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Abstract—Performance estimation denotes a task of estimating
the loss that a predictive model will incur on unseen data. These
procedures are part of the pipeline in every machine learning
task and are used for assessing the overall generalisation ability of
models. In this paper we address the application of these methods
to time series forecasting tasks. For independent and identically
distributed data the most common approach is cross-validation.
However, the dependency among observations in time series
raises some caveats about the most appropriate way to estimate
performance in these datasets and currently there is no settled
way to do so. We compare different variants of cross-validation
and different variants of out-of-sample approaches using two case
studies: One with 53 real-world time series and another with
three synthetic time series. Results show noticeable differences
in the performance estimation methods in the two scenarios. In
particular, empirical experiments suggest that cross-validation
approaches can be applied to stationary synthetic time series.
However, in real-world scenarios the most accurate estimates
are produced by the out-of-sample methods, which preserve the
temporal order of observations.

Keywords-performance estimation; model selection; cross val-
idation; time series.

I. INTRODUCTION

Machine learning plays an increasingly important role in

science and technology. Performance estimation is part of

any machine learning task pipeline. This task is related to

a procedure of using the available data to estimate the loss

that a model will incur on unseen data. Machine learning

practitioners typically use these methods for model selection,

meta-parameter tuning and assessing the overall generalisation

ability of the models. In effect, obtaining reliable estimates

of the performance of models is a critical issue in predictive

analytics tasks.

Choosing a performance estimation method often depends

on the data one is trying to model. For example, when one

can assume independence and an identical distribution (i.i.d)

among observations, cross-validation is typically the most

appropriate method. This is mainly due to its efficient use

of data [1].

However, there are problems in which the observations in

the data are dependent, such as time series. This raises some

caveats about using standard cross-validation in such datasets.

Notwithstanding, there are particular time series settings in

which variants of cross-validation can be used, such as in

stationary or small-sized datasets where the efficient use of

all the data by cross-validation is beneficial [2].

In this paper we present a comparative study of different

performance estimation methods for time series forecasting

task. Several strategies have been proposed in the literature

and currently there is no consensual approach. We applied

different methods in two case studies. One is comprised of 53

real-world time series with potential non-stationarities and the

other is a stationary synthetic environment [2]–[4].

In this study we compare two types of methods:

• Out-of-sample (OOS): These methods have been tra-

ditionally used to estimate predictive performance in

time-dependent data. Essentially, out-of-sample methods

hold out the last part of the time series for testing.

Although these approaches do not make a complete use

of the available data, they preserve the temporal order of

observations. This property may be important to control

the dependency among observations and account for the

temporal evolution of the time series.

• Cross-validation (CV): These approaches make a more

efficient use of the available data, which is beneficial

in some settings [2]. They assume that observations are

i.i.d., though some strategies have been proposed to

circumvent this requirement. These methods have been

shown to be able to provide more robust estimations

than out-of-sample approaches in some time series sce-

narios [2]–[4].

The objective of this study is to address the following

research question: How do out-of-sample methods compare

to cross-validation approaches in terms of performance esti-

mation ability?

The literature on performance estimation for time series

forecasting tasks is reviewed in section II. The general method-

ology for performance estimation is described in section III.

Afterwards, the case studies are presented in section IV and

the respective experiments in the following section V. A brief

discussion is carried out is section VI. Finally, section VII

concludes the paper.

II. LITERATURE REVIEW

In this section we provide a background to this paper. We

review the typical estimation methods used in time series
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forecasting and explain the motivation and originality of our

work.

In general, performance estimation methods for time series

forecasting tasks are designed to cope with the dependence

between observations. This is typically accomplished by hav-

ing a model tested on observations future to the ones used

for training. These include the out-of-sample (OOS) testing as

well as variants of the cross-validation (CV) method.

A. Out-of-sample approaches

In OOS performance estimation procedures, a time series is

split into two parts: an initial fit period in which a model is

trained, and a testing period held out for estimating the loss of

that model. Within this approach one can adopt different strate-

gies regarding training/testing split point, growing or sliding

window settings, and eventual update of the models. In order

to produce a robust estimate of predictive performance Tash-

man [5] recommends employing these strategies in multiple

test periods. One might create different sub-samples according

to, for example, business cycles [6]. For a more general setting

one can also adopt a randomized approach [7]. This is similar

to random sub-sampling (or repeated Holdout) in the sense that

they consist of repeating a learning plus testing cycle several

times using different, but possibly overlapping data samples.

