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Abstract

Social media and social networks contribute to shape the debate on societal and policy
issues, but the dynamics of this process is not well understood. As a case study, we
monitor Twitter activity on a wide range of environmental issues. First, we identify
influential users and communities by means of a network analysis of the retweets.
Second, we carry out a content-based classification of the communities according to
the main interests and profile of their most influential users. Third, we perform
sentiment analysis of the tweets to identify the leaning of each community towards a
set of common topics, including some controversial issues. This novel combination of
network, content-based, and sentiment analysis allows for a better characterization of
groups and their leanings in complex social networks.

Keywords: Social networks; Communities; Sentiment analysis; Influence

Introduction
Environmental and sustainability issues are among the major societal concerns today.
The formulation of environmental policies is often a result of the interaction between
antagonistic interest groups, including policy makers (governments and international
organizations), advocacy groups representing the interest of specific industry sectors, and
civic activists. The motivation for this research is to contribute to a better understand-
ing of the dynamics of advocacy and activism around policy issues. We expect that the
results will help policymakers in monitoring the response of various interest groups to
the proposed regulations and policy targets.

The explosive growth of social media and user-generated contents on the Web provides
a potentially relevant and rich source of data. This work is based on data from Twitter
[1], a social networking and micro blogging service with over 270 million monthly active
users, generating over 500 million tweets per day.

We collect a broad range of tweets related to the environmental issues and address the
following research questions:

e Can one identify influential communities and environmental topics of interest?
o Are there differences in their leanings towards various environmental topics?

Our results indicate that there are observable differences in sentiment leanings towards
various environmental issues between the major communities.
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There are several aspects of Twitter data analysis that are relevant for this research.
On the one hand, Twitter is a social network, and several types of networks can be
constructed from the data, e.g., followers, mention, or retweet networks. Network
analysis algorithms then yield interesting network properties, such as communities, mod-
ularity, various, and centralities. On the other hand, Twitter data can also be analyzed
for its contents, by applying text mining and sentiment analysis algorithms. A novelty of
our research is that we combine both types of analysis. We detect influential communi-
ties, identify discussion topics, and assign sentiment of the communities towards selected
topics.

There are three different ways how users on Twitter interact: 1) a user follows posts of
other users, 2) a user can respond to other user’s tweets by mentioning them, and 3) a
user can forward interesting tweets by retweeting them. Based on these three interaction
types, Cha et al. [2] define three measures of influence of the user on Twitter: indegree
influence (the number of followers, indicating the size of his audience), mention influence
(the number of mentions of the user, indicating his ability to engage others in conversa-
tion), and retweet influence (the number of retweets, indicating the ability of the user to
write content of interest to be forwarded to others). They find that mention and retweet
influence are correlated, but that indegree alone reveals little about the user’s actual influ-
ence. This is also known as the million follower fallacy [3]. Instead of the number of
followers, they show that it is more influential to have an active audience who mentions
or retweets the user. Suh et al. [4] analyze factors which have a positive impact on the
number of retweets: URLs, hashtags, the number of followers and followees, the age of
the account, but not the number of past tweets. Bakshy et al. [5] quantify the influence
on Twitter by tracking the diffusion of URLs through retweet cascades. They find that the
longest retweet cascades tend to be generated by the most influential users in the past.

Closely related to our research is the work by Conover et al. [6], albeit applied to the
problem of political polarization. They construct both retweet and mention networks
from political tweets and apply community detection. It turns out that the retweet net-
work exhibits clear community segregation (to the left- and right-leaning users), while
the mention network is dominated by a single community. In [7], they compare the pre-
dictive accuracy of the community-based model to two content-based (full text tweets
and hashtags-only) models. The community-based model constructed from the retweet
network clearly outperforms the content-based models (with the accuracy of 95 vs. 91 %).

The above research indicates that the retweet influence seems to be the most promising
measure of influence on Twitter, and that community detection in the retweet network
will likely yield the most influential communities. However, in the environmental domain,
the community segregation is not as clear as in the political domain. We therefore char-
acterize communities not only by their influential members, but also by their prevalent
discussion topics and sentiment.

Sentiment analysis has been applied to Twitter in several domains [8], most notably for
stock market predictions [9], and in political elections. There has been some controversy
whether Twitter analysis can be used to predict the outcome of elections—Gayo-Avello
gives a survey of various studies [10]. We have successfully applied Twitter sentiment
analysis to monitor Slovenian presidential election in 2012 and Bulgarian parliamentary
elections in 2013 [11]. Most of the other approaches are based on tweet volume or sim-

ple sentiment analysis by counting positive and negative sentiment words in tweets. In
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contrast, we apply supervised machine learning, the SVM classification in particular [12].
The training data comes either from manually annotated tweets (which are problem-
specific and of high quality, but expensive in terms of resources needed), or from generic,
smiley-based tweets [13] (which are of lower quality, but very extensive).

This paper is based on our preliminary work, presented in a workshop proceeding [14],
and, in several aspects, extends the proposed methodology. First, the experiments capture
1 year of Twitter data and hence analyze twice the original amount of data. Second, the
structural properties of most prominent communities discussing environmental topics
are examined. Third, content filtering is enhanced by similarity calculation in a multi-
dimensional vector space. Finally, a custom sentiment model, trained on manually labeled
domain-specific tweets, is applied to produce better sentiment classification results.

The paper is organized as follows. In the “Methodology: discovering influential com-
munities and their sentiment” section, we present the network and content analysis
employed in our work. We describe the Twitter data acquisition and construction of the
retweet network. We use a standard community detection algorithm and define the Twit-
ter user and community influence measures. A standard text mining approach is used
to identify topics discussed by the major communities. For sentiment analysis, we con-
struct a binary SVM classifier with neutral zone, from three different sets of training data.
The “Results and discussion” section describes the outcomes of the experiments. First, we
analyze the structural properties of the most influential communities, in terms of their
internal and external influence, and balance of the influence distribution. We identify
categories of influential communities (e.g., environmental activists, news media, skep-
tics, celebrities) and the topics of their interests. Sentiment classification is applied to the
tweets of different communities, and sentiment leaning of the communities towards dif-
ferent topics is analyzed. We highlight interesting findings and some unexpected results.
We conclude with plans for future work.

