control gains as a

consequence of low values of the covariance matrices Σp
and Σq provide good disturbance rejection. When we

would like to modify the trajectory, we first decrease the

speed below v0 (26). The system drops the stiffness and

allows us to modify the trajectory. Consequently, the

weighting factor changes to ζmax. By setting ζmax ≈ 1

the system learns the new trajectory in a single pass,

as it updates it using the current robot configurations

only. When we re-approach the previously learned tra-

jectory, Eq. (30) decreases ζ. Note that it is required to

slow down the trajectory below v0 only when we want

to initiate coaching. After that, low compliance will be

provided by increased values of the covariance matrices

Σp and Σq. Note also that it is necessary to calculate

the current speed scaling factor ν(s) using (27) in each

sampling interval in order to get the corresponding tra-

jectory reference values.

The coaching was tested for a simple case where the

initial trajectory was learned with a single demonstra-

tion. Consequently, all of the elements of the covariance

matrices Σp and Σq were 0 and the system calculated

high control gains. In the next cycle, the operator de-

creased the speed in order to decrease the stiffness and

demonstrated a new part of the trajectory. The origi-

nal and the modified trajectories are pictured in Fig.

5 with red and blue lines respectively. In this exper-

iment we applied the following settings: ζmin = 0.4,

ζmax = 0.8, v0 = 0.07 m/s, d = 0.02 m. In order to

make the coaching even more efficient, the robot refer-

ence was actually the measured position whenever the

ζ = ζmax. This way, we can apply extensive position

and orientation changes with very little physical effort.

Fig. 6 shows how the system adjusted the control gains

and weighting factor ζ during the coaching. The coach-

ing area is marked with a shaded background in the

corresponding plots. Note that the gains are expressed

in the trajectory coordinate system, i.e. calculated by

(24), before they were pre and post-multiplied with RT
p

and Rp, respectively. Resulting robot trajectories are

displayed in Fig . 7. In this plot, the initial trajectory

is marked in red. The actual demonstrated trajectory

(blue) differs in the middle part. The learned trajec-

tory is denoted with a black dotted line. Since ζmax was

0.8, it slightly differs from the demonstrated one. With

ζmax = 1 it would perfectly follow the demonstrated

http://abr.ijs.si/upload/1483017570-TwoPhaseLbD.mp4
http://abr.ijs.si/upload/1483017570-TwoPhaseLbD.mp4


trajectory. However, it would be less smooth due to the

poorer disturbance rejection.

Video of this experiment is available at http://

abr.ijs.si/upload/1494512444-Coaching.mp4.

Fig. 5 Coaching; The red line is the original trajectory. The
blue line denotes the desired change of the original trajectory.
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Fig. 6 Speed v, controller gains RpKpRT
p and weighting

factor ζ during the coaching. The shaded area denotes the
coaching phase.

4.3 Bimanual human robot cooperation in object

transportation

The third experiment involves human robot coopera-

tion (HRC) in transportation of a (potentially large and

heavy) object. The task of the robot was to learn how

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Y (m)

0.7

0.6

0.5

X
 (

m
)

original
demonstrated
learned

Fig. 7 The original, demonstrated and learned trajectories
during the coaching.

Fig. 8 Cooperating humanoid robot and human.

to cooperate with the human while transporting a rigid

plate from the initial point to the final point and simul-

taneously avoiding an obstacle. The final point had to

be precisely learned, as it was necessary to insert a hole

in the panel on the vertical rod, as shown in Fig. 8. Due

to the dimensions of the plate, this task can not be suc-

cessfully accomplished using a single robot arm. There-

fore, we applied bi-manual robot setup composed of two
7 degree of freedom Kuka LWR-4 robot arms. For bi-

manual robot control we applied coordinated task-space

framework as presented in (Nemec et al, 2016a). It fully

characterizes a cooperative operational space and al-

lows the user to specify the task in relative and ab-

solute coordinates, resulting in geometrically meaning-

ful motion variables defined at the position/orientation

level (Caccavale et al, 2000). With a proper choice of

relative and absolute coordinates (which might be also

task dependent), both subspaces are decoupled both on

kinematic as well as on dynamics level. Consequently,

we can control each subsystem independently. In our ex-

periment, the robot firmly holds the shared object. This

means that the corresponding relative coordinates do

not change during the task. However, in order to min-

imize internal wrench, it was necessary to control also

the relative coordinates. These coordinates remained

unchanged during entire task. The gains of the relative

coordinates control law were set to 800 I N/m and 300 I

N/rd, respectively.

http://abr.ijs.si/upload/1494512444-Coaching.mp4
http://abr.ijs.si/upload/1494512444-Coaching.mp4


Our human robot task coordination is fully charac-

terized with absolute coordinates, which were the sub-

ject of our adaptation scheme (Nemec et al, 2016b).

Therefore, all learning and adaptation procedures are

applied to absolute coordinates only. The cooperation

scheme adapts autonomously. The only parameters we

have to set are initial gains, speed threshold and smooth-

ing coefficients γ1, γ2 and γ3. The initial gains Kp and

Kq were set to 100 I N/m and 80 I Nm/rd, respectively.