OOS approaches are similar to prequential or interleaved-

test-then-train evaluation. Prequential is typically used in data

streams mining. The idea is that each observation is first

used to test the model, and then to train the model. This

can be applied in blocks of sequential instances [8]. In the

initial iteration, only the first two blocks are used, the first

for training and the second for test. In the next iteration, the

second block is merged with the first and the third block is

used for test. This procedure continues until all blocks are

tested. This approach is also related to holdout evaluation for

data streams in scenarios with concept drift [9, Chapter 2.2.1].

B. Cross-validation approaches

Some variants of K-fold cross-validation have been pro-

posed specially designed for dependent data, such as time

series [1].

The idea behind K-fold cross-validation is to randomly

shuffle the data and split it in K equally-sized folds or blocks.

Each fold is a subset of the data comprising n/K randomly

assigned observations, where n is the number of observations.

After splitting the data into K folds, each fold is iteratively

picked for testing. A model is trained on K-1 folds and its

loss is estimated on the left out fold.

Theoretical problems arise by applying this technique di-

rectly to time series data. The dependency between obser-

vations is not taken into account since cross-validation as-

sumes that the values of the time series are i.i.d.. This might

lead to overly optimistic estimations and consequently, poor

generalisation ability of models on new observations. For

example, prior work has shown that cross-validation yields

poor estimations for the task of choosing the bandwidth of

a kernel estimator in correlated data [10]. To overcome this

issue and approximate independence between the training and

test sets, several methods have been proposed as variants of

this procedure.

The Blocked Cross-Validation [11] procedure proposed is

similar to the standard form described above. The difference

is that there is no initial random shuffling of observations. This

renders K blocks of contiguous observations.

The hv-Blocked Cross-Validation proposed by Racine [12]

extends blocked cross-validation to further increase the inde-

pendence among observations. Specifically, besides blocking

the observations in each fold, it also removes adjacent ob-

servation between the training and test sets. Effectively, this

creates a gap between both sets.

The Modified CV procedure [13] works by removing obser-

vations from the training set that are correlated with the test

set. The data is initially randomly shuffled and split into K
equally-sized folds similarly to K-fold cross-validation. After-

wards, observations from the training set within a certain range

of the observations of the test set are removed. This ensures

independence between the training and test sets. However,

when a significant amount of observations are removed from

training, this may lead to model under-fit. This approach is

also described as non-dependent cross-validation [3].

Recently there has been some work on the usefulness of

cross-validation procedures for time series forecasting tasks.

Bergmeir and Benı́tez [3] present a comparative study

of estimation procedures using stationary time series. Their

empirical results show evidence that in such conditions cross-

validation procedures yield more accurate estimates than an

OOS approach. Despite the theoretical issue of applying stan-

dard cross-validation, they found no practical problem in their

experiments. Notwithstanding, the Blocked cross-validation is

suggested for performance estimation using stationary time

series.

Bergmeir et al. [4] extended their previous work for direc-

tional time series forecasting tasks. These tasks are related to

predicting the direction (upward or downward) of the observ-

able. The results from their experiments suggest that the hv-

Blocked CV procedure provides more accurate estimates than

the standard out-of-sample approach. These were obtained by

applying the methods on stationary time series.

Finally, Bergmeir et al. [2] present a simulation study com-

paring standard cross-validation to out-of-sample evaluation.

They used three data generating processes and performed

1000 Monte Carlo trials in each of them. For each trial

and generating process, a stationary time series with 200

values is created. The results from the simulation suggest that,

provided that the model is correctly specified, cross-validation

systematically yields more accurate estimates.

Despite the results provided by these previous works we

argue that they are optimistic in two ways. First, the results

are biased towards cross-validation approaches. While these

produce several error estimates (one for each fold), the OOS

approach is evaluated in a one-shot estimation, where the last

part of the time series is withheld for testing. OOS methods

can be applied in several windows for more robust estimates,
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as recommended by Tashman [5]. By using a single origin,

one is prone to particular issues related to that origin.

Second, the results are based on stationary time series, most

of them artificial. Time series stationarity is equivalent to

identical distribution in the terminology of more traditional

predictive tasks. Hence, the synthetic data generation processes

and especially the stationary assumption limit interesting pat-

terns that can occur in real-world time series. Our working

hypothesis is that in more realistic scenarios one is likely to

find time series with complex intricacies, such as pink noise

or fractional integration.