Methodology: discovering influential communities and their sentiment

We have monitored Twitter for a period of the entire year 2014. We use the Twitter
Search API and define a wide range of queries to select tweets related to environmental
and energy topics (see see Table 6 in Appendix for the full list of queries). The collected
environmental tweets are then used to construct a social network and identify influen-
tial users and communities, as well as their topics of interest and sentiment. The process
of identifying community interests and their leanings consists of three steps. First, the
network of users retweeting each other is constructed, and the densely connected com-
munities are detected. Second, the content published by these communities is analyzed
to reveal the communities’ interests, and finally, sentiment analysis is performed to asses
the sentiment leaning of the communities with respect to different topics of interest.

Network structure and influence measures

We explore which Twitter users share similar content on environmental topics. To model
this phenomenon, we construct a retweet network, connecting users who are in a retweet
relation, i.e., an undirected edge between two users indicates either one user retweeted
the other or vice versa. The network is constructed from 30.5 million tweets about envi-
ronmental topics, acquired between January 1, 2014 and December 31, 2014. The network
consists of 3.7 million users (nodes) linked by 9.7 million retweet relations.
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The largest part of the network consists of one large connected component of 3.4
million users, the rest are components of size smaller than 1000 users. In the largest
component, we want to find groups of users that share similar views on environmental
topics. If we assume that retweeting is a proxy of expressing agreement on the published
content, the retweet network can be regarded as consisting of the connections between
users who agree on a certain topic. Therefore, the problem translates into partitioning
the network in the so-called communities. In the field of complex networks, the notion of
“community” corresponds, loosely speaking, to a subset of nodes that are more densely
connected among themselves than with the nodes outside the subset. Several definitions
of community and methods to detect communities have been proposed in the literature
(see [15] for a review).

We apply a standard community detection algorithm, the Louvain method [16], to our
retweet network. The method partitions the network nodes in a way that maximizes
the network’s modularity. Modularity is a measure of community density in networks.
It measures the fraction of edges falling within groups of a given network partitioning
as compared to the expected fraction of edges in these groups, given a random distri-
bution of links in the network [17]. Among the available detection algorithms in the
optimization-based class, the Louvain method is one of the few methods that are suit-
able: (i) to analyze large networks with good scalability properties and (ii) to avoid ex-ante
assumptions on their size [18].

Further, we propose an approach to identify the most influential users in the network,
i.e., users whose content is apparently approved and shared the most. Let the retweet
network be represented as a directed graph G, with edges E(G). A directed edge e,,, from
the user u to the user v indicates that contents of the user u have been retweeted by the
user v. Let w(e,,,) be the weight of the edge e,,, indicating the number of times that the
user v retweeted the contents of the user u. Then user influence I(u) is defined as

)= wlewy) (1)
eu,veE(G)
The differences in the structure of the detected communities Cy,...,C, are exam-

ined through the influence of the users of a particular community Ci. We address this
by measuring the intra and inter-community influence of each community, as well as by
measuring the distribution of influence among the community’s users.

Community influence is defined as the cumulative influence of all its users,

1O =) 1= > wleuw (2)

ueC ueC \ey€E(G)

It can be divided into the influence that the community users have within their own
community and the influence they exert outside their community. Hence, we define

intra-community influence I;,, and inter-community influence I, as:

Q) =) Tuy=Y_"| > wlew (3)

ueC ueC \ ey €E(G)
veC
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The ratio between these two measures I /I;;, reveals the extent to which a community is
influential outside its “borders” versus its internal content exchange.

Furthermore, to measure the distribution of user influence within a community, we use
the Herfindahl-Hirschman index (HHI), commonly used in economics to measure the
amount of competition among leading companies in an industry with respect to their
market share [19]. When applied in the context of community structure, we look at the
N leading users u;, i € {1,...,N}, in a community C in terms of their normalized intra-
community influence r; = Iy, (u;)/ Z}]\il Iin(uj). Hence, the Herfindahl-Hirschman index

is defined as

Y, N( ) )2
HHIC) =Y = | =p—— (5)

i=1 i=1 Z]Ail Tin(uj)
The squared sum of influence ratios ranges from 1/N to 1, where lower values indicate
a dispersed and more balanced influence distribution, whereas higher values reflect the
community influence being concentrated only on few strongly influential users.

Content identification and filtering

The retweet relation can be considered as the agreement between users on the published
content. Hence the retweet network reveals which users support similar interests, without
looking into the actual content. On the other hand, to identify the content and to see what
are different groups of users talking about, we adopt a standard text mining approach as
follows.

1. For each group of users g;, i € {1,...,N}, create a document d; that aggregates all
the content which the users of the group g; have published.

2. The vocabulary (i.e., the set of terms) used by groups {gi, . .., gn} is obtained from
the documents {d1, . .., dn}. Term frequency TF;(t) denotes the number of
appearances of a term ¢ in a document d;.

3. For each term ¢ from the vocabulary, document frequency DF (¢) is the number of
documents in which ¢ appears.

4.  For each of the documents, {dy, .. ., dn} construct a bag of words (BoW) vector
where each term value in the vector is the TFiDF value of the term ¢ from the

vocabulary:

TFiDF(t) = TF;(t) - log

N
DF(t) (©)

Term frequency-inverse document frequency (TFiDF) is a standard and widely used
measure of importance of a term ¢ to a document in a collection of documents [20].

We use this adopted text mining approach to identify the terms that are the most
distinctive and therefore the most characteristic for the content tweeted by different
groups of users. More specifically, we use the detected retweet communities as the groups
of users. Next, we employ the above procedure to summarize and represent the most
characteristic topics in the content of each community. Such content identification and
representation is done by displaying only the selected number of the highest TFiDF
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ranked terms from a BoW vector constructed for a selected community. In this way, we are
able to get a readable and reliable overview of the specific interests and topics discussed
in the observed communities.

On the other hand, for the purpose of identifying the leaning of different communities
towards specific topics of interest, we have to retrieve the individual tweets forming a
certain topic. We employ a filtering procedure based on document similarity, to obtain
tweets that revolve around a specified topic (query). In this case, each tweet from the
dataset is treated as an individual document and is transformed into a BoW vector. Hence,
the filtering works as follows.