Thus, the system was initially very compliant in abso-

lute coordinates. The speed threshold v0, where the sys-

tem starts adjusting the stiffness, was empirically set to

0.1 m/s.

After the first cycle, which corresponds to the initial

task demonstration, we performed 8 cooperative repe-

titions of the task. The learning factor ζ was set to 0.4.

Fig. 9 shows the 3-D plot of the trajectories pl in ab-

solute coordinate system. The execution speed va and

the learned gains RpKpR
T
p during subsequent execu-

tions are shown in Fig. 11. Please note that the control

gains in these plots are expressed in the trajectory co-

ordinate system in order to gain better insight into the

behavior of the system. To get the control gains which

are passed to the robot controller, these gains have to

be pre and post-multiplied with RT
p and Rp respec-

tively (see Eq. (24). Control gains at the initial and

final parts of the trajectory are always low as we start

and end with low velocity. Note also that the control

gains calculated from (24) have to be filtered in order
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Fig. 9 3-D plot of trajecto-
ries of absolute coordinates
before the vertical rod dis-
placement. The thick line
shows the final learned tra-
jectory.
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Fig. 11 Learned gains RpKpRT
p and speed v before the

vertical rod displacement.

to prevent jerky movements. For the sake of clarity only

the 4th, 6th and 8th cooperation cycles are displayed.

Note that in this experiment the spatial and the veloc-

ity parts were learned concurrently and not separately

as in the first experiment. From the plots we can see

how the speed has increased during subsequent cycles.

After 8 repetitions we displaced the vertical rod by

10 cm in the global y-direction. Thus, the final part

of the task had to be modified. By lowering the speed

in that part of the trajectory through interaction, the

system immediately decreased the stiffness and allowed

for the robot to be guided to the new position. In order

to speed up learning of a new part of the trajectory,

we increased weighting factor ζ to 0.9 in a similar way

as in the previous experiment. In a few repetitions, the

system learned the new task and re-set the high stiffness

gains. This enabled the human operator to accomplish

the task by allowing the robot to guide him. Also here,

for the sake of clarity, we show only the 9th, 10th, 12th

and 14th cooperation cycles.

Fig. 10 shows the 3-D plot of trajectories pl after the

displacement. Execution speed v and controller gains

RpKpR
T
p are displayed in Fig. 12.

This experiment is shown also in the video available

at http://abr.ijs.si/upload/1483017628-HRC-Plate.

mp4.

http://abr.ijs.si/upload/1483017628-HRC-Plate.mp4
http://abr.ijs.si/upload/1483017628-HRC-Plate.mp4
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5 Conclusions

In this work we proposed a new human-robot coopera-

tion scheme. It can be applied to various tasks, e.g. for

a) two phase LbD with separate demonstration of the

spatial and velocity part of the trajectory, b) human

robot cooperation during the transportation of heavy

and bulky objects, c) for human-robot cooperation dur-

ing assembly tasks, etc. The algorithm can be applied

to both single arm as well as bi-manual robotic systems

and it doesn’t require force sensing. The developed al-

gorithm is based on the previously proposed SS-DMPs

(Nemec et al, 2013) and extended cooperative task ap-

proach for bi-manual robots (Likar et al, 2015). There

are several novelties in the proposed approach:

– Speed-scaled DMPs in Cartesian space have been

introduced.

– Both spatial movement and the speed of cooperative

motion can be adapted.

– Stiffness of the cooperative task is adjusted taking

into account the variance of motion across several

executions of the task and the current speed of mo-

tion. This enables the human to override the learned

high stiffness when necessary.

– Task compliance is defined with respect to the tra-

jectory operational space, which allows for varying

the dynamic properties of the system along the di-

rection of motion.

Note that no force sensing is necessary in the proposed

approach, which might decrease the final cost of the

setup and increase the robustness, since force measure-

ment is usually noisy. Another advantage of the pro-

posed approach is the possibility to trim the learn-

ing speed and the disturbance rejection with the vari-

able exponential weighting factor ζ. On the other hand,

there are many parameters such as threshold velocities

v0 in (26), weighting factor ζ, initial gains k0 and kx in

(24), λ in (27) which need careful tuning. In the future,

we will focus on procedures that will either diminish the

number of tuning parameters or learn their values from

previous experience by means of reinforcement learning.

The proposed scheme was experimentally verified

in three exemplary use-cases. The first is a novel two-

phase LbD scheme, which has the potential to be used

for learning of complex tasks in industrial setups as well

as for robots applied in home environments. With the

second experiment we show how to use the proposed

scheme in coaching and how to adapt the weighting

factor ζ in order to obtain an appropriate trade-off be-

tween the learning speed and disturbance rejection. The

third experiment deals with human-robot cooperation

in object transportation, which could be applied in as-

sembly processes in production plants or in civil engi-

neering for transportation of heavy and bulky objects.
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