In this context, this paper provides an extensive comparison

study using a wide set of performance estimation methods.

These include several variants of both cross-validation and out-

of-sample approaches. The analysis is carried out using a real-

world scenario as well as a synthetic case study used in the

works described previously [2]–[4].

III. PERFORMANCE ESTIMATION METHODOLOGY

This section formalises the task of performance estimation

for time series forecasting. Our main objective in this paper is

to compare different performance estimation procedures and

test their suitability in these settings.

A time series is a temporal sequence of values Y =
{y1, y2, . . . , yn}, where yi is the value of Y at time i and n is

the length of Y . We remark that we use the term time series

assuming that Y is a numeric variable, i.e., yi ∈ R, ∀yi ∈ Y .

Time series forecasting denotes the task of predicting the

next value of the time series, yn+1, given the previous obser-

vations of Y .

A. Performance estimation

Performance estimation addresses the issue of estimating the

predictive performance of predictive models. Frequently, the

objective behind these tasks is to compare different solutions

for solving a predictive task. This includes selecting among

different learning algorithms and meta-parameter tuning for a

particular one.

Training a learning model and evaluating its predictive

ability on the same data has been proven to produce biased

results due to overfitting [1]. Since then several methods for

performance estimation have been proposed in the literature,

which use new data to estimate the performance of models.

Usually, new data is simulated by splitting the available data.

Part of the data is used for training the learning algorithm and

the remaining data is used to test and estimate the performance

of the model.

For many predictive tasks the most widely used of these

methods is K-fold cross-validation [14] (c.f. section II for

a description). The main advantages of this method is its

universal splitting criteria and efficient use of all the data.

However, cross-validation is based on the assumption that

observations in the underlying data are independent. When

this assumption is violated, for example in time series data,

theoretical problems arise that prevent the proper use of this

method in such scenarios. As we described in section II several

methods have been developed to cope with this issue, from

out-of-sample approaches [5] to variants of the standard cross-

validation, e.g., block cross-validation [11].

B. Methodology

Our goal in this paper is to compare a wide set of estimation

procedures, and test their suitability for time series forecasting

tasks.

In order to emulate a realistic scenario we split the data

in two parts. The first part is used to estimate the loss that a

given learning model will incur on unseen future observations.

This part is further split into training and test sets as described

before. The second part is used to compute the true loss that

the model incurred. This strategy allows the computation of

unbiased estimates of error since a model is always tested on

unseen observations.

The workflow described above is summarised in Figure 1.

A time series Y is split into an estimation set Y E and a

subsequent validation set Y V . First, Y E is used to estimate Ê,

the loss estimate that a predictive model m will incur on new

observations. This is accomplished by further splitting Y E into

training and test sets according to the respective estimation

procedure fi, i ∈ {1, . . . , z}. The model m is built on the

training set and Ê is computed on the test set.

Second, in order to evaluate the estimations Êi produced by

the methods fi, i ∈ {1, . . . , z}, the model m is re-trained using

the complete estimation set Y E and tested on the validation

set Y V . Effectively, we obtain E, the ground true loss that m
incurs on new data.

In summary, the goal of an estimation method fi is to

approximate E by Êi as well as possible. In section V-A2

we describe how to quantify this approximation.

IV. TIME SERIES DATA

Two different case studies are used to analyse the perfor-

mance estimation methods: a scenario comprised of real-world

time series and a synthetic setting used in prior work [2]–[4]

for addressing the issue of performance estimation for time

series forecasting tasks.

A. Real-world time series

We analyse 53 time series from different domains. They

have different granularity and length as well as unknown

dynamics. The time series are described in Table II.

B. Synthetic time series

We use three synthetic use cases defined in previous work

by Bergmeir et al. [2], [4]. The data generating processes are

all stationary and are designed as follows:

S1: A stable auto-regressive process with lag 3, i.e., the next

value of the time series is essentially dependent on the past

3 observations – c.f. Figure 2 for a sample graph.

S2: An invertible moving average process with lag 1 – c.f.

Figure 3 for a sample graph.

S3: A seasonal auto-regressive process with lag 12 (seasonal

lag 1) – c.f. Figure 4 for a sample graph.
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Fig. 1: Experimental comparison procedure: A time series is

split into an estimation set Y E and a subsequent validation set

Y V . The first is used to estimate the error Ê that the model

m will incur on unseen data, using z different estimation

methods. The second is used to compute the actual error E
incurred by m. The objective is to approximate E by Ê as

well as possible.