1. The vocabulary V of a specific domain is obtained from all unique tweets acquired
for the targeted domain. From V the base of the document vector space is
constructed by standard text preprocessing (stemming, stop-word removal,
n-grams) resulting in terms ¢y, . . ., £,.

2.  For each tweet tw;, i € {1,...,m}, from the dataset D, a BoW vector v; of term
frequencies TF;(t) for each term t in tw; is constructed and normalized.

3. A BoW model of the examined domain can be represented by a matrix M with
rows v; for each tw; € D.

4.  The dataset D is filtered according to a query that is transformed into a normalized
BoW vector q.

5. Similarity between query g and tweets tw; € D is calculated ass = M - g:

S1 mi1 - Mip q1
=1 N R @)

Sm Mm,1 * Mm,n qn
where s;, i € {1,...,m}, is the cosine similarity1 between the query vector g and v;

representing tweet tw;, and m;; is the (normalized) term frequency of term ¢; in
tweet tw;.

Given a query g and the calculated similarity vector s, the filter returns tweets tw; for the
indices i where s; is greater than a given threshold. Note that, since the number of terms
(n) and especially the number of tweets (m1) can be very large, in practice the computations
are performed with sparse representations of vectors and matrices.

Sentiment analysis
Our goal is to measure the collective attitude of a Twitter community towards a certain
topic. The first step is to measure the sentiment of each individual tweet posted by the
community. To perform Twitter sentiment analysis, we construct a sentiment classifier
from the training data. We employ the Support Vector Machine (SVM) algorithm [12],
and in particular its SVMP¢” [21-23] implementation. The SVM algorithm requires a
labeled collection of instances to build a model. We have collected three labeled Twitter
datasets which differ in terms of size, discussion topics, and labeling method. We have
trained three corresponding sentiment models and compare their performance on the
same testing set. The best sentiment classification model is then used in the rest of our
analyses.

The first dataset consists of 1.6 million positively and negatively labeled tweets collected
by the Stanford University [13]2. The labeling of the tweets is based on the presence of
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positive (e.g., “:)”) or negative (e.g., “:(”) emoticons, which were then removed from the
dataset for training. Although such approach does not provide the highest labeling quality,
it is a reasonable and inexpensive substitute for manual tweet labeling [24]. The tweets in
this dataset are general and not focused on any specific domain.

The second dataset consists of general English tweets too, but the tweet labels were
obtained by manual annotation. In this dataset, there are 25,721 positive, 23,250 negative,
and 37,951 neutral hand-labeled tweets.

The tweets in the third dataset are a uniformly sampled subset of our environmental
tweets, therefore highly domain-specific. This dataset consists of 2,850 positive, 5,569
negative, and 11,439 neutral hand-labeled tweets, from January to December, 2014. We
randomly choose 20 % of these tweets (preserving the labeling distribution of the whole
dataset) as a test set, used for evaluating the trained sentiment models. The rest of the
80 % tweets from the domain-specific dataset were used for training the domain-specific
sentiment model.

Sentiment models are built only from the positive and negative tweets. However, the
classification covers three categories: positive, negative, and neutral as well. A tweet is
classified as positive (negative) if its distance from the SVM hyperplane is higher than
the average distance of positive (negative, respectively) training examples from the hyper-
plane. Otherwise, i.e., if it is too close to the hyperplane, it is classified as neutral. Similar
approaches to adapting the binary SVM classifier to the three-class setting were already
applied in our previous studies [24, 25].

Twitter messages are adequately preprocessed, using both standard and Twitter-specific
techniques. Standard preprocessing [26] includes tokenization, stemming, unigram and
bigram construction, removing terms which do not appear at least twice in the cor-
pus, and construction of term frequency (TF) feature vectors.? Additionally, Twitter-
specific preprocessing [8, 13, 24] transforms usernames, hashtags, and collapses repetitive
letters.

We build three sentiment models (smiley-labeled general, hand-labeled general, and
hand-labeled domain-specific) using the corresponding preprocessed positive and neg-
ative tweets, and tested their performance on the separate test set described above. In
Table 1, we report the results in terms of macro-averaged error rate [27] and in terms
of macro-averaged F-score of positive and negative classes [28]. We are particularly
interested in the correct classification of the positive and negative tweets.

As can be seen from Table 1, the best performing sentiment model is the hand-labeled
domain-specific one as it achieved the lowest error rate and the highest macro-averaged
F-score on the test set. Note that this model is trained on only 6,735 tweets, while the
other two models employed substantially more tweets (1.6 million for the smiley-labeled
general model and 48,971 for the hand-labeled general model). Therefore, the results

Table 1 The evaluation results of smiley-labeled general, hand-labeled general, and hand-labeled
domain-specific sentiment models on the test dataset in terms of the macro-averaged error rate and
the macro-averaged F-score of positive and negative classes

Sentiment model M error rate (%) Favg
Smiley-labeled general 61.3 0.20
Hand-labeled general 593 0.25

Hand-labeled domain-specific 529 0.39
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indicate that the high-quality domain-specific tweets produce better sentiment mod-
els even if the number of such tweets is lower. For the rest of our study, we use the
hand-labeled domain-specific sentiment model trained using the complete hand-labeled
domain-specific dataset.

The sentiment of different communities regarding a specific topic is calculated as fol-
lows. First, for each community, the tweets posted by its users are selected. Second,
the sentiment of each tweet is determined and weighted by its retweet count. Third,
the weighted negative and positive sentiment of tweets is aggregated for each user and
summed over all users in the community. Finally, the leaning of a community towards a
specific topic is computed as the polarity of the aggregated weighted sentiment multi-
plied by the ratio of sentiment carrying tweets (subjectivity) of the respective community.
The polarity and subjectivity measures are adapted from [29]. The pseudo-code for
community sentiment computation is presented in Algorithm 1.

Algorithm 1 Computing community sentiment

Require: C : community,
Ts : sentiment annotated tweets,
Dp : avg. distance of positive training examples,
Dy : avg. distance of negative training examples

function COMMUNITYSENTIMENT (C, Ts):

pos =0
neg =0
all=0

for user in C.users do
userTweets = Ts.byUser(user)
for tw in userTweets do
if tw.sentiment > Dp then
pos += tw.retweetCount
else if tw.sentiment < Dy then
neg += tw.retweetCount
end if
all += tw.retweetCount
end for

end for
pos—neg
pos+neg

subjectivity = pos:%g

polarity =

return polarity x subjectivity
end function

Results and discussion

We present the results of the proposed methodology for identifying interest groups and
their leaning towards different environmental topics, in terms of network and community
structure, content categorization and identification, and sentiment analysis.
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Network and community structure

We analyze a retweet network of 3.7 million users linked by 9.7 million retweet rela-
tions. In Fig. 1 we present the distribution of out-degree and influence I (as defined by
Equation 1) for the nodes of the network. Community detection results in over 125,000
communities. Their size distribution is presented in Fig. 2. Notice that both plots are in
log—log scale and therefore even only by eye inspection we can say that the distribution
displays a fat tail in the sense that it deviates strongly to the right from a Gaussian dis-
tribution. This means that, in line with the empirical literature on social networks, nodes
with very high degree and communities with a very large size occur with frequency much
larger than in a Gaussian scenario.

We focus our analysis on communities of considerable size, which also produced a suffi-
cient amount of tweets for meaningful content identification and sentiment analysis. This
results in 12 communities, each with more than 50,000 users, and with at least 10,000
unique tweets.

The analysis in terms of community influence and its distribution among their users
reveals significant structural differences among the largest communities. Results are pre-
sented in Table 2. The ratio between the inter- and intra-community influence, Z,,:(C)
and /;;,(C), shows that the majority of communities are greatly introverted, as their influ-
ence outside their “borders” presents less than a quarter of the impact they have. However,
there are two communities (k = 1 and 4) that have almost a third of their influence out-
side the community, and one where its external influence is almost as high as its internal
influence (k = 5).

The distribution of influence within communities, as measured by the Herfindahl-
Hirshmann index (HHI), also shows interesting differences among communities. The
lowest values of HHI are around 0.03, for communities k = 6,9,10, and 11. Hence,
these are the communities that have the lowest inequality in terms of [;;, among their
50 most influential users. Whereas communities kK = 8 and 12 have the highest
inequality between their 50 most influential users. It is interesting to notice that com-
munity k = 6 with the lowest inequality is also the second most introverted. Other
than that, we find no obvious relation between HHI and the relative inter-community

influence.
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Fig. 1 Out-degree (orange) and influence (green) distribution in the retweet network
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Fig. 2 Distribution of community sizes using logarithmic binning, as defined in [30]

In Fig. 3, we present the relation between the user influence, out-degree, and the
number of unique tweets, for the top three most influential users of selected nine com-
munities. The selection is explained in the subsequent section. The figure shows the
magnitude of the top users in different communities and is consistent with the inequal-
ity measures by HHI. On the other hand, there is no obvious relation between the tweet
volume and the influence of the users. It seems that higher out-degree is accompanied by

higher influence, which can be seen also from Fig. 1.

Community content
A preliminary community categorization was performed by looking at the Twitter profiles
of their most influential users and the contents of their tweets. We find that the com-
munities could roughly be classified into six categories. Table 3 presents the community
categories and examples of the most influential users in these categories.

The community categorization reveals that for our further investigations we can ignore
certain categories of communities. First, in the “Humor” community, the presence of an

actual leaning or sentiment towards a certain topic is for one questionable (every topic

Table 2 Structural properties of the 12 largest communities

k Name Users Uniae n(Co) oG ol HHI(CY)
tweets i
1 Env 1 366979 625280 1546998 787,139 0509 0037
2 Env 2 34518 561659 2189373 796861 0364 0034
3 News 1 275172 325867 1060347 385355 0332 0035
4 Humor 272780 12971 330897 150148 0454 0065
5 News 2 254159 44587 363539 307039 0845 0036
6 Skeptic 160257 236618 983672 132500 0135 0029
7 India 9,158 32981 311,754 37,849 0121 0045
8 Celebrity 92434 13480 174,105 36414 0209 0158
9 News 3 91,446 95415 274,704 91323 0332 0032
10 Env3 83,259 180210 707,292 187576 0265 0030
1 Other 65,363 13,697 115,709 41309 0357 0031
12 Enw4 53847 29863 105,608 19,796 0187 0104

Community influence /(C) is split into /i (C) and loy: (C), intra- and inter-community influence, respectively. HHI(C) is the
Herfindahl-Hirshmann index of the intra-community influence
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Fig. 3 Influence (bubble size), out-degree (number of retweeting users), and the number of unique tweets
for the top three most influential users of the nine selected communities

can be made fun of using positive or negative words), and for two, it is hard to automat-
ically identify the correct polarity due to frequent use of irony and sarcasm. Second, we
also ignore a smaller community in the category “Other” that we are unable to strictly
categorize.

One community from the “Environmental” category is also not included, because it
contains numerous content duplicates as a result of marketing and spamming. The final
selection includes three communities from the “Environmental” category (labeled as
“Env 17, “Env 2”7, and “Env 3”), three from “News” (“News 1”7, “News 2”, and “News 3”), the
“Indian” community (“India”), one “Celebrities” community (“Celebrity”), and the “Skep-

tics” community (“Skeptic”). The network of these nine communities is outlined in Fig. 4.

Table 3 Community categories and their most influential users

Category Count  Includes Influential users
Environmental 4 Activists, organizations, ClimateReality, ClimateGroup,
green/eco news, and technology climateprogress, thinkprogress,

Jackthelad1947, GreenrEnergy

News 3 News agencies, media guardianeco, guardian,
nytimes, NatGeo, TheEconomist,
BBCWorld, CBCNews

Humor 1 Joke websites, commentators, emmikaff, StephenAtHome,
comedians TheTweetOfGod, neiltyson,
michaelarria, pourmecoffee
Skeptics 1 Republicans, lobbyists JunkScience, tan123, SteveSGoddard,
hockeyschtick1, realDonaldTrump
Indian 1 Politics, news and business narendramodi, richardbranson,
from India timesofindia, MIB_India, EconomicTimes
Celebrities 1 Actors, musicians, athletes iansomerhalder, LeoDiCaprio,

YEARSOfLIVING, JaredLeto
Other 1 Miscellaneous -

Page 11 of 21
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Env 2

Sceptic

Celebrity

News 1
India

Fig. 4 Subgraph of the retweet network induced on the nine selected communities. Only users with
influence larger than 100 retweets are displayed. The size of the nodes is proportional to the user influence
and individual communities are distinguished by color

Each community is represented with its own color and the size of the nodes is pro-
portional to the user’s influence. The presented network layout shows a relatively clear
segregation between the communities.