3.5
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4.5

5.0

0 200 400 600

Fig. 2: Sample graph of the S1 synthetic case.

For the first two cases, S1 and S2, real-valued roots of

the characteristic polynomial are sampled from the uniform

distribution [−r;−1.1] ∪ [1.1, r], where r is set to 5 [3].

Afterwards, the roots are used to estimate the models and

create the time series. The data is then processed by making

the values all positive. This is accomplished by subtracting

the minimum value and adding 1. The third case S3 is created

by fitting a seasonal auto-regressive model to a time series

of monthly total accidental deaths in the USA [15]. For a

complete description of data generating process we refer to

the work by Bergmeir et al. [2], [3]. For each use case we

performed 200 Monte Carlo simulations. In each repetition a

time series with 700 values was generated.

V. EXPERIMENTAL EVALUATION

In this section we present experiments carried out to analyse

the performance estimation methods for time series forecasting

tasks. These were designed to address the following research

3.0

3.5

4.0

0 200 400 600

Fig. 3: Sample graph of the S2 synthetic case.
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10000
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Fig. 4: Sample graph of the S3 synthetic case.

question: How do the predictive performance estimates of

cross-validation methods relate to the estimates of out-of-

sample approaches for time series forecasting tasks?

Existing empirical evidence suggests that cross-validation

methods provide more accurate estimations than traditionally

used OOS approaches in stationary time series forecasting [2]–

[4] (see section II). However, many real-world time series

comprise complex structures. These include cues from the

future that may not have been revealed in the past. Effec-

tively, our hypothesis is that preserving the temporal order of

observations when estimating the predictive ability of models

is an important component.

The study was performed using the R language, and specif-

ically, its performanceEstimation framework [16].

A. Experimental Setup

We focus on a purely auto-regressive modelling ap-

proach, predicting future values of time series using its past

lags/observations. To accomplish this we follow the ideas

regarding time-delay embedding [17]. In this context, a time

series is reconstructed into a higher dimensional space with

embedding dimension h. Effectively, we generate the follow-

ing matrix:

Y[n,h] =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1 y2 . . . yh−1 yh
...

...
...

...
...

yi−h+1 yi−h+2 . . . yi−1 yi
...

...
...

...
...

yn−h+1 yn−h+2 . . . yn−1 yn

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

Each row denotes an embedding vector vr, ∀ r ∈ {1, . . . , t−
h+ 1}. We then use the standard regression toolbox to solve

the prediction task yt+1 = f(vr). Essentially we assume that
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there are no long term time dependencies in the series and thus

the embedding vectors are deemed as essentially uncorrelated.

We estimate the optimal embedding dimension (h) for

the real-world scenario using the method of False Nearest

Neighbours [18]. This method analyses the behaviour of the

nearest neighbours as we increase h. According to the authors

of the method [18], with a low sub-optimal h, many of the

nearest neighbours will be false. Then, as we increase h and

approach an optimal embedding dimension those false neigh-

bours disappear. The embedding dimension in the synthetic

case study is fixed to 5 [2].

The estimation set (Y E) in each time series is the first 70%

observations of the time series – see Figure 1. The validation

period is comprised of the subsequent 30% observations (Y V ).

1) Estimation methods: In the experiments we apply a total

of 10 performance estimation methods, which are divided

into cross-validation (CV) variants and out-of-sample (OOS)

aproaches. The cross-validation methods are the following:

CV.KF Standard K-fold cross-validation.

CV.BKF Blocked K-fold cross-validation.

CV.MKF Modified K-fold cross-validation.

CV.hvBKF hv-Blocked K-fold cross-validation.

The number of folds K in these methods is 10, which

is a commonly used setting in the literature. The number

of observations removed in CV.MKF and CV.hvBKF (c.f.

section II) is the embedding dimension h in each time series.

The out-of-sample approaches are the following:

OOS.H Holdout: the first 70% of Y E is used for training and

the subsequent 30% is used for testing.

OOS.PB Prequential evaluation in blocks. The number of

blocks is set to 10.

OOS.MC60 OOS tested in nreps testing periods with a Monte

Carlo simulation using 60% of the total observations

n of the time series in each test. For each period, a

random point is picked from the time series. The previous

window comprising 42% of n is used for training and the

following window of 18% of n is used for testing. In this

case nreps is set to 10.