We analyze the content tweeted by a community in terms of (i) hashtags and (ii) plain
text. Hashtags can represent entities in the tweet and/or user-inserted labels of a tweet,
indicating the topic or broader context of the tweet. Content analysis in terms of hashtags,
using the approach presented in section “Content identification and filtering”, is therefore
expected to show the characteristic entities and topics of interest in a selected community.
On the other hand, plain text analysis is more appropriate for identification of actions,
attitude, and phrases that are most distinctive for a particular community. The results of
content analysis are presented in Table 4.

The most characteristic content of each community, as shown by the results in Table 4,
reasonably distinguishes the communities of different categories. The hashtag content
analysis supports the membership of the communities with the most influential users
“ClimateReality” and “climateprogress” in the “Environmental” category, therefore from
now on labeled by “Env 1” and “Env 27, respectively. Next two largest communities include
topics present in the news in the United Kingdom and the United States of America,
hence called “News 1”7 and “News 2”, respectively. It reveals that the users retweeting
“JunkScience” belong to the “Skeptic” community. Local topics from “India” are apparent
from the hashtags of the next community. Similarly, the hashtags of the Ian Somerhalder
Foundation (#isf) and their opinions point to the “Celebrity” community. Hashtag anal-
ysis of the last two communities shows interest in Canadian political and environmental
issues, hence “News 3”7, and in environmental problems and political topics in Australia,
therefore “Env 3”.



Table 4 Characteristic content of the nine influential communities, selected on the basis of the largest number of unique tweets (in parenthesis are the most influential users)

Community Users Tweets Content

Env 1 366,979 625,280 #gridpowerstorage (0.49) #caribbeantech (0.20) #solars (0.19) #ag4dev (0.14) #jamaica (0.12) #idb (0.11) #energyefficiency (0.11)

(ClimateReality) retw (0.18) global wind jobs: (0.14) global solar jobs: (0.11) green jobs: (0.09) lexinerus: retw (0.09) daily stories via (0.08) filed under: solar (0.07)

Env2 324518 561,659 #uniteblue (0.37) #p2 (0.28) #copolitics (0.26) #wiunion (0.16) #ofaction (0.14) #stoprush (0.14) #ctl (0.13) #libcrib (0.12) #coleg (0.11)

(climateprogess) without remorse please (0.12) dying plastic next. (0.11) next. watch share (0.11) companies poison water (0.09) stop now watch (0.09)

News 1 275,172 325,867 #olsx (0.34) #rhi (0.30) #bizitalk (0.26) #bartonmoss (0.24) #stopbrep (0.22) #udobiz (0.20) #besw14 (0.18) #gbhour (0.16) #ukair (0.15)

(guardianeco) 3 low (0.30) low 3 (0.21) average 2 low (0.16) pollution forecast tomorrow (0.14) moderate average (0.08) 40 % power 20 % (0.06)

News 2 254,159 44587 #la_chefs (0.44) #bos (0.43) #scistuchat (0.24) #lax (0.22) #ntrs (0.20) #washington (0.17) #sfo (0.15) #stockaction (0.15) #koreans (0.15)

(nytimes) power personal branding (0.14) branding b2b lead (0.14) green chemistry pls (0.14) strange preferential treatment (0.11) japan privilege foreigners (0.11)
Skeptic 160,257 236618 #pjnet (0.84) #ccot (0.26) #tcot (0.19) #climatescam (0.15) #teaparty (0.15) #sgp (0.11) #tlot (0.11) #Inyhbt (0.10) #copolitics (0.09)

(JunkScience) man-made global-warming (0.14) conducts dangerous human (0.13) la dr. mengele (0.12) human experiments:a la (0.12) ibd obama’s conducts (0.12)
India 9,158 32981 #invisiblekiller (0.37) #namo (0.26) #telangana (0.26) #mufflerman (0.23) #insubcontinent (0.20) #aap (0.18) #upa (0.15)

(narendramodi) web-app share ur (0.16) resources hands aam (0.16) plz join reduce (0.14) air pollution. web-app (0.14) shri (0.12) ganga (0.10) kejriwal (0.09)

Celebrity 92434 13,480 #tcoalsucks (0.66) #isf (0.61) #beyondcoal (0.34) #nofrackla (0.19) #isfcommcrew (0.11) #yearsproject (0.08) #yearssolutions (0.03)

(iansomerhalder) warm idea solar (0.23) help recycle (0.20) solar powered energy (0.13) coal get heated (0.12) fan wind power (0.10) coalsucks (0.10)

News 3 91 446 95415 #cdnpoli (0.81) #nbpoli (0.23) #bcpoli (0.23) #hamont (0.13) #onpoli (0.12) #nspoli (0.12) #yeg (0.11) #ygl (0.09) #nofrackns (0.08)

(CBCNews) big top thought (0.16) maritime electric (0.16) alberta (0.13) share resources stories (0.08) energy efficiency job: (0.08) ceea (0.07) hydro one (0.07)
Env3 83250 180210 #nswpol (0.48) #csg (0.47) #auspol (0.47) #springst (0.22) #qldpol (0.20) #ret (0.16) #ganda (0.15) #insiders (0.14) #vicvotes (0.12)

(Jackthelad1947)

business news (0.37) local banks (0.37) energy via full (0.19) can finance renewable (0.14) Inp (0.13) ret (0.05) agl (0.05) full story business (0.04)

Community contents is characterized in terms of hashtags and plain text (with the respective TFiDF values in parenthesis)
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On the other hand, the results of the plain text analysis mostly show more specific topics
that are shared in the observed communities. The top terms or phrases (r#-grams) in the
“Env 17, “Env 27, “News 17, “News 2” and “Celebrity” communities, reflect their interest
in the promotion of alternative, renewable, and environmentally friendly energy sources,
in contrast to the controversial energy supply solution provided by fracking, as well as
raise awareness of global pollution. The two most distinctive topics that surface from
the content of the “Skeptic” community are “man-made global-warming” and “conducts
dangerous human experiments”. The former is related to the community’s skepticism
regarding human-caused global warming, and the latter is about an article published by
the “Investor’s Business Daily” newspaper [31] that criticizes an allegedly harmful exper-
iment by the Environmental Protection Agency (EPA). The plain text content results for
the communities “India”, “News 3”, and “Env 3” show less specific topics, with the main
focus on the local political situation, or environmental and energy policies.

Community sentiment

Finally, we investigate the sentiment leaning of the most content-rich communities.
In our dataset of over 30 million environmental tweets, there are almost 3.2 million
unique tweets. We label them by the SVM sentiment model, described in the “Sentiment
analysis” section, as positive (1), neutral (0), or negative (—1). Only 31 % of the unique
tweets are labeled as subjective, i.e., non-neutral. Furthermore, among the sentiment-
carrying tweets, there are 52 % of tweets with positive sentiment and 48 % with negative
sentiment.

We analyze the sentiment leanings towards selected topics related to the environmen-
tal issues. The selection is based on three major groups of topics that are of interest
to environmental policy makers: energy sources and energy generation, environmental
side effects, and actions or initiatives for solving the environmental issues. We separate
the first group into four topics: renewable or green energy sources, nuclear energy, fos-
sil fuels, and fracking, as a separate controversial topic. The second group is represented
by the broader topic of global warming and climate change, more general pollution and
contamination, and its more specific variant about emissions of greenhouse gases (CO;
and methane). The last group is separated into recycling and waste management, and
environmental policies and initiatives.

The nine communities selected for investigation produce over two thirds of the
unique tweets in our dataset. We use the approach presented in the “Content identifi-
cation and filtering” section to filter these 2.1 million tweets by the nine topics defined
above. Table 5 presents the queries used in the filtering process to describe a partic-
ular topic. The number of tweets filtered by topic for each community is shown in
Fig. 5.

The sentiment of a community towards a selected topic is computed from the tweets
on that topic, tweeted by that particular community, as proposed in the “Sentiment
analysis” section, Algorithm 1. The results of the community sentiment analysis on differ-
ent environmental topics are presented in Fig. 6. Community leaning towards a specific
topic is computed as the difference between the community sentiment on this topic and
the community’s average sentiment in our dataset. In Figs. 5 and 6, the topics of inter-
est are in descending order from left to right by their average sentiment over all the

communities.
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Table 5 Selected environmental topics and the associated queries for tweet filtering

Topic Query

Green energy green renewable sustainable sustainability solar wind photovoltaic biomass biofuel biofuels
#tgreen ficleanenergy #renewable #renewableenergy #sustainable #sustainability #solar
#wind #solarpower #windpower #photovoltaic #biomass #biofuel #biofuels

Recycling recycling reuse re-use “waste management” waste-management “carbon capture”
carbon-capture “carbon storage” “co2 capture” “co2 storage” sequestration decarbonization
decarbonisation #reuse #recycling #wastemanagement #CCS #carboncapture

"

Emissions emission emissions carbon co2 “carbon dioxide” carbon-dioxide greenhouse greenhouse-gas
ghg ch4 methane #emission #emissions #carbon #co2 #carbondioxide #greenhouse
#tgreenhousegas #greenhousegases #ghg #ch4 #methane

Nuclear nuclear #nuclear #nuclearenergy #nuclearpower #nuclearmatters
Policies ipcc cop19 cop20 cop21 kyoto 2030 #ipcc #cop19 #cop20 #cop21 #kyoto #2030 #2030now
Fossil fuels oil gas coal fossil #oil #gas #fossilfuel #coal #oilgas natgas #natgas

Climate change  “climate change” climate-change climate warming “global warming” global-warming
#iclimatechange f#climate-change #climate_change #globalwarming #global-warming
#tglobal_warming

Pollution pollution contamination pollute contaminate spill #pollution #polluted #contamination
#contaminated #spill #spills #oilspill #oilspills

Fracking fracking frack shale shalegas aquifer #fracking #frack #shale #shalegas #aquifer #aquifers

The first interesting finding is that the sentiment analysis is in accordance to the
commonly accepted attitude towards different environmental topics. All communities
show positive leaning towards “green energy” and “recycling”, and negative towards

9«

“fossil fuels”, “climate change”, “pollution”, and “fracking”, except for two outlier commu-
nities that we examine separately. Regarding “emissions”, “nuclear energy”, and “policies”,
the sentiment leanings are less unanimous, which is to some extent also expected.
These results indicate that the domain-specific sentiment model produces reasonable
results.

Observing individual communities, we find that most of them follow the same trend;
however, there are two notable exceptions: the “Skeptic” and the “Celebrity” communities.
The “Skeptic” community is very segregated from the rest (see Fig. 4), and its sentiment
leanings show greatest deviations from the leaning of other communities (see Fig. 6). It
is the only community having a positive sentiment leaning about the topics “fossil fuels”
and “fracking”, which is considerably different from all other communities. These results

Envl M Env2 M News 1 M News 2 B Sceptic M India M Celebrity ™ News 3 B Env 3
600,000

500,000

400,000

300,000

200,000

Number of tweets

100,000

Topic

Fig. 5 The number of unique tweets for each selected topic published by each of the major communities
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Fig. 6 Sentiment leaning of the nine communities towards different environmental topics

clearly indicate that the preferences of this community are diverging from the interests of
the other communities.

The “Celebrity” community is dominated by “lansomerhalder”, one of the most influ-
ential users overall (see Fig. 3). Despite the high influence, the community produces very
low number of original tweets (less than 1% of all the unique tweets, see Table 4). Its
influence emerges from the large number of retweets, due to the large number of follow-
ers of “iansomerhalder”. This hints at the possibility to engage high-profile celebrities,
with the commitment to environmental issues, in promotion and spreading of influential
contents.