OOS.MC20 Similar to OOS.MC60 but with a training win-

dow of 14%, a testing window of 6% and nreps set to

20. We used two different settings of multiple testing in

OOS to test for robustness and check how the training/test

window affects the results.

OOS.GW and OOS.SW As baselines we also include the

exhaustive OOS alternatives in which an observation is

first used to test the predictive model and then to train

it. We use both a growing/landmark window (OOS.GW)

and a sliding window (OOS.SW).

For a complete description of each method we refer to

section II. Table I summarizes the estimation methods used

as well as their specs.

2) Evaluation metrics: Our goal is to analyse which esti-

mation method provides an Ê that best approximates E.

TABLE I: Summary of performance estimation procedures

used in the experiments.

ID Description

CV.KF K Fold Cross-Validation
CV.BKF Blocked K Fold Cross-Validation
CV.MKF Modified K Fold Cross-Validation
CV.hvBFK hv Blocked K Fold Cross-Validation

OOS.H OOS Holdout
OOS.PB Prequential in K Blocks
OOS.MC60 OOS with Monte Carlo Simulation using 60% of Y
OOS.MC20 OOS with Monte Carlo Simulation using 20% of Y
OOS.GW OOS Growing Window
OOS.SW OOS Sliding Window

Specifically, let Em
f denote the estimated loss by the learn-

ing model m using the estimation method f on the estimation

set, and Em denote the ground truth loss of learning model

m on the validation set. The objective is to analyse how well

Em
f approximates Em. This is quantified by the predictive

accuracy error (PAE) metric [2]:

PAE = Êm
f − Em (2)

Across each case study, a given performance estimation

method is evaluated in two dimensions according to PAE: 1)

error size, by taking the absolute value of PAE – this measures

the magnitude of the difference between the estimated and

the actual error; and 2) error bias, by measuring the median

PAE value across experiments. The error bias shows if a given

method is under-estimating or over-estimating the error.

Another question regarding evaluation is how a given learn-

ing model is evaluated regarding its forecasting accuracy.

In this work we evaluate models according to two distinct

metrics: root mean squared error (RMSE) and mean absolute

error (MAE). These are traditionally used for measuring

the differences between the estimated and actual values. We

include the two metrics in our experiments in the interest

of robustness and because they have been used in previous

studies [2]. RMSE and MAE are defined as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3)

MAE =
1

n

n∑
i=1

|yi − ŷi| (4)

3) Learning models: To provide robustness to our experi-

ments we apply the following three learning algorithms:

NN: A feed forward neural network with a single hidden

layer [19];

DT: A CART regression tree [20];

LM: A linear model with a Ridge regularization [21].

The meta-parameters of each model are optimised using a

grid search with a nested estimation procedure within each

predictive performance estimation procedure.
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TABLE II: Datasets and respective summary from the real-world case study.

ID Time series Data source Data characteristics

1 Rotunda AEP Porto Water Consumption from
different locations in the city of
Porto [22]

Half-hourly values from Nov. 11, 2015 to Jan. 11,
2016 (2929 values)

2 Preciosa Mar
3 Ameal

4 Global Horizontal Radiation
Solar Radiation Monitoring [23],
[24]

Hourly values from Apr. 25, 2016 to Aug. 25, 2016
(2950 values)

5 Direct Normal Radiation
6 Diffuse Horizontal Radiation
7 Average Wind Speed

8 Temperature

Bike Sharing [25]

9 Humidity Daily values from Jan. 1, 2011
10 Windspeed to Dec. 31, 2012 (731 values)
11 Total bike rentals

12 Humidity
Hourly values from Jan. 1, 2011 to Mar.
01, 2011 (1338 values)

13 Windspeed
14 Total bike rentals

15 AeroStock1

Stock price values from different
aerospace companies [26]

Daily stock prices from January 1988 through
October 1991 (949 values)

16 AeroStock2
17 AeroStock3
18 AeroStock4
19 AeroStock5
20 AeroStock6
21 AeroStock7
22 AeroStock8
23 AeroStock9
24 AeroStock10

25 CO.GT

Air quality indicators in an Italian
city [27]

Hourly values from Mar. 10, 2004 to Apr. 04 2005
(9357 values)