This is exactly what can be observed for the topics “emissions” and “pollution”. The
extremely positive sentiment leaning towards these topics is predominantly (60 and 78 %,
respectively) due to only three tweets by the two most influential users of the “Celebrity”
community: “lansomerhalder” and “LeoDiCaprio”. They are expressing their happiness
and thankfulness regarding the “action to limit carbon pollution” and “cutting carbon
pollution”, which will “clean up our air and tackle climate disruption”, as they put it.
Hence, the distinctively positive leaning for the topics “emissions” and “pollution”. On the
other hand, the “Celebrity” community seems to be least in favor of “fracking”.

Conclusions
The paper contributes to the research on complex networks in social media by combin-
ing a structural and content-based analysis of Twitter data. From structural properties of
the retweet network, we identify influential users and communities. From the contents of
their tweets, we characterize discussion topics and their sentiment. Sentiment of differ-
ent communities shows perceivable differences in their leanings towards different topics.
We have identified two communities that considerably diverge from the rest, “Skeptic”
with the most different sentiment leanings on several topics, and “Celebrity” with a low
number of original tweets, but highly influential, with the potential to spread interesting
information.

Our previous research in sentiment analysis of Twitter data in politics and stock
market suggests that different vocabularies are used in different domains and that
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high-quality expert labeling of domain-specific tweets yields better sentiment mod-
els. The comparison of the three sentiment models (smiley-based general, hand-
labeled general, and hand-labeled domain specific) presented in this paper confirms
our intuition: hand-labeled domain-specific model yields lower error rate and higher
combination of precision and recall (F-score) than the other two models. However,
more extensive evaluations are required to determine the amount of hand-labeled
tweets needed to approach the “maximum” performance, e.g., the inter-annotator
agreement.

Another line of future research is the construction of more sophisticated SVM classi-
fiers. In the case of smiley-based training data, only positive and negative tweets were
available, and a binary SVM classifier was extended with a neutral zone to allow for the
three-class classification. However, in the case of hand-labeled tweets, there are three
sets of training data available: positive, neutral, and negative tweets, so we are dealing
with a multiclass problem. Further, we can assume that the classes are ordered (neutral is
between the positive and negative), and therefore, we are faced with the problem of ordi-
nal regression [32], instead of binary classification. In the future, we plan to exploit various
extensions of an SVM to deal with the multiclass [33] and ordinal regression problems.

In this paper, we present a general methodology of combining a structural and content-
based analysis of Twitter networks, and then apply it to 1 year of Twitter data about
environmental topics. There are several plans for future work. On the one hand, we
plan to study the temporal aspects of community formation and sentiment spreading.
In addition to the retweet networks, we will also construct mention networks (which
model mutual engagement of users in conversations). We will investigate various spread-
ing models and study the differences in sentiment spreading at such multilayer (retweet
and mention) networks.

We are also collecting Twitter data in several other interesting domains: stock market,
EU commission and parliament members, and lobbying organizations. The application of
the presented structural and content-based analysis to these new domains will result in
complex “Twitter’ networks. On the other hand, networks between the same entities can
also be constructed by other means, such as correlations between stock returns, national
and party membership of politicians, vote similarity, and ownership between the compa-
nies. The research challenge for the future is the comparison between the Twitter induced
and other types of networks, and the mutual interplay and property spreading between
these multilayer networks.

Endnotes

!Cosine similarity is a measure of similarity between vectors a and b. It is calculated as
the normalized dot product between vectors a and b: sim(a, b) = cos(Z(a, b)) = ﬁ]ﬁ"

2The dataset was obtained from “For Academics” section, at http://help.sentiment140.
com/for-students.

3The approach to feature vector construction was implemented using the LATINO
(Link Analysis and Text Mining Toolbox) software library, available at http://source.ijs.
si/mgrcar/latino.

Appendix
Our dataset of over 30 million tweets on environmental topics was acquired using the
Twitter Search API [34]. Table 6 shows the list of search queries used.


http://help.sentiment140.com/for-students
http://help.sentiment140.com/for-students
http://source.ijs.si/mgrcar/latino
http://source.ijs.si/mgrcar/latino

Table 6 Queries for the “Environmental dataset” acquisition from the Twitter Search API

("2030 framework") OR ("2c objective")
("abatement cost")
("adaptation fund")

("affordable energy")

("algal energy")

("alternative energy" OR "alternative fuel")
("arctic meltdown")

("building stocks")

("car sharing" OR "car share" OR carsharing OR carshare)
("carbon bubble")

("carbon cap" (emission OR trade OR climate))

("carbon credits")

("carbon dioxide" (emission OR emissions))

("carbon footprint")

("carbon leakage")

("carbon lock in")

("carbon price")

("carbon tax" OR "carbon taxes" OR "carbon taxation")
("clean energy")

("clean growth")

("clean tech")

("climate action" OR "action on climate" OR climateaction)
("climate adaptation")

("climate change")

("climate deal")

("climate denier" OR "climate deniers")

("climate finance")

("climate goal" OR "climate goals")

("climate mitigation")

("climate policy")

("climate report" OR "report on climate")

("climate sensitivity")

("climate system")

("co2 neutral")

("coal industry" OR "oil industry" OR "nuclear industry"
OR "gas industry")

("cohesion policy")

("district heating")

("e bike" OR ebike)

("e mobility" OR emobility)

("eco design")

("eco entrepreneurship”)

("eco technologies")

("energy transition")
("energy utilities")
("environment friendly" OR "environmentally friendly")

("environmental footprint")

("environmental protection” OR "environment protection")
("environmental regulation”)

("environmental savings")

("ets reform")

("expenditure of energy” OR "energy expenditure")
("feed in tariff" OR "feed in tariffs")

("fossil fuel" OR "fossil fuels")

("fuel cost" OR "fuel costs")

("fuel efficient" (car OR cars OR vehicle OR vehicles))

("geo engineering" or "geoengineering")
("geothermal energy” OR "thermal energy")
("global warming" OR globalwarming)
("green cars")

("green chemistry")

("green economy")

("green energy")

("green growth")

("green job" OR "green jobs" OR "greener jobs")
("green transportation” OR "green transport")
("grid control" OR (control "power grid"))
("heat insulation")

("hydro power" OR hydropower)
("hydroelectric energy")

("icecap meltdown")

("industry exemptions")

("intelligent networks")

("joint implementation")

("kyoto protocol")

("life cycle approach")

("light duty" vehicles)

("low carbon")

("low carbon" (tech OR technology OR technologies))
("low carbon" economy)

("merit order")

("micro cogeneration")

("natural resources")

("non ets")

("oil spill")

((#ccs (climate OR eu))

(carbon capture storage))

(((cer OR cers) (kyoto OR co2 OR emission OR
emissions)) OR "certified emission reduction")
((cdm (climate OR co2 OR carbon))

("carbon development mechanism"))

((emission reduction (unit OR units))

((Kyoto OR CO2 OR warming) (ERU OR ERUs)))
((eu OR european OR unified) "power market" OR
"electricity market")

((ipcc (eu OR climate OR energy))
(intergovernmental panel "climate change"))

((ipcc OR climate) assessment (impact OR report))
((quota OR quotas) (renewable OR renewables))
((reduce OR reducing) ("greenhouse gas" OR GHG)
(emission OR emissions))

((smart OR smarter) energy infrastructure)
((vehicle ("zero emissions" OR "zero emission"))
(zev (car OR vehicle)))

((vsc (carbon OR climate))

(verified carbon (standard OR standards)))

(95g fleet)

(actonclimate)

(alternative energy sources)

(anthropogenic "climate change")

(biofuel OR biofuels)

(biomass)

(carbon (credit OR credits) (trading OR auctioning))
(carbon energy intensity)

(chemtrail OR chemtrails)

(cleantech (investment OR investments))

(climate energy (target OR targets))

(climate resilient economy)

(climate2015)

(climatechange)

(co2)

(cop19 OR "cop 19" OR (cop warsaw))

(cop20 OR "cop 20" OR (cop peru))

(cop21 OR "cop 21" OR (cop paris))
(cross border infrastructure)
(decarbonisation)

(deforestation)

(demand side management)
(desertec)

(desertification)
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("effort sharing")
("electric motors" OR "electric motor")
("electricity costs" or "electricity costs")

("electricity mix")

("electricity storage" OR "energy storage")
("emission reduction" OR "emission reductions")
("emission trading" OR "emission trade")
("energy affordability")

("energy company" OR "energy companies")
("energy consumption")

("energy cost" OR "cost of energy")

("energy crisis" OR "crisis of energy")

("energy demand" OR "demand for energy")

("energy efficiency")

("energy efficient" (building OR buildings OR car OR

cars OR home OR homes OR vehicle OR vehicles))
("energy efficient” (tech OR technology OR technologies))
("energy firm" OR "energy firms")

("energy future" OR "future of energy")

("energy generation" OR "electricity generation")

("energy independent” OR "energy independence")
("energy intensity")

("energy intensive" (industry OR sector OR business))
("energy market")

("energy mix")

("energy performance")

("energy policy")

("energy price" OR "energy prices")

("energy production")

("energy productivity")

("energy savings" OR "energy saving" OR
"conserving energy"” OR "energy conservation")
("energy sector")

("energy security")

("nuclear power" OR "solar power" OR "geothermal power" OR "thermal power" OR "electrical power" OR "electric power")

("permanent set aside")

("polar meltdown")

("power blackout"” OR "energy blackout" OR
"electricity blackout")

("power plant” OR "coal plant” OR "gas plant”)
("renewable energy" OR renewables)

("resource efficiency")

("sea level rise")

("shale gas" OR "unconventional gas"

OR "unconventional hydrocarbons")

("smart grid" (energy OR electricity OR supply OR power))
("smarter city” OR "smart city” OR "smarter cities" OR
"smart cities")

("solar panel" OR "solar panels")

("solar power" OR "solar energy")

("stranded assets" OR strandedassets)

("sustainable finance" OR "sustainable investment")
("sustainable manufacturing")

("tar sand" OR "oil sand")

("temp rise")

("transport sector")

("unburnable carbon" OR "unburnable coal")

("warming mitigation")
("waste management")

("wind farm")

("wind power" OR "wind energy")

("wind turbine" OR "wind turbines")
("zero emissions" OR "zero emission")
(("combined heat power")

(chp (climate OR energy OR electricity)))
(("emissions trading system") OR "eu ets")
(("energy efficiency directive")

(energy eed))

(("greenhouse gas" OR ghg) (emission OR emissions))
(("zero emissions" OR "zero emission" OR "low energy")
house)

((industry OR sector OR bussines) specific (targets OR target) (energy OR climate OR EU OR emission OR emissions))
((offshore OR onshore) (climate OR CO2 OR environment OR carbon OR warming OR energy OR oil OR gas OR fracking OR wind))
(power (coal OR gas OR oil OR biomass OR diesel OR biogas OR photovoltaic OR thermoelectric
OR hydrogen OR fuel OR climate OR emission OR emissions OR CO2 OR carbon OR electricity

OR fusion OR fission OR generation OR turbine))

(eco best invest)
(emission allocation)
(emission cap)

(energy (price OR prices) (peak OR peaks))

(energy climate policy framework)

(energy efficiency (improvement OR improvements))
(energy efficiency policy)

(energy import dependency)

(energy supply security)
(energyaware OR "energy aware")

(environmentalist OR environmentalists)
(eu energy legislation)

(forestfinance)

(fossilfuel OR fossilfuels)

(fracking OR fracked)

(fukushima)

(global carbon (trading OR market))

(green climate (fund OR funds))

(greentech OR "green tech” OR "green technology”
OR "green technologies")

(greenvc)

(model shift (climate OR CO2 OR environment OR
carbon OR warming OR energy))

(pollution)

(primary energy consumption)

(recycling)

(renewableenergy)

(second generation (biofuel OR biofuels))
(single energy market)

(stopfracking)

(sustainability)

(sustainable2050)

(wholesale (energy OR electricity) (cost OR prices OR price))
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