26 PT08.S1.CO
27 NMHC.GT
28 C6H6.GT
29 PT08.S2.NMHC
30 NOx.GT
31 PT08.S3.NOx
32 NO2.GT
33 PT08.S4.NO2
34 PT08.S5.O3
35 Temperature
36 RH
37 Humidity

38 Electricity Total Load

Hospital Energy Loads [28]
Hourly values from Jan. 1, 2016 to Mar. 25, 2016
(2000 values)

39 Equipment Load
40 Gas Energy
41 Gas Heat Energy

42 Total Demand
Australian Electricity [29]

Half-hourly values from Jan. 1, 1999 to Mar. 1,
1999 (2833 values)43 Recommended Retail Price

44 SP

Returns at Istanbul Stock
Exchange with seven other
international indices [30]

Daily values from Jan. 5, 2009 to Feb. 22, 2011
(536 values)

45 DAX
46 FTSE
47 NIKKEI
48 BOVESPA
49 EU
50 EM

51 Flow of Vatnsdalsa river Icelandic river [31] Daily values from Jan. 1, 1972 to Dec. 31, 1974
(1095 values)

52 Min. temperature
Porto weather [32]

Daily values from Jan. 1, 2010 to Dec. 28, 2013
(1457 values)53 Max. temperature
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B. Results
1) Predictive accuracy error size: The results regarding

the error size of the performance estimation methods are

presented in Figures 5 to 10. These follow the guidelines of

Demšar [33] regarding statistical comparison of methods over

multiple data sets. In this analysis we use the absolute value

of the PAE measure (c.f. Section V-A2) of each estimation

method across the experiments. Then the Friedman test is

applied to obtain the average ranking of methods. To check

for statistical differences of the average rankings we use a

significance level of 0.05.
Each diagram shows the ranking of the methods according

to the Friedman test. A lower rank represents better perfor-

mance. The horizontal lines connecting the methods show the

significance of the difference among ranks. Pairs of models not

connected with a horizontal line indicate significant difference

in their ranks for a given experiment.
Figures 5 to 7 denote the results of the analysis in the

synthetic case studies S1, S2 and S3, respectively. In this

scenario we fixed the learning models to the neural network

in the interest of conciseness. Similar conclusions are drawn

using the other two learning models.
The results show significant differences among distinct

methods, particularly in the S1 and S2 cases. Overall, the

cross-validation approaches seem to present a comparable

estimation ability relative to the out-of-sample approaches.

However, the results are not as evident as reported in previous

work by Bergmeir et al. [2]. We argue that this is mainly

due to the differences in the size of the time series. They use

synthetic time series with a length of 200 observations whereas

we increase the data to 700 values. Consequently, in small-

sized data sets the benefits of cross-validation approaches are

more apparent due to their better use of data relative to out-

of-sample approaches. We increased the size of the time series

to provide more fair comparisons.
In the synthetic case the results do not alter significantly

for distinct evaluation metrics. However, some differences can

be visible between case studies. For example, in Figure 7, the

CV.MKF method is the most accurate estimator. On the other

hand, it presents one of the worst rankings in the other two

synthetic case studies.
Figures 8 to 10 illustrate the results for each learning model

applied to the real-world case study. These show different

results relative to the synthetic scenario.
Although the differences are not significant, the out-of-

sample approaches show systematically better ranks than

cross-validation approaches. These suggest that in a real-

world setting it is beneficial to keep the temporal order of

observations.
In the synthetic case studies, OOS.H is significantly better

than OOS applied in multiple testing periods, OOS.MC60

or OOS.MC20. In the real-world scenario the inverse is

observed, though with no statistical significance. In this case,

OOS.MC60 or OOS.MC20 consistently show better ranking

than OOS.H. This suggests that in real-world time series with

potential non-stationarities it is benefitial to test in multiple

periods using a randomized strategy [5]. Comparing the two

OOS strategies that use multiple testing periods, in most cases

OOS.MC60 shows a better rank in the real-world data relative

to OOS.MC20.

The exhaustive approaches, OOS.GW and OOS.SW, are

computationally expensive and do not seem to provide better

estimates in comparison to the other, cheaper approaches.

The results on the real-world case are robust across the

two evaluation metrics. Moreover, some differences can be

captured by using different learning models but these do not

seem to alter the results significantly.

2) Median predictive accuracy error: Table III presents

the results of the median PAE (predictive accuracy error –

c.f. Section V-A2). Ideally, an estimation procedure should

approach the median PAE of 0. A positive value indicates

an over-estimation of error (Ê > E), while a negative one

represents under-estimation of error or over-fitting (Ê < E).

We use the median instead of a mean value of PAE to control

for outlier values.

The numbers in the table suggest that the out-of-sample

approaches provide the most accurate estimates, on average

and across the case studies. This holds for both evaluation

metrics and the three learning models used.

VI. DISCUSSION

In the experimental evaluation we compare several per-

formance estimation methods in two distinct scenarios: (1)

a synthetic case study in which artificial data generating

processes are used to create stationary time series; and (2) a

real-world case study comprising 53 time series from different

domains and with unknown dynamics. The synthetic case

study is based on the experimental setup used in previous

studies by Bergmeir et al. for the same purpose of evaluating

performance estimation methods for time series forecasting

tasks [2]–[4].

Bergmeir et al. show in previous studies [3], [34] that the

blocked form of cross-validation, denoted here as CV.BKF,

yields more accurate estimates than an out-of-sample eval-

uation (OOS.H) for stationary time series forecasting tasks.

The CV.KF is also suggested to be ”a better choice than OOS

evaluation” as long as the data are well fitted by the model [2].

To some extent part of the results from our experiments

corroborate these conclusions. Specifically, this is verified by

the predictive accuracy error size incurred by the estimation

procedures in the synthetic case studies.

However, according to our experiments, the results from the

synthetic stationary case studies poorly reflect the results on

real-world data. In a realistic setting the results suggest that

estimation methods that preserve the temporal order of obser-

vations provide more accurate error estimates. This is shown in

the experimental evaluation both in terms of error size as well

as error bias. In particular, OOS.MC60 shows a noticeable high

ranking in the real-world case study across all the problems.

Cross-validation approaches, especially standard K-fold cross-

validation, systematically provide worse estimates than the

out-of-sample methods.
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Fig. 5: Friedman test on the S1 synthetic data and the NN learning model. Critical difference diagrams show ranking of the

performance estimation procedures by the RMSE metric (left) and by the MAE metric (right).
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Fig. 6: Friedman test on the S2 synthetic data and the NN learning model. Critical difference diagrams show ranking of the

performance estimation procedures by the RMSE metric (left) and by the MAE metric (right).
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Fig. 7: Friedman test on the S3 synthetic data and the NN learning model. Critical difference diagrams show ranking of the

performance estimation procedures by the RMSE metric (left) and by the MAE metric (right).

In a real-world environment we are prone to deal with time

series with complex structures, such as long-range dependence,

pink noise or fractional integration. These comprise nuances

of the future that may not have revealed themselves in the

past [5]. Consequently, and following the results of our exper-

iments, in these scenarios we conclude that using the out-of-

sample approaches yields more reliable performance estimates

than cross-validation approaches.

VII. FINAL REMARKS

In this paper we analyse the ability of different methods to

approximate the loss that a given learning algorithm will incur

on unseen data. This error estimation process is performed in

every machine learning task for model selection and meta-

parameter tuning. We focus on performance estimation for

time series forecasting tasks. Since there is currently no settled

approach for performance estimation in these settings, our

objective is to compare different available methods and test

their suitability.

We analyse several methods that can be split into out-of-

sample approaches and cross-validation methods. These were

applied to two case studies: a synthetic environment with

stationary time series and a real-world scenario with potential

non-stationarities.

In a stationary setting the cross-validation variants are

shown to be able to handle the dependency among obser-

vations. However, under the realistic scenario, they system-

atically provide worse estimations than the out-of-sample

approaches.

Bergmeir et al. [2]–[4] suggest that for stationary time series

one should use cross-validation in a blocked form. On the
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ranking of the performance estimation procedures by the RMSE metric (left) and by the MAE metric (right).
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ranking of the performance estimation procedures by the RMSE metric (left) and by the MAE metric (right).
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Fig. 10: Friedman test on the real-world time series datasets and the LM learning model. Critical difference diagrams show

ranking of the performance estimation procedures by the RMSE metric (left) and by the MAE metric (right).

other hand, for real-world time series with potential non-

stationarities we conclude that approaches that maintain the

temporal order of data provide better error estimations. In

particular, out-of-sample applied in multiple testing periods

results in remarkably high estimates, relative to the other tested

alternatives.

In the interest of reproducibility, the methods and

datasets are publicly available at https://github.com/vcerqueira/

performance estimation.